1
Fork 0
pestle/assets/jsonqb/Physics 2025 QB merged.json
pirateIB 70f62f995e Update 6 files
- /app/index.html
- /app/index.js
- /assets/style.css
- /assets/jsonqb/Chemistry 2025 QB merged.json
- /assets/jsonqb/Physics 2025 QB merged.json
- /assets/jsonqb/Biology 2025 QB merged.json
2025-06-20 11:29:08 +00:00

2272 lines
No EOL
4.4 MiB
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[
{
"question_id": "19M.3.SL.TZ1.1",
"Question": "<div class=\"specification\">\n<p>In an experiment to measure the acceleration of free fall a student ties two different blocks of masses <em>m</em><sub>1</sub> and <em>m</em><sub>2</sub> to the ends of a string that passes over a frictionless pulley.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n<p style=\"text-align: left;\">The student calculates the acceleration <em>a</em> of the blocks by measuring the time taken by the heavier mass to fall through a given distance. Their theory predicts that<em> </em><span style=\"background-color: #ffffff;\"><span class=\"mjpage\"><math alttext=\"a = g\\frac{{{m_1} - {m_2}}}{{{m_1} + {m_2}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>a</mi>\n<mo>=</mo>\n<mi>g</mi>\n<mfrac>\n<mrow>\n<mrow>\n<msub>\n<mi>m</mi>\n<mn>1</mn>\n</msub>\n</mrow>\n<mo><!-- --></mo>\n<mrow>\n<msub>\n<mi>m</mi>\n<mn>2</mn>\n</msub>\n</mrow>\n</mrow>\n<mrow>\n<mrow>\n<msub>\n<mi>m</mi>\n<mn>1</mn>\n</msub>\n</mrow>\n<mo>+</mo>\n<mrow>\n<msub>\n<mi>m</mi>\n<mn>2</mn>\n</msub>\n</mrow>\n</mrow>\n</mfrac>\n</math></span></span> and this can be re-arranged to give <span style=\"background-color: #ffffff;\"><span class=\"mjpage\"><math alttext=\"g = a\\frac{{{m_1} + {m_2}}}{{{m_1} - {m_2}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>g</mi>\n<mo>=</mo>\n<mi>a</mi>\n<mfrac>\n<mrow>\n<mrow>\n<msub>\n<mi>m</mi>\n<mn>1</mn>\n</msub>\n</mrow>\n<mo>+</mo>\n<mrow>\n<msub>\n<mi>m</mi>\n<mn>2</mn>\n</msub>\n</mrow>\n</mrow>\n<mrow>\n<mrow>\n<msub>\n<mi>m</mi>\n<mn>1</mn>\n</msub>\n</mrow>\n<mo><!-- --></mo>\n<mrow>\n<msub>\n<mi>m</mi>\n<mn>2</mn>\n</msub>\n</mrow>\n</mrow>\n</mfrac>\n</math></span>.</span></p>\n<p style=\"text-align: left;\">In a particular experiment the student calculates that <em>a</em> = (0.204 ±0.002) ms<sup>2</sup> using <em>m</em><sub>1</sub> = (0.125 ±0.001) kg and <em>m</em><sub>2</sub> = (0.120 ±0.001) kg.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the percentage error in the measured value of <em>g</em>.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the value of <em>g</em> and its absolute uncertainty for this experiment.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>There is an advantage and a disadvantage in using two masses that are almost equal.</p>\n<p>State and explain the advantage with reference to the magnitude of the acceleration that is obtained.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>There is an advantage and a disadvantage in using two masses that are almost equal.</p>\n<p>State and explain the disadvantage with reference to your answer to (a)(ii).</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>error in <em>m</em><sub>1</sub> + <em>m</em><sub>2</sub> is 1% <em><strong>OR</strong></em> error in <em>m</em><sub>1</sub>  <em>m</em><sub>2</sub> is 40% <em><strong>OR</strong></em> error in <em>a</em> is 1% ✔</p>\n<p>adds percentage errors ✔</p>\n<p>so error in g is 42% <em><strong>OR</strong></em> 40% <em><strong>OR</strong></em> 41.8% ✔</p>\n<p><em>Allow answer 0.42 or 0.4 or 0.418. </em></p>\n<p><em>Award <strong>[0]</strong> for comparing the average value with a known value, e.g. 9.81 m s-2</em>.</p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>g</em> = 9.996 «m s<sup>2</sup>» <em><strong>OR</strong></em> Δ<em>g = </em>4.20 «m s<sup>2</sup>» ✔</p>\n<p><em>g</em> = (10 ± 4) «m s<sup>2</sup>»</p>\n<p><em><strong>OR</strong></em></p>\n<p><em>g</em> = (10.0 ± 4.2) «m s<sup>2</sup>» ✔</p>\n<p><em>Award <strong>[1]</strong> max for not proper significant digits or decimals use, such as: 9.996±4.178 or 10±4.2 or 10.0±4 or 10.0±4.18« m s<sup>2</sup> »</em> .</p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>the acceleration would be small/the time of fall would be large ✔</p>\n<p>easier to measure /a longer time of fall reduces the % error in the time of fall and «hence acceleration» ✔</p>\n<p><em>Do not accept ideas related to the mass/moment of inertia of the pulley</em>.</p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>the percentage error in the difference of the masses is large ✔</p>\n<p>leading to a large percentage error/uncertainty in g/of the experiment ✔</p>\n<p><em>Do not accept ideas related to the mass/moment of inertia of the pulley.</em></p>\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Atwoods machine a) is a quite straightforward question that tests the ability to propagate uncertainties through calculations. Almost all candidates proved the ability to add percentages or relative calculations, however, many weaker candidates failed in the percentage uncertainty when subtracting the two masses.</p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many average candidates did not use the correct number of significant figures and wrote the answers inappropriately. Only the best candidates rounded out and wrote the proper answer of 10±4 ms<sup>2</sup>. Some candidates did not propagate uncertainties and only compared the average calculated value with the known value 9.81 ms<sup>2</sup>.</p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Q 1 b) was quite well answered. Only the weakest candidates presented difficulty in understanding simple mechanics.</p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>In part ii) many were able to appreciate that the resultant percentage error in “g” was relatively large however linking this with what caused the large uncertainty (that is, the high % error from the small difference in masses) proved more challenging.</p>\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"topics": [
"inquiry",
"tools"
],
"subtopics": [
"i-1-3-controlling-variables",
"inquiry-1-exploring-and-designing",
"tool-3-mathematics"
]
},
{
"question_id": "19M.3.SL.TZ2.1",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">A student investigates the electromotive force (emf) <em>ε</em> and internal resistance<em> r</em> of a cell.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"196\" src=\"\" width=\"213\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The current <em>I</em> and the terminal potential difference <em>V</em> are measured.<br/></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">For this circuit <em>V = ε - Ir</em> .<br/></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The table shows the data collected by the student. The uncertainties for each measurement<br/>are shown.</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The graph shows the data plotted.</span></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></span></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">The student has plotted error bars for the potential difference. Outline why no error bars are shown for the current.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Determine, using the graph, the emf of the cell including the uncertainty for this value. Give your answer to the correct number of significant figures.</span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Outline, <strong>without</strong> calculation, how the internal resistance can be determined from this graph.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\">Δ<em>I</em> is too small to be shown/seen<br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\"><em><strong>OR</strong></em><br/></span></p>\n<p><span style=\"background-color:#ffffff;\">Error bar of negligible size compared to error bar in <em>V</em> ✔</span></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\">evidence that ε can be determined from the y-intercept of the line of best-fit or lines of min and max gradient ✔<br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\">states ε=1.59 <em><strong>OR</strong></em> 1.60 <em><strong>OR</strong> </em>1.61V«» ✔<br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\">states uncertainty in ε is 0.02 V«» <em><strong>OR</strong></em> 0.03«V» ✔</span></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\">determine the gradient «of the line of best-fit» ✔<br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\"><em>r</em> is the negative of this gradient ✔</span></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Almost all candidates realised that the uncertainty in I was too small to be shown. A common mistake was to mention that since I is the independent variable the uncertainty is negligible.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The number of candidates who realised that the V intercept was EMF was disappointing. Large numbers of candidates tried to calculate ε using points on the graph, often ending up with unrealistic values. Another common mistake was not giving values of ε and Δε to the correct number of digits - 2 decimal places on this occasion. Very few candidates drew maximum and minimum gradient lines as a way of determining Δε.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div>",
"topics": [
"inquiry",
"tools"
],
"subtopics": [
"i-2-1-collecting-data",
"inquiry-2-collecting-and-processing-data",
"tool-3-mathematics"
]
},
{
"question_id": "19M.3.SL.TZ2.3",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">A student uses a Youngs double-slit apparatus to determine the wavelength of light emitted by a monochromatic source. A portion of the interference pattern is observed on a screen.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The distance <em>D</em> from the double slits to the screen is measured using a ruler with a smallest scale division of 1 mm.<br/></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The fringe separation s is measured with uncertainty ± 0.1 mm.<br/></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The slit separation d has negligible uncertainty.<br/></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The wavelength is calculated using the relationship  <span class=\"mjpage\"><math alttext=\"\\lambda  = \\frac{{sd}}{D}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>λ<!-- λ --></mi>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mi>s</mi>\n<mi>d</mi>\n</mrow>\n<mi>D</mi>\n</mfrac>\n</math></span>.</span></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">When <em>d</em> = 0.200 mm, <em>s</em> = 0.9 mm and <em>D</em> = 280 mm, determine the percentage uncertainty in the wavelength.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Explain how the student could use this apparatus to obtain a more reliable value for λ. </span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"text-align:left;\">Evidence of <span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"\\frac{{\\Delta s}}{s}{\\text{AND}}\\frac{{\\Delta D}}{D}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mi mathvariant=\"normal\">Δ</mi>\n<mi>s</mi>\n</mrow>\n<mi>s</mi>\n</mfrac>\n<mrow>\n<mtext>AND</mtext>\n</mrow>\n<mfrac>\n<mrow>\n<mi mathvariant=\"normal\">Δ</mi>\n<mi>D</mi>\n</mrow>\n<mi>D</mi>\n</mfrac>\n</math></span> used   <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span><span style=\"background-color:#ffffff;\"><br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\">«add fractional/% uncertainties»<br/></span></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\">obtains 11% (or 0.11) <em><strong>OR</strong> </em>10% (or 0.1) ✔</span></span></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\"><em><strong>ALTERNATIVE 1:</strong></em><br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\">measure the combined width for several fringes<br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\"><em><strong>OR</strong></em><br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\">repeat measurements ✓<br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\">take the average<br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\"><em><strong>OR</strong></em><br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\">so the «percentage» uncertainties are reduced ✓<br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\"><em><strong>ALTERNATIVE 2:</strong></em><br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\">increase <em>D</em> «hence <em>s</em>»<br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\"><em><strong>OR</strong></em><br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\">Decrease <em>d</em> ✓<br/></span></p>\n<p style=\"text-align:left;\"><span style=\"background-color:#ffffff;\">so the «percentage» uncertainties are reduced ✓</span></p>\n<p style=\"text-align:left;\"><em><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\">Do not accept answers which suggest using different apparatus.</span></span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>A very easy question about percentage uncertainty which most candidates got completely correct. Many candidates gave the uncertainty to 4 significant figures or more. The process used to obtain the final answer was often difficult to follow.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The most common correct answer was the readings should be repeated and an average taken. Another common answer was that D could be increased to reduce uncertainties in s. The best candidates knew that it was good practice to measure many fringe spacings and find the mean value. Quite a few candidates incorrectly stated that different apparatus should be used to give more precise results.</p>\n<div class=\"question_part_label\">b.</div>\n</div>",
"topics": [
"inquiry",
"tools"
],
"subtopics": [
"i-3-2-evaluating",
"inquiry-3-concluding-and-evaluating",
"tool-3-mathematics"
]
},
{
"question_id": "19M.2.HL.TZ1.2",
"Question": "<div class=\"specification\">\n<p>A beam of electrons each of de Broglie wavelength 2.4 × 10<sup>15</sup> m is incident on a thin film of silicon-30  <span style=\"background-color: #ffffff;\"><span class=\"mjpage\"><math alttext=\"\\left( {{}_{14}^{30}{\\text{Si}}} \\right)\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mrow>\n<mo>(</mo>\n<mrow>\n<msubsup>\n<mrow>\n</mrow>\n<mrow>\n<mn>14</mn>\n</mrow>\n<mrow>\n<mn>30</mn>\n</mrow>\n</msubsup>\n<mrow>\n<mtext>Si</mtext>\n</mrow>\n</mrow>\n<mo>)</mo>\n</mrow>\n</math></span></span>. The variation in the electron intensity of the beam with scattering angle is shown.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Use the graph to show that the nuclear radius of silicon-30 is about 4 fm.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Estimate, using the result from (a)(i), the nuclear radius of thorium-232 <span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"\\left( {{}_{90}^{232}{\\text{Th}}} \\right)\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mrow>\n<mo>(</mo>\n<mrow>\n<msubsup>\n<mrow>\n</mrow>\n<mrow>\n<mn>90</mn>\n</mrow>\n<mrow>\n<mn>232</mn>\n</mrow>\n</msubsup>\n<mrow>\n<mtext>Th</mtext>\n</mrow>\n</mrow>\n<mo>)</mo>\n</mrow>\n</math></span>.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest <strong>one</strong> reason why a beam of electrons is better for investigating the size of a nucleus than a beam of alpha particles of the same energy.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why deviations from Rutherford scattering are observed when high-energy alpha particles are incident on nuclei.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.iv.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>read off between 17 and 19 «deg» ✔</p>\n<p>correct use of <em>d</em> = <span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"\\frac{\\lambda }{{\\sin \\theta }}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mi>λ</mi>\n<mrow>\n<mi>sin</mi>\n<mo></mo>\n<mi>θ</mi>\n</mrow>\n</mfrac>\n</math></span></span> = 7.8 × 10<sup>15</sup> «m» ✔</p>\n<p>so radius = <span class=\"mjpage\"><math alttext=\"\\frac{7.8}{2}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mn>7.8</mn>\n<mn>2</mn>\n</mfrac>\n</math></span> «fm» = 3.9 «fm» ✔</p>\n<p><em>Award ecf for wrong angle in MP1.</em></p>\n<p><em>Answer for MP3 must show at least 2 </em><em>sf.</em></p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>R<sub>Th</sub> = R<sub>si </sub> <span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"{\\left( {\\frac{{{A_{{\\text{Th}}}}}}{{{A_{{\\text{Si}}}}}}} \\right)^{\\frac{1}{3}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mrow>\n<msup>\n<mrow>\n<mo>(</mo>\n<mrow>\n<mfrac>\n<mrow>\n<mrow>\n<msub>\n<mi>A</mi>\n<mrow>\n<mrow>\n<mtext>Th</mtext>\n</mrow>\n</mrow>\n</msub>\n</mrow>\n</mrow>\n<mrow>\n<mrow>\n<msub>\n<mi>A</mi>\n<mrow>\n<mrow>\n<mtext>Si</mtext>\n</mrow>\n</mrow>\n</msub>\n</mrow>\n</mrow>\n</mfrac>\n</mrow>\n<mo>)</mo>\n</mrow>\n<mrow>\n<mfrac>\n<mn>1</mn>\n<mn>3</mn>\n</mfrac>\n</mrow>\n</msup>\n</mrow>\n</math></span></span> or substitution ✔</p>\n<p>7.4 «fm» ✔<br/><br/></p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>electron wavelength shorter than alpha particles (thus increased resolution)<br/><em><strong>OR</strong></em><br/>electron is not subject to strong nuclear force ✔</p>\n<p> </p>\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>nuclear forces act ✔</p>\n<p>nuclear recoil occurs ✔</p>\n<p>significant penetration into nucleus / probing internal structure of individual nucleons ✔</p>\n<p>incident particles are relativistic ✔</p>\n<div class=\"question_part_label\">a.iv.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was left blank by many candidates and many of those who attempted it chose an angle that when used with the correct equation gave an answer close to the given answer of 4 fm. Very few selected the correct angle, calculated the correct diameter, and divided by two to get the correct radius.</p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was also left blank by many candidates. Many who did answer simply used the ratio of the of the mass numbers of the two elements and failed to take the cube root of the ratio. It should be noted that the question specifically stated that candidates were expected to use the result from 2ai, and not just simply guess at the new radius.</p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was very poorly answered with the vast majority of candidates simply listing differences between alpha particles and electrons (electrons have less mass, electrons have less charge, etc) rather than considering why high speed electrons would be better for studying the nucleus.</p>\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Candidates struggled with this question. The vast majority of responses were descriptions of Rutherford scattering with no connection made to the deviations when high-energy alpha particles are used. Many of the candidates who did appreciate that this was a different situation from the traditional experiment made vague comments about the alpha particles “hitting” the nucleus.</p>\n<div class=\"question_part_label\">a.iv.</div>\n</div>",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-3-wave-phenomena"
]
},
{
"question_id": "19M.2.HL.TZ1.3",
"Question": "<div class=\"specification\">\n<p>A beam of microwaves is incident normally on a pair of identical narrow slits S1 and S2.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n<p style=\"text-align: left;\">When a microwave receiver is initially placed at W which is equidistant from the slits, a maximum in intensity is observed. The receiver is then moved towards Z along a line parallel to the slits. Intensity maxima are observed at X and Y with one minimum between them. W, X and Y are consecutive maxima.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why intensity maxima are observed at X and Y.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The distance from S1 to Y is 1.243 m and the distance from S2 to Y is 1.181 m.</p>\n<p>Determine the frequency of the microwaves.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline <strong>one</strong> reason why the maxima observed at W, X and Y will have different intensities from each other.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The microwaves emitted by the transmitter are horizontally polarized. The microwave receiver contains a polarizing filter. When the receiver is at position W it detects a maximum intensity.</p>\n<p style=\"text-align:center;\"><img src=\"\"/></p>\n<p style=\"text-align:left;\">The receiver is then rotated through 180° about the horizontal dotted line passing through the microwave transmitter. Sketch a graph on the axes provided to show the variation of received intensity with rotation angle.</p>\n<p style=\"text-align:left;\"><img src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>two waves superpose/mention of superposition/mention of «constructive» interference ✔</p>\n<p>they arrive in phase/there is a path length difference of an integer number of wavelengths ✔</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>path difference = 0.062 «m»✔</p>\n<p>so wavelength = 0.031 «m»✔</p>\n<p>frequency = 9.7 × 10<sup>9</sup> «Hz»✔</p>\n<p><em>Award <strong>[2 max]</strong> for 4.8 x 10<sup>9</sup> Hz</em>.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>intensity is modulated by a single slit diffraction envelope <em><strong>OR</strong></em></p>\n<p>intensity varies with distance <em><strong>OR</strong></em> points are different distances from the slits ✔<br/><br/></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p>cos<sup>2</sup> variation shown ✔</p>\n<p>with zero at 90° (by eye) ✔</p>\n<p><em>Award <strong>[1 max]</strong> for an inverted curve with maximum at 90°.</em></p>\n<div class=\"question_part_label\">d.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates were able to discuss the interference that is taking place in this question, but few were able to fully describe the path length difference. That said, the quality of responses on this type of question seems to have improved over the last few examination sessions with very few candidates simply discussing the crests and troughs of waves.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates struggled with this question. Few were able to calculate a proper path length difference, and then use that to calculate the wavelength and frequency. Many candidates went down blind paths of trying various equations from the data booklet, and some seemed to believe that the wavelength is just the reciprocal of the frequency.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This is one of many questions on this paper where candidates wrote vague answers that did not clearly connect to physics concepts or include key information. There were many overly simplistic answers like “they are farther away” without specifying what they are farther away from. Candidates should be reminded that their responses should go beyond the obvious and include some evidence of deeper understanding.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was generally well answered, with many candidates at least recognizing that the intensity would decrease to zero at 90 degrees. Many struggled with the exact shape of the graph, though, and some drew a graph that extended below zero showing a lack of understanding of what was being graphed.</p>\n<div class=\"question_part_label\">d.</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"c-wave-behaviour"
],
"subtopics": [
"a-5-galilean-and-special-relativity",
"c-2-wave-model",
"c-3-wave-phenomena"
]
},
{
"question_id": "19M.2.HL.TZ1.5",
"Question": "<div class=\"specification\">\n<p>The moon Phobos moves around the planet Mars in a circular orbit.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline the origin of the force that acts on Phobos.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why this force does no work on Phobos.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The orbital period <em>T</em> of a moon orbiting a planet of mass <em>M</em> is given by</p>\n<p style=\"text-align:center;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage mjpage__block\"><math alttext=\"\\frac{{{R^3}}}{{{T^2}}} = kM\" display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mrow>\n<msup>\n<mi>R</mi>\n<mn>3</mn>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mrow>\n<msup>\n<mi>T</mi>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n<mo>=</mo>\n<mi>k</mi>\n<mi>M</mi>\n</math></span></span></p>\n<p>where <em>R</em> is the average distance between the centre of the planet and the centre of the moon.</p>\n<p>Show that <span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"k = \\frac{G}{{4{\\pi ^2}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>k</mi>\n<mo>=</mo>\n<mfrac>\n<mi>G</mi>\n<mrow>\n<mn>4</mn>\n<mrow>\n<msup>\n<mi>π</mi>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n</math></span></span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The following data for the MarsPhobos system and the EarthMoon system are available:</p>\n<p>Mass of Earth = 5.97 × 10<sup>24</sup> kg</p>\n<p>The EarthMoon distance is 41 times the MarsPhobos distance.</p>\n<p>The orbital period of the Moon is 86 times the orbital period of Phobos.</p>\n<p>Calculate, in kg, the mass of Mars.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The graph shows the variation of the gravitational potential between the Earth and Moon with distance from the centre of the Earth. The distance from the Earth is expressed as a fraction of the total distance between the centre of the Earth and the centre of the Moon.</p>\n<p style=\"text-align:center;\"><img src=\"\"/></p>\n<p style=\"text-align:left;\">Determine, using the graph, the mass of the Moon.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>gravitational attraction/force/field «of the planet/Mars» ✔</p>\n<p><em>Do not accept “gravity”</em>.</p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>the force/field and the velocity/displacement are at 90° to each other <strong><em>OR</em></strong></p>\n<p>there is no change in GPE of the moon/Phobos ✔</p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong>ALTERNATE 1</strong></em></p>\n<p>«using fundamental equations»</p>\n<p>use of Universal gravitational force/acceleration/orbital velocity equations ✔</p>\n<p>equating to centripetal force or acceleration. ✔</p>\n<p>rearranges to get <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span class=\"mjpage\"><math alttext=\"k = \\frac{G}{{4{\\pi ^2}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>k</mi>\n<mo>=</mo>\n<mfrac>\n<mi>G</mi>\n<mrow>\n<mn>4</mn>\n<mrow>\n<msup>\n<mi>π</mi>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n</math></span></span>  ✔</p>\n<p><em><strong>ALTERNATE 2</strong></em></p>\n<p>«starting with <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:center;text-decoration:none;text-indent:0px;white-space:normal;\"><span class=\"mjpage\"><math alttext=\"\\frac{{{R^3}}}{{{T^2}}} = kM\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mrow>\n<msup>\n<mi>R</mi>\n<mn>3</mn>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mrow>\n<msup>\n<mi>T</mi>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n<mo>=</mo>\n<mi>k</mi>\n<mi>M</mi>\n</math></span><span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">»</span></span></p>\n<p>substitution of proper equation for T from orbital motion equations ✔</p>\n<p>substitution of proper equation for M <em><strong>OR</strong></em> R from orbital motion equations ✔</p>\n<p>rearranges to get <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span class=\"mjpage\"><math alttext=\"k = \\frac{G}{{4{\\pi ^2}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>k</mi>\n<mo>=</mo>\n<mfrac>\n<mi>G</mi>\n<mrow>\n<mn>4</mn>\n<mrow>\n<msup>\n<mi>π</mi>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n</math></span></span>  ✔</p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"{m_{{\\text{Mars}}}} = {\\left( {\\frac{{{R_{{\\text{Mars}}}}}}{{{R_{{\\text{Earth}}}}}}} \\right)^3}{\\left( {\\frac{{{T_{{\\text{Earth}}}}}}{{{T_{Mars}}}}} \\right)^2}{m_{{\\text{Earth}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mrow>\n<msub>\n<mi>m</mi>\n<mrow>\n<mrow>\n<mtext>Mars</mtext>\n</mrow>\n</mrow>\n</msub>\n</mrow>\n<mo>=</mo>\n<mrow>\n<msup>\n<mrow>\n<mo>(</mo>\n<mrow>\n<mfrac>\n<mrow>\n<mrow>\n<msub>\n<mi>R</mi>\n<mrow>\n<mrow>\n<mtext>Mars</mtext>\n</mrow>\n</mrow>\n</msub>\n</mrow>\n</mrow>\n<mrow>\n<mrow>\n<msub>\n<mi>R</mi>\n<mrow>\n<mrow>\n<mtext>Earth</mtext>\n</mrow>\n</mrow>\n</msub>\n</mrow>\n</mrow>\n</mfrac>\n</mrow>\n<mo>)</mo>\n</mrow>\n<mn>3</mn>\n</msup>\n</mrow>\n<mrow>\n<msup>\n<mrow>\n<mo>(</mo>\n<mrow>\n<mfrac>\n<mrow>\n<mrow>\n<msub>\n<mi>T</mi>\n<mrow>\n<mrow>\n<mtext>Earth</mtext>\n</mrow>\n</mrow>\n</msub>\n</mrow>\n</mrow>\n<mrow>\n<mrow>\n<msub>\n<mi>T</mi>\n<mrow>\n<mi>M</mi>\n<mi>a</mi>\n<mi>r</mi>\n<mi>s</mi>\n</mrow>\n</msub>\n</mrow>\n</mrow>\n</mfrac>\n</mrow>\n<mo>)</mo>\n</mrow>\n<mn>2</mn>\n</msup>\n</mrow>\n<mrow>\n<msub>\n<mi>m</mi>\n<mrow>\n<mrow>\n<mtext>Earth</mtext>\n</mrow>\n</mrow>\n</msub>\n</mrow>\n</math></span></span> or other consistent re-arrangement ✔</p>\n<p>6.4 × 10<sup>23</sup> «kg» ✔</p>\n<p> </p>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>read off separation at maximum potential 0.9 ✔</p>\n<p>equating of gravitational field strength of earth and moon at that location <em><strong>OR <img src=\"\"/>✔</strong></em></p>\n<p>7.4 × 10<sup>22</sup> «kg» ✔</p>\n<p><em>Allow ECF from MP1</em></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was generally well answered, although some candidates simply used the vague term “gravity” rather than specifying that it is a gravitational force or a gravitational field. Candidates need to be reminded about using proper physics terms and not more general, “every day” terms on the exam.</p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Some candidates connected the idea that the gravitational force is perpendicular to the velocity (and hence the displacement) for the mark. It was also allowed to discuss that there is no change in gravitational potential energy, so therefore no work was being done. It was not acceptable to simply state that the net displacement over one full orbit is zero. Unfortunately, some candidates suggested that there is no net force on the moon so there is no work done, or that the moon is so much smaller so no work could be done on it.</p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was another “show that” derivation. Many candidates attempted to work with universal gravitation equations, either from memory or the data booklet, to perform this derivation. The variety of correct solution paths was quite impressive, and many candidates who attempted this question were able to receive some marks. Candidates should be reminded on “show that” questions that it is never allowed to work backwards from the given answer. Some candidates also made up equations (such as T = 2𝝿r) to force the derivation to work out.</p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was challenging for candidates. The candidates who started down the correct path of using the given derived value from 5bi often simply forgot that the multiplication factors had to be squared and cubed as well as the variables.</p>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was left blank by many candidates, and very few who attempted it were able to successfully recognize that the gravitational fields of the Earth and Moon balance at 0.9r and then use the proper equation to calculate the mass of the Moon.</p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"d-fields"
],
"subtopics": [
"a-2-forces-and-momentum",
"a-3-work-energy-and-power",
"d-1-gravitational-fields"
]
},
{
"question_id": "19M.2.HL.TZ1.6",
"Question": "<div class=\"specification\">\n<p>A small metal pendulum bob is suspended at rest from a fixed point with a length of thread of negligible mass. Air resistance is negligible.</p>\n<p>The pendulum begins to oscillate. Assume that the motion of the system is simple harmonic, and in one vertical plane.</p>\n<p>The graph shows the variation of kinetic energy of the pendulum bob with time.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"specification\">\n<p>When the 75 g bob is moving horizontally at 0.80 m s<sup>1</sup>, it collides with a small stationary object also of mass 75 g. The object and the bob stick together.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate, in m, the length of the thread. State your answer to an appropriate number of significant figures.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Label on the graph with the letter X a point where the speed of the pendulum is half that of its initial speed.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The mass of the pendulum bob is 75 g. Show that the maximum speed of the bob is about 0.7 m s<sup>1</sup>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the speed of the combined masses immediately after the collision.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the collision is inelastic.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Sketch, on the axes, a graph to show the variation of gravitational potential energy with time for the bob and the object after the collision. The data from the graph used in (a) is shown as a dashed line for reference.</p>\n<p style=\"text-align:center;\"><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p style=\"text-align:left;\">The speed after the collision of the bob and the object was measured using a sensor. This sensor emits a sound of frequency <em>f</em> and this sound is reflected from the moving bob. The sound is then detected by the sensor as frequency <em>f</em>.</p>\n<p style=\"text-align:left;\">Explain why <em>f</em> and <em>f</em> are different.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.iv.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>identifies T as 2.25 s ✔</p>\n<p>L = 1.26 m ✔</p>\n<p>1.3 / 1.26 «m» ✔</p>\n<p><em>Accept <span style=\"text-decoration:underline;\">any</span> number of s.f. for MP2.</em></p>\n<p><em>Accept <span style=\"text-decoration:underline;\">any</span> answer with 2 or 3 s.f. for MP3</em>.</p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>X labels any point <span style=\"text-decoration:underline;\">on the curve</span> where <em>E<span style=\"font-size:11.6667px;\"><sub>K</sub>  </span></em> <span class=\"mjpage\"><math alttext=\"\\frac{1}{4}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mn>1</mn>\n<mn>4</mn>\n</mfrac>\n</math></span> of maximum/5 mJ ✔</p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"mjpage\"><math alttext=\"\\frac{1}{2}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n</math></span> mv<sup>2</sup> = 20 × 10<sup>3</sup> seen <em><strong>OR </strong></em><span class=\"mjpage\"><math alttext=\"\\frac{1}{2}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n</math></span> × 7.5 × 10<sup>-2</sup> × <em>v</em><sup>2</sup> = 20 × 10<sup>-3</sup> ✔</p>\n<p>0.73 «m s<sup>1</sup>» ✔</p>\n<p><em>Must see at least 2 s.f. for MP2</em>.</p>\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>0.40 «m s<sup>-1</sup>» ✔</p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>initial energy 24 mJ and final energy 12 mJ ✔</p>\n<p>energy is lost/unequal /change in energy is 12 mJ ✔</p>\n<p>inelastic collisions occur when energy is lost ✔</p>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>graph with same period but inverted ✔</p>\n<p>amplitude one half of the original/two boxes throughout (by eye) ✔</p>\n<div class=\"question_part_label\">b.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>mention of Doppler effect ✔</p>\n<p>there is a change in the wavelength of the reflected wave ✔</p>\n<p>because the wave speed is constant, there is a change in frequency ✔</p>\n<div class=\"question_part_label\">b.iv.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was well approached by candidates. The noteworthy mistakes were not reading the correct period of the pendulum from the graph, and some simple calculation and mathematical errors. This question also had one mark for writing an answer with the correct number of significant digits. Candidates should be aware to look for significant digit question on the exam and can write any number with correct number of significant digits for the mark.</p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was well answered. This is a “show that” question so candidates needed to clearly show the correct calculation and write an answer with at least one significant digit more than the given answer. Many candidates failed to appreciate that the energy was given in mJ and the mass was in grams, and that these values needed to be converted before substitution.</p>\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Candidates fell into some broad categories on this question. This was a “show that” question, so there was an expectation of a mathematical argument. Many were able to successfully show that the initial and final kinetic energies were different and connect this to the concept of inelastic collisions. Some candidates tried to connect conservation of momentum unsuccessfully, and some simply wrote an extended response about the nature of inelastic collisions and noted that the bobs stuck together without any calculations. This approach was awarded zero marks.</p>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates drew graphs that received one mark for either recognizing the phase difference between the gravitational potential energy and the kinetic energy, or for recognizing that the total energy was half the original energy. Few candidates had both features for both marks.</p>\n<div class=\"question_part_label\">b.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was essentially about the Doppler effect, and therefore candidates were expected to give a good explanation for why there is a frequency difference. As with all explain questions, the candidates were required to go beyond the given information. Very few candidates earned marks beyond just recognizing that this was an example of the Doppler effect. Some did discuss the change in wavelength caused by the relative motion of the bob, although some candidates chose very vague descriptions like “the waves are all squished up” rather than using proper physics terms. Some candidates simply wrote and explained the equation from the data booklet, which did not receive marks. It should be noted that this was a three mark question, and yet some candidates attempted to answer it with a single sentence.</p>\n<div class=\"question_part_label\">b.iv.</div>\n</div>",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-4-rigid-body-mechanics"
]
},
{
"question_id": "19M.2.HL.TZ1.7",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that during an adiabatic expansion of an ideal monatomic gas the temperature\n <span style=\"background-color:#ffffff;\">\n <span class=\"mjpage\">\n <math alttext=\"T\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n </math>\n </span>\n </span>\n and volume\n <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n <span class=\"mjpage\">\n <math alttext=\"V\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n V\n </mi>\n </math>\n </span>\n </span>\n are given by\n </p>\n <p style=\"text-align:center;\">\n <span style=\"background-color:#ffffff;\">\n <span class=\"mjpage\">\n <math alttext=\"T{V^{\\frac{2}{3}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <mrow>\n <msup>\n <mi>\n V\n </mi>\n <mrow>\n <mfrac>\n <mn>\n 2\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </mrow>\n </msup>\n </mrow>\n </math>\n </span>\n </span>\n = constant\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the efficiency of the cycle.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The work done during the isothermal expansion A → B is 540 J. Calculate the thermal energy that leaves the gas during one cycle.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the ratio\n <span style=\"background-color:#ffffff;\">\n <span class=\"mjpage\">\n <math alttext=\"\\frac{{{V_C}}}{{{V_B}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mrow>\n <msub>\n <mi>\n V\n </mi>\n <mi>\n C\n </mi>\n </msub>\n </mrow>\n </mrow>\n <mrow>\n <mrow>\n <msub>\n <mi>\n V\n </mi>\n <mi>\n B\n </mi>\n </msub>\n </mrow>\n </mrow>\n </mfrac>\n </math>\n </span>\n </span>\n where\n <em>\n V\n <sub>\n C\n </sub>\n </em>\n is the volume of the gas at C and\n <em>\n V\n <sub>\n B\n </sub>\n </em>\n is the volume at B.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the change in the entropy of the gas during the change A to B.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain, by reference to the second law of thermodynamics, why a real engine operating between the temperatures of 620 K and 340 K cannot have an efficiency greater than the answer to (b)(i).\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n substitution of\n <span style=\"background-color:#ffffff;\">\n <span class=\"mjpage\">\n <math alttext=\"P = \\frac{{nRT}}{V}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n P\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n n\n </mi>\n <mi>\n R\n </mi>\n <mi>\n T\n </mi>\n </mrow>\n <mi>\n V\n </mi>\n </mfrac>\n </math>\n </span>\n in\n <span class=\"mjpage\">\n <math alttext=\"{P_X}V_X^{\\frac{5}{3}} = {P_Y}V_Y^{\\frac{5}{3}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mrow>\n <msub>\n <mi>\n P\n </mi>\n <mi>\n X\n </mi>\n </msub>\n </mrow>\n <msubsup>\n <mi>\n V\n </mi>\n <mi>\n X\n </mi>\n <mrow>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </mrow>\n </msubsup>\n <mo>\n =\n </mo>\n <mrow>\n <msub>\n <mi>\n P\n </mi>\n <mi>\n Y\n </mi>\n </msub>\n </mrow>\n <msubsup>\n <mi>\n V\n </mi>\n <mi>\n Y\n </mi>\n <mrow>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </mrow>\n </msubsup>\n </math>\n </span>\n </span>\n ✔\n </p>\n <p>\n manipulation to get result ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n e « = 1 \n <span style=\"background-color:#ffffff;\">\n <span class=\"mjpage\">\n <math alttext=\"\\frac{{{T_c}}}{{{T_h}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mrow>\n <msub>\n <mi>\n T\n </mi>\n <mi>\n c\n </mi>\n </msub>\n </mrow>\n </mrow>\n <mrow>\n <mrow>\n <msub>\n <mi>\n T\n </mi>\n <mi>\n h\n </mi>\n </msub>\n </mrow>\n </mrow>\n </mfrac>\n </math>\n </span>\n </span>\n = 1 \n <span class=\"mjpage\">\n <math alttext=\"\\frac{340}{620}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 340\n </mn>\n <mn>\n 620\n </mn>\n </mfrac>\n </math>\n </span>\n » = 0.45 ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n heat into gas «is along AB» and equals\n </p>\n <p>\n <em>\n Q\n <sub>\n in\n </sub>\n </em>\n «= Δ\n <em>\n U\n </em>\n +\n <em>\n W\n </em>\n = 0 + 540» = 540 «J» ✔\n </p>\n <p>\n heat out is (1\n <em>\n e\n </em>\n )\n <em>\n Q\n <sub>\n in =\n </sub>\n </em>\n (10.45) × 540 = 297 «J» ≈ 3.0 × 10\n <sup>\n 2\n </sup>\n «J» ✔\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for bald correct answer.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.iii)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n <span class=\"mjpage\">\n <math alttext=\"{T_B}V_B^{\\frac{2}{3}} = {T_C}V_C^{\\frac{2}{3}} \\Rightarrow \\frac{{{V_C}}}{{{V_B}}} = {\\left( {\\frac{{{T_B}}}{{{T_C}}}} \\right)^{\\frac{3}{2}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mrow>\n <msub>\n <mi>\n T\n </mi>\n <mi>\n B\n </mi>\n </msub>\n </mrow>\n <msubsup>\n <mi>\n V\n </mi>\n <mi>\n B\n </mi>\n <mrow>\n <mfrac>\n <mn>\n 2\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </mrow>\n </msubsup>\n <mo>\n =\n </mo>\n <mrow>\n <msub>\n <mi>\n T\n </mi>\n <mi>\n C\n </mi>\n </msub>\n </mrow>\n <msubsup>\n <mi>\n V\n </mi>\n <mi>\n C\n </mi>\n <mrow>\n <mfrac>\n <mn>\n 2\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </mrow>\n </msubsup>\n <mo stretchy=\"false\">\n ⇒\n </mo>\n <mfrac>\n <mrow>\n <mrow>\n <msub>\n <mi>\n V\n </mi>\n <mi>\n C\n </mi>\n </msub>\n </mrow>\n </mrow>\n <mrow>\n <mrow>\n <msub>\n <mi>\n V\n </mi>\n <mi>\n B\n </mi>\n </msub>\n </mrow>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mrow>\n <msup>\n <mrow>\n <mo>\n (\n </mo>\n <mrow>\n <mfrac>\n <mrow>\n <mrow>\n <msub>\n <mi>\n T\n </mi>\n <mi>\n B\n </mi>\n </msub>\n </mrow>\n </mrow>\n <mrow>\n <mrow>\n <msub>\n <mi>\n T\n </mi>\n <mi>\n C\n </mi>\n </msub>\n </mrow>\n </mrow>\n </mfrac>\n </mrow>\n <mo>\n )\n </mo>\n </mrow>\n <mrow>\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </mrow>\n </msup>\n </mrow>\n </math>\n </span>\n </span>\n ✔\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <span class=\"mjpage\">\n <math alttext=\"\\frac{{{V_C}}}{{{V_B}}} = {\\left( {\\frac{{620}}{{340}}} \\right)^{\\frac{3}{2}}} = 2.5\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mrow>\n <msub>\n <mi>\n V\n </mi>\n <mi>\n C\n </mi>\n </msub>\n </mrow>\n </mrow>\n <mrow>\n <mrow>\n <msub>\n <mi>\n V\n </mi>\n <mi>\n B\n </mi>\n </msub>\n </mrow>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mrow>\n <msup>\n <mrow>\n <mo>\n (\n </mo>\n <mrow>\n <mfrac>\n <mrow>\n <mn>\n 620\n </mn>\n </mrow>\n <mrow>\n <mn>\n 340\n </mn>\n </mrow>\n </mfrac>\n </mrow>\n <mo>\n )\n </mo>\n </mrow>\n <mrow>\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </mrow>\n </msup>\n </mrow>\n <mo>\n =\n </mo>\n <mn>\n 2.5\n </mn>\n </math>\n </span>\n </span>\n ✔\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for bald correct answer.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.i)\n </div><div class=\"card-body\">\n <p>\n Δ\n <em>\n S\n </em>\n «=\n <span class=\"mjpage\">\n <math alttext=\"\\frac{Q}{T}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mi>\n Q\n </mi>\n <mi>\n T\n </mi>\n </mfrac>\n </math>\n </span>\n =\n <span class=\"mjpage\">\n <math alttext=\"\\frac{540}{620}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 540\n </mn>\n <mn>\n 620\n </mn>\n </mfrac>\n </math>\n </span>\n »= 0.87 «JK\n <sup>\n 1\n </sup>\n » ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.ii)\n </div><div class=\"card-body\">\n <p>\n the Carnot cycle has the maximum efficiency «for heat engines operating between two given temperatures »✔\n </p>\n <p>\n real engine can not work at Carnot cycle/ideal cycle ✔\n </p>\n <p>\n the second law of thermodynamics says that it is impossible to convert all the input heat into mechanical work ✔\n </p>\n <p>\n a real engine would have additional losses due to friction\n <em>\n etc\n </em>\n ✔\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n The algebraic manipulation required for this question was well mastered by only the better-prepared candidates. Many candidates tried to find the required formula via randomly selected equations from the data booklet.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n The efficiency of the Carnot cycle was well calculated by most of the candidates, but the thermal energy that leaves the gas was well calculated only by the best candidates. Many candidates were able to establish that the heat added to the gas was 540 J - but struggled to then link this with the efficiency to determine the thermal energy leaving the gas. In iii) the better candidates used the formula given at i) to appropriately calculate the ratio but many were not able to manipulate the expressions to achieve the desired outcome. The reciprocal of 2.5 (0.4) was a common error in the final result and so was the incorrect use of the formula for isobaric expansion. The change in the entropy was well calculated by many candidates with ECF being very prominent from part biii). A complete and proper explanation in ii) was well formulated only by the better candidates. However, many were able to recognize that the Carnot engine was ideal and not real. Many answers referred to heat being lost to the environment but not to “additional losses” that make the engine less than its ideal capacity.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n The efficiency of the Carnot cycle was well calculated by most of the candidates, but the thermal energy that leaves the gas was well calculated only by the best candidates. Many candidates were able to establish that the heat added to the gas was 540 J - but struggled to then link this with the efficiency to determine the thermal energy leaving the gas. In iii) the better candidates used the formula given at i) to appropriately calculate the ratio but many were not able to manipulate the expressions to achieve the desired outcome. The reciprocal of 2.5 (0.4) was a common error in the final result and so was the incorrect use of the formula for isobaric expansion. The change in the entropy was well calculated by many candidates with ECF being very prominent from part biii). A complete and proper explanation in ii) was well formulated only by the better candidates. However, many were able to recognize that the Carnot engine was ideal and not real. Many answers referred to heat being lost to the environment but not to “additional losses” that make the engine less than its ideal capacity.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.iii)\n </div><div class=\"card-body\">\n <p>\n The efficiency of the Carnot cycle was well calculated by most of the candidates, but the thermal energy that leaves the gas was well calculated only by the best candidates. Many candidates were able to establish that the heat added to the gas was 540 J - but struggled to then link this with the efficiency to determine the thermal energy leaving the gas. In iii) the better candidates used the formula given at i) to appropriately calculate the ratio but many were not able to manipulate the expressions to achieve the desired outcome. The reciprocal of 2.5 (0.4) was a common error in the final result and so was the incorrect use of the formula for isobaric expansion. The change in the entropy was well calculated by many candidates with ECF being very prominent from part biii). A complete and proper explanation in ii) was well formulated only by the better candidates. However, many were able to recognize that the Carnot engine was ideal and not real. Many answers referred to heat being lost to the environment but not to “additional losses” that make the engine less than its ideal capacity.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.i)\n </div><div class=\"card-body\">\n <p>\n The efficiency of the Carnot cycle was well calculated by most of the candidates, but the thermal energy that leaves the gas was well calculated only by the best candidates. Many candidates were able to establish that the heat added to the gas was 540 J - but struggled to then link this with the efficiency to determine the thermal energy leaving the gas. In iii) the better candidates used the formula given at i) to appropriately calculate the ratio but many were not able to manipulate the expressions to achieve the desired outcome. The reciprocal of 2.5 (0.4) was a common error in the final result and so was the incorrect use of the formula for isobaric expansion. The change in the entropy was well calculated by many candidates with ECF being very prominent from part biii). A complete and proper explanation in ii) was well formulated only by the better candidates. However, many were able to recognize that the Carnot engine was ideal and not real. Many answers referred to heat being lost to the environment but not to “additional losses” that make the engine less than its ideal capacity.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.ii)\n </div><div class=\"card-body\">\n <p>\n The efficiency of the Carnot cycle was well calculated by most of the candidates, but the thermal energy that leaves the gas was well calculated only by the best candidates. Many candidates were able to establish that the heat added to the gas was 540 J - but struggled to then link this with the efficiency to determine the thermal energy leaving the gas. In iii) the better candidates used the formula given at i) to appropriately calculate the ratio but many were not able to manipulate the expressions to achieve the desired outcome. The reciprocal of 2.5 (0.4) was a common error in the final result and so was the incorrect use of the formula for isobaric expansion. The change in the entropy was well calculated by many candidates with ECF being very prominent from part biii). A complete and proper explanation in ii) was well formulated only by the better candidates. However, many were able to recognize that the Carnot engine was ideal and not real. Many answers referred to heat being lost to the environment but not to “additional losses” that make the engine less than its ideal capacity.\n </p>\n</div>\n",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-4-thermodynamics"
]
},
{
"question_id": "19M.2.HL.TZ2.10",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">A small magnet is dropped from rest above a stationary horizontal conducting ring. The south (S) pole of the magnet is upwards.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">While the magnet is moving towards the ring, state why the magnetic flux in the ring is increasing.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">While the magnet is moving towards the ring, sketch, using an arrow on <strong>Diagram 2</strong>, the direction of the induced current in the ring.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">While the magnet is moving towards the ring, deduce the direction of the magnetic force on the magnet.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">the magnetic field at the position of the ring is increasing «because the magnet gets closer to the ring» ✔</span></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">the current must be counterclockwise «in diagram 2» ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><em>eg</em>:</span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><img height=\"182\" src=\"\" width=\"209\"/></span></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">since the induced magnetic field is upwards<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><em><strong>OR</strong></em><br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">by Lenz law the change «of magnetic field/flux» must be opposed<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><em><strong>OR</strong></em><br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">by conservation of energy the movement of the magnet must be opposed ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">therefore the force is repulsive/upwards ✔</span></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was well-answered.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Answers here were reasonably evenly split between clockwise and anti-clockwise, with the odd few arrows pointing left or right.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The majority of candidates recognised that the magnetic force would be upwards and the most common way of explaining this was via Lenzs law. Students needed to get across that the force is opposing a change or a motion.</p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-4-thermodynamics"
]
},
{
"question_id": "19M.2.HL.TZ2.11",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">In an experiment to determine the radius of a carbon-12 nucleus, a beam of neutrons is scattered by a thin film of carbon-12. The graph shows the variation of intensity of the scattered neutrons with scattering angle. The de Broglie wavelength of the neutrons is 1.6 × 10<sup>-15</sup> m.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">A pure sample of copper-64 has a mass of 28 mg. The decay constant of copper-64 is 5.5 × 10<sup>-2</sup> hour<sup>1</sup>.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Suggest why de Broglies hypothesis is <strong>not</strong> consistent with Bohrs conclusion that the electrons orbit in the hydrogen atom has a well defined radius.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Estimate, using the graph, the radius of a carbon-12 nucleus.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">bi.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">The ratio <span class=\"mjpage\"><math alttext=\"\\frac{{{\\text{volume of a nucleaus of mass number }}A}}{{{\\text{volume of a nucleon}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mrow>\n<mtext>volume of a nucleaus of mass number </mtext>\n</mrow>\n<mi>A</mi>\n</mrow>\n<mrow>\n<mrow>\n<mtext>volume of a nucleon</mtext>\n</mrow>\n</mrow>\n</mfrac>\n</math></span> is approximately A.<br/></span></p>\n<p><span style=\"background-color:#ffffff;\">Comment on this observation by reference to the strong nuclear force.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">bii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Estimate, in Bq, the initial activity of the sample.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">ci.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Calculate, in hours, the time at which the activity of the sample has decreased to one-third of the initial activity.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">cii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">«de Broglies hypothesis states that the» electron is represented by a wave ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">therefore it cannot be localized/it is spread out/it does not have a definite position ✔</span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><em><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\">Award MP1 for any mention of wavelike property of an electron.</span></span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">«<span class=\"mjpage\"><math alttext=\"d\\sin \\theta  = \\lambda  \\Rightarrow \" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>d</mi>\n<mi>sin</mi>\n<mo></mo>\n<mi>θ</mi>\n<mo>=</mo>\n<mi>λ</mi>\n<mo stretchy=\"false\">⇒</mo>\n</math></span>» <span class=\"mjpage\"><math alttext=\"d = \\frac{{1.6 \\times {{10}^{ - 15}}}}{{\\sin 17^\\circ }}/5.47 \\times {10^{ - 15}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>d</mi>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mn>1.6</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>15</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mi>sin</mi>\n<mo></mo>\n<msup>\n<mn>17</mn>\n<mo>∘</mo>\n</msup>\n</mrow>\n</mfrac>\n<mrow>\n<mo>/</mo>\n</mrow>\n<mn>5.47</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mn>10</mn>\n<mrow>\n<mo></mo>\n<mn>15</mn>\n</mrow>\n</msup>\n</mrow>\n</math></span> </span><span style=\"background-color:#ffffff;\">«m»</span><span style=\"background-color:#ffffff;\"> ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"R = \\frac{d}{2} \\approx 2.7/2.8 \\times {10^{ - 15}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>R</mi>\n<mo>=</mo>\n<mfrac>\n<mi>d</mi>\n<mn>2</mn>\n</mfrac>\n<mo>≈</mo>\n<mn>2.7</mn>\n<mrow>\n<mo>/</mo>\n</mrow>\n<mn>2.8</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mn>10</mn>\n<mrow>\n<mo></mo>\n<mn>15</mn>\n</mrow>\n</msup>\n</mrow>\n</math></span> «m» ✔</span></p>\n<div class=\"question_part_label\">bi.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">this implies that the nucleons are very tightly packed/that there is very little space in between the nucleons ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">because the nuclear force is stronger than the electrostatic force ✔</span></p>\n<div class=\"question_part_label\">bii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">number of nuclei is <span class=\"mjpage\"><math alttext=\"\\frac{{28 \\times {{10}^{ - 3}}}}{{64}} \\times 6.02 \\times {10^{23}}/2.63 \\times {10^{20}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mn>28</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>3</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>64</mn>\n</mrow>\n</mfrac>\n<mo>×</mo>\n<mn>6.02</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mn>10</mn>\n<mrow>\n<mn>23</mn>\n</mrow>\n</msup>\n</mrow>\n<mrow>\n<mo>/</mo>\n</mrow>\n<mn>2.63</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mn>10</mn>\n<mrow>\n<mn>20</mn>\n</mrow>\n</msup>\n</mrow>\n</math></span> ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"A = \" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>A</mi>\n<mo>=</mo>\n</math></span><span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">«<span class=\"mjpage\"><math alttext=\"\\lambda N = 2.63 \\times {10^{20}} \\times \\frac{{5.5 \\times {{10}^{ - 2}}}}{{3600}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>λ</mi>\n<mi>N</mi>\n<mo>=</mo>\n<mn>2.63</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mn>10</mn>\n<mrow>\n<mn>20</mn>\n</mrow>\n</msup>\n</mrow>\n<mo>×</mo>\n<mfrac>\n<mrow>\n<mn>5.5</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>2</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>3600</mn>\n</mrow>\n</mfrac>\n</math></span>» <span class=\"mjpage\"><math alttext=\"4.0 \\times {10^{15}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mn>4.0</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mn>10</mn>\n<mrow>\n<mn>15</mn>\n</mrow>\n</msup>\n</mrow>\n</math></span> </span></span><span style=\"background-color:#ffffff;\">«Bq» ✔</span></p>\n<div class=\"question_part_label\">ci.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"\\frac{{\\text{1}}}{{\\text{3}}} = {e^{ - \\lambda t}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mtext>1</mtext>\n</mrow>\n<mrow>\n<mtext>3</mtext>\n</mrow>\n</mfrac>\n<mo>=</mo>\n<mrow>\n<msup>\n<mi>e</mi>\n<mrow>\n<mo></mo>\n<mi>λ</mi>\n<mi>t</mi>\n</mrow>\n</msup>\n</mrow>\n</math></span></span><span style=\"background-color:#ffffff;\"> ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><em>t </em>= 20«hr» ✔</span></p>\n<div class=\"question_part_label\">cii.</div>\n</div>",
"Examiners report": "",
"topics": [
"c-wave-behaviour",
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"c-3-wave-phenomena",
"e-1-structure-of-the-atom",
"e-2-quantum-physics",
"e-3-radioactive-decay"
]
},
{
"question_id": "19M.2.HL.TZ2.4",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Three identical light bulbs, X, Y and Z, each of resistance 4.0 Ω are connected to a cell of emf 12 V. The cell has negligible internal resistance.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">When fully charged the space between the plates of the capacitor is filled with a dielectric with double the permittivity of a vacuum.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">The switch S is initially open. Calculate the total power dissipated in the circuit.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">The switch is now closed. State, without calculation, why the current in the cell will increase.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">bi.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">The switch is now closed. <span class=\"mjpage\"><math alttext=\"{\\text{Deduce the ratio }}\\frac{{{\\text{power dissipated in Y with S open}}}}{{{\\text{power dissipated in Y with S closed}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mrow>\n<mtext>Deduce the ratio </mtext>\n</mrow>\n<mfrac>\n<mrow>\n<mrow>\n<mtext>power dissipated in Y with S open</mtext>\n</mrow>\n</mrow>\n<mrow>\n<mrow>\n<mtext>power dissipated in Y with S closed</mtext>\n</mrow>\n</mrow>\n</mfrac>\n</math></span>.</span></p>\n<p> </p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">bii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">The cell is used to charge a parallel-plate capacitor in a vacuum. The fully charged capacitor is then connected to an ideal voltmeter.</span></p>\n<p><span style=\"background-color:#ffffff;\"><img src=\"\"/></span></p>\n<p><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\">The capacitance of the capacitor is 6.0 μF and the reading of the voltmeter is 12 V.</span></span></p>\n<p><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\">Calculate the energy stored in the capacitor.</span></span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Calculate the change in the energy stored in the capacitor.</span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">di.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Suggest, in terms of conservation of energy, the cause for the above change.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">dii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">total resistance of circuit is 8.0 «Ω» ✔</span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"P = \\frac{{{{12}^2}}}{{8.0}} = 18\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>P</mi>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mrow>\n<msup>\n<mrow>\n<mn>12</mn>\n</mrow>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>8.0</mn>\n</mrow>\n</mfrac>\n<mo>=</mo>\n<mn>18</mn>\n</math></span>«W» <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></span></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">«a resistor is now connected in parallel» reducing the total resistance<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><em><strong>OR</strong></em><br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">current through YZ unchanged and additional current flows through X ✔</span></p>\n<div class=\"question_part_label\">bi.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">evidence in calculation or statement that pd across Y/current in Y is the same as before ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">so ratio is 1 ✔</span></p>\n<div class=\"question_part_label\">bii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"E = «\\frac{1}{2}C{V^2} = \\frac{1}{2} \\times 6 \\times {10^{ - 6}} \\times {12^2} =»  4.3 \\times {10^{ - 4}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>E</mi>\n<mo>=</mo>\n<mrow>\n<mo>«</mo>\n</mrow>\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n<mi>C</mi>\n<mrow>\n<msup>\n<mi>V</mi>\n<mn>2</mn>\n</msup>\n</mrow>\n<mo>=</mo>\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n<mo>×</mo>\n<mn>6</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mn>10</mn>\n<mrow>\n<mo></mo>\n<mn>6</mn>\n</mrow>\n</msup>\n</mrow>\n<mo>×</mo>\n<mrow>\n<msup>\n<mn>12</mn>\n<mn>2</mn>\n</msup>\n</mrow>\n<mo>=</mo>\n<mrow>\n<mo>»</mo>\n</mrow>\n<mn>4.3</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mn>10</mn>\n<mrow>\n<mo></mo>\n<mn>4</mn>\n</mrow>\n</msup>\n</mrow>\n</math></span>«<span class=\"mjpage\"><math alttext=\"{\\text{J}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mrow>\n<mtext>J</mtext>\n</mrow>\n</math></span>» ✔</span></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><em><strong><span style=\"background-color:#ffffff;\">ALTERNATIVE 1</span></strong></em></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">capacitance doubles and voltage halves ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">since <span class=\"mjpage\"><math alttext=\"E = \\frac{1}{2}C{V^2}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>E</mi>\n<mo>=</mo>\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n<mi>C</mi>\n<mrow>\n<msup>\n<mi>V</mi>\n<mn>2</mn>\n</msup>\n</mrow>\n</math></span> energy halves   <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">so change is «»2.2×10<sup>4 </sup>«J»  <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"> </span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><em><strong>ALTERNATIVE 2</strong></em><br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"E = \\frac{1}{2}C{V^2}{\\text{ and }}Q = CV{\\text{ so }}E = \\frac{{{Q^2}}}{{2C}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>E</mi>\n<mo>=</mo>\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n<mi>C</mi>\n<mrow>\n<msup>\n<mi>V</mi>\n<mn>2</mn>\n</msup>\n</mrow>\n<mrow>\n<mtext> and </mtext>\n</mrow>\n<mi>Q</mi>\n<mo>=</mo>\n<mi>C</mi>\n<mi>V</mi>\n<mrow>\n<mtext> so </mtext>\n</mrow>\n<mi>E</mi>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mrow>\n<msup>\n<mi>Q</mi>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>2</mn>\n<mi>C</mi>\n</mrow>\n</mfrac>\n</math></span>  <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span> </span><span style=\"background-color:#ffffff;\"><br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">capacitance doubles and charge unchanged so energy halves ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">so change is <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">«</span><span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"></span><span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">»</span>2.2 <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">×</span> 10<sup><span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"></span>4 </sup>«<span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">J</span>» ✔</span></p>\n<div class=\"question_part_label\">di.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">it is the work done when inserting the dielectric into the capacitor ✔<br/></span></p>\n<div class=\"question_part_label\">dii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates scored both marks. ECF was awarded for those who didnt calculate the new resistance correctly. Candidates showing clearly that they were attempting to calculate the new total resistance helped examiners to award ECF marks.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most recognised that this decreased the total resistance of the circuit. Answers scoring via the second alternative were rare as the statements were often far too vague.</p>\n<div class=\"question_part_label\">bi.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Very few gained any credit for this at both levels. Most performed complicated calculations involving the total circuit and using 12V they had not realised that the question refers to Y only.</p>\n<div class=\"question_part_label\">bii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most answered this correctly.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>By far the most common answer involved doubling the capacitance without considering the change in p.d. Almost all candidates who did this calculated a change in energy that scored 1 mark.</p>\n<div class=\"question_part_label\">di.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Very few scored on this question.</p>\n<div class=\"question_part_label\">dii.</div>\n</div>",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-5-galilean-and-special-relativity"
]
},
{
"question_id": "19M.2.HL.TZ2.6",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Define\n <em>\n proper length\n </em>\n .\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (bi)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n In the reference frame of the train a ball travels with speed 0.50\n <em>\n c\n </em>\n from the back to the front of the train, as the train passes the platform. Calculate the time taken for the ball to reach the front of the train in the reference frame of the train.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (bii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n In the reference frame of the train a ball travels with speed 0.50\n <em>\n c\n </em>\n from the back to the front of the train, as the train passes the platform. Calculate the time taken for the ball to reach the front of the train in the reference frame of the platform.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p style=\"text-align:left;\">\n <span style=\"background-color:#ffffff;\">\n the length measured «in a reference frame» where the object is at rest ✔\n <br/>\n </span>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (bi)\n </div><div class=\"card-body\">\n <p style=\"text-align:left;\">\n <img height=\"47\" src=\"\" width=\"304\"/>\n <span style=\"background-color:#ffffff;\">\n <br/>\n </span>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (bii)\n </div><div class=\"card-body\">\n <p style=\"text-align:left;\">\n <em>\n <strong>\n <span style=\"background-color:#ffffff;\">\n ALTERNATIVE 1:\n </span>\n </strong>\n </em>\n <span style=\"background-color:#ffffff;\">\n <br/>\n </span>\n </p>\n <p style=\"text-align:left;\">\n <span style=\"background-color:#ffffff;\">\n <img height=\"115\" src=\"\" width=\"265\"/>\n </span>\n </p>\n <p style=\"text-align:left;\">\n <em>\n <strong>\n <span style=\"background-color:#ffffff;\">\n <span style=\"background-color:#ffffff;\">\n ALTERNATIVE 2:\n </span>\n </span>\n </strong>\n </em>\n </p>\n <p style=\"text-align:left;\">\n <span style=\"background-color:#ffffff;\">\n <span style=\"background-color:#ffffff;\">\n <span style=\"background-color:#ffffff;\">\n <em>\n v\n </em>\n of ball is 0.846\n <em>\n c\n </em>\n for platform ✔\n <br/>\n </span>\n </span>\n </span>\n </p>\n <p style=\"text-align:left;\">\n <span style=\"background-color:#ffffff;\">\n <span style=\"background-color:#ffffff;\">\n <span style=\"background-color:#ffffff;\">\n length of train is 68m for platform ✔\n </span>\n </span>\n </span>\n </p>\n <p style=\"text-align:left;\">\n <span style=\"background-color:#ffffff;\">\n <span style=\"background-color:#ffffff;\">\n <span style=\"background-color:#ffffff;\">\n <img height=\"45\" src=\"\" width=\"468\"/>\n </span>\n </span>\n </span>\n </p>\n <p style=\"text-align:left;\">\n <em>\n <strong>\n <span style=\"background-color:#ffffff;\">\n <span style=\"background-color:#ffffff;\">\n <span style=\"background-color:#ffffff;\">\n ALTERNATIVE 3:\n </span>\n </span>\n </span>\n </strong>\n </em>\n </p>\n <p style=\"text-align:left;\">\n <img height=\"121\" src=\"\" width=\"511\"/>\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Proper length is quite well understood. A common mistake is to mention that it is the length measured by a reference frame at rest.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (bi)\n </div><div class=\"card-body\">\n <p>\n Because there were three frames of reference in this question many candidates struggled to find the simple value for the time of the balls travel down the train in the trains frame of reference.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (bii)\n </div><div class=\"card-body\">\n <p>\n Almost no candidates could use a Lorentz transformation to find the time of the balls travel in the frame of reference of the platform. Most just applied some form of t=γt. Elapsed time and instantaneous time in different frames were easily confused. Candidates rarely mention which reference frame is used when making calculations, however this is crucial in relativity.\n </p>\n</div>\n",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-5-galilean-and-special-relativity"
]
},
{
"question_id": "19M.2.HL.TZ2.8",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Monochromatic coherent light is incident on two parallel slits of negligible width a distance <em>d</em> apart. A screen is placed a distance <em>D</em> from the slits. Point M is directly opposite the midpoint of the slits.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Initially the lower slit is covered and the intensity of light at M due to the upper slit alone is 22 W m<sup>-2</sup>. The lower slit is now uncovered.</span></span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">The width of each slit is increased to 0.030 mm. <em>D</em>, <em>d</em> and λ remain the same.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Deduce, in W m<sup>-2</sup>, the intensity at M.</span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">P is the first maximum of intensity on <strong>one</strong> side of M. The following data are available.</span></p>\n<p><span style=\"background-color:#ffffff;\"><em>d</em> = 0.12 mm </span></p>\n<p><span style=\"background-color:#ffffff;\"><em>D</em> = 1.5 m </span></p>\n<p><span style=\"background-color:#ffffff;\">Distance MP = 7.0 mm</span></p>\n<p><span style=\"background-color:#ffffff;\">Calculate, in nm, the wavelength λ of the light.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Suggest why, after this change, the intensity at P will be less than that at M.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">ci.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Show that, due to single slit diffraction, the intensity at a point on the screen a distance of 28 mm from M is zero.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">cii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">there is constructive interference at M<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><em><strong>OR</strong></em><br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">the amplitude doubles at M ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">intensity is «proportional to» amplitude<sup>2</sup> ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">88 «<span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">W m</span><sup style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:11.6px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">2</sup>» ✔</span></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">«<span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"s = \\frac{{\\lambda D}}{d} \\Rightarrow » \\lambda  = \\frac{{sd}}{D}/\\frac{{0.12 \\times {{10}^{ - 3}} \\times 7.0 \\times {{10}^{ - 3}}}}{{1.5}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>s</mi>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mi>λ</mi>\n<mi>D</mi>\n</mrow>\n<mi>d</mi>\n</mfrac>\n<mo stretchy=\"false\">⇒</mo>\n<mrow>\n<mo>»</mo>\n</mrow>\n<mi>λ</mi>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mi>s</mi>\n<mi>d</mi>\n</mrow>\n<mi>D</mi>\n</mfrac>\n<mrow>\n<mo>/</mo>\n</mrow>\n<mfrac>\n<mrow>\n<mn>0.12</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>3</mn>\n</mrow>\n</msup>\n</mrow>\n<mo>×</mo>\n<mn>7.0</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>3</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>1.5</mn>\n</mrow>\n</mfrac>\n</math></span>    ✔</span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"\\lambda  = 560«{\\text{nm}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>λ</mi>\n<mo>=</mo>\n<mn>560</mn>\n<mrow>\n<mo>«</mo>\n</mrow>\n<mrow>\n<mtext>nm</mtext>\n</mrow>\n</math></span>»  <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"> </p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">«the interference pattern will be modulated by»<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">single slit diffraction ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">«envelope and so it will be less»</span></p>\n<div class=\"question_part_label\">ci.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><em><strong>ALTERNATIVE 1</strong></em><br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">the angular position of this point is <span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"\\theta  = \\frac{{28 \\times {{10}^{ - 3}}}}{{1.5}} = 0.01867\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>θ</mi>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mn>28</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>3</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>1.5</mn>\n</mrow>\n</mfrac>\n<mo>=</mo>\n<mn>0.01867</mn>\n</math></span>«rad»  ✔</span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">which coincides with the first minimum of the diffraction envelope</p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"\\theta  = \\frac{\\lambda }{b} = \\frac{{560 \\times {{10}^{ - 9}}}}{{0.030 \\times {{10}^{ - 3}}}} = 0.01867\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>θ</mi>\n<mo>=</mo>\n<mfrac>\n<mi>λ</mi>\n<mi>b</mi>\n</mfrac>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mn>560</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>9</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>0.030</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>3</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n<mo>=</mo>\n<mn>0.01867</mn>\n</math></span> «rad» <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">«so intensity will be zero»</span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"> </span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><em><strong>ALTERNATIVE 2</strong></em><br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">the first minimum of the diffraction envelope is at <span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"\\theta  = \\frac{\\lambda }{b} = \\frac{{560 \\times {{10}^{ - 9}}}}{{0.030 \\times {{10}^{ - 3}}}} = 0.01867\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>θ</mi>\n<mo>=</mo>\n<mfrac>\n<mi>λ</mi>\n<mi>b</mi>\n</mfrac>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mn>560</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>9</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>0.030</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>3</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n<mo>=</mo>\n<mn>0.01867</mn>\n</math></span>«rad»   <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">distance on screen is <span class=\"mjpage\"><math alttext=\"y = 1.50 \\times 0.01867 = 28\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>y</mi>\n<mo>=</mo>\n<mn>1.50</mn>\n<mo>×</mo>\n<mn>0.01867</mn>\n<mo>=</mo>\n<mn>28</mn>\n</math></span>«mm»  <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">«so intensity will be zero»</span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"> </p>\n<div class=\"question_part_label\">cii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was generally well answered by those who attempted it but was the question that was most left blank. The most common mistake was the expected one of simply doubling the intensity.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was very well answered. As the question asks for the answer to be given in nm a bald answer of 560 was acceptable. Candidates could also gain credit for an answer of e.g. 5.6 x 10-7 m provided that the m was included.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many recognised the significance of the single slit diffraction envelope.</p>\n<div class=\"question_part_label\">ci.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Credit was often gained here for a calculation of an angle for alternative 2 in the markscheme but often the final substitution 1.50 was omitted to score the second mark. Both marks could be gained if the calculation was done in one step. Incorrect answers often included complicated calculations in an attempt to calculate an integer value.</p>\n<div class=\"question_part_label\">cii.</div>\n</div>",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-2-forces-and-momentum",
"a-4-rigid-body-mechanics"
]
},
{
"question_id": "19M.2.HL.TZ2.9",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">A planet of mass <em>m</em> is in a circular orbit around a star. The gravitational potential due to the star at the position of the planet is <em>V</em>.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Show that the total energy of the planet is given by the equation shown.</span></p>\n<p><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"E = \\frac{1}{2}mV\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>E</mi>\n<mo>=</mo>\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n<mi>m</mi>\n<mi>V</mi>\n</math></span></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">ai.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Suppose the star could contract to half its original radius without any loss of mass. Discuss the effect, if any, this has on the total energy of the planet.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">aii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">The diagram shows some of the electric field lines for two fixed, charged particles X and Y.</span></p>\n<p><span style=\"background-color:#ffffff;\"><img src=\"\"/></span></p>\n<p><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\">The magnitude of the charge on X is <span class=\"mjpage\"><math alttext=\"Q\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>Q</mi>\n</math></span> and that on Y is <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span class=\"mjpage\"><math alttext=\"q\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>q</mi>\n</math></span></span>. The distance between X and Y is 0.600 m. The distance between P and Y is 0.820 m.</span></span></p>\n<p><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\">At P the electric field is zero. Determine, to <strong>one</strong> significant figure, the ratio <span class=\"mjpage\"><math alttext=\"\\frac{Q}{q}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mi>Q</mi>\n<mi>q</mi>\n</mfrac>\n</math></span>.</span></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"E = \\frac{1}{2}m\\frac{{GM}}{r} - \\frac{{GMm}}{r} =  - \\frac{1}{2}\\frac{{GMm}}{r}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>E</mi>\n<mo>=</mo>\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n<mi>m</mi>\n<mfrac>\n<mrow>\n<mi>G</mi>\n<mi>M</mi>\n</mrow>\n<mi>r</mi>\n</mfrac>\n<mo></mo>\n<mfrac>\n<mrow>\n<mi>G</mi>\n<mi>M</mi>\n<mi>m</mi>\n</mrow>\n<mi>r</mi>\n</mfrac>\n<mo>=</mo>\n<mo></mo>\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n<mfrac>\n<mrow>\n<mi>G</mi>\n<mi>M</mi>\n<mi>m</mi>\n</mrow>\n<mi>r</mi>\n</mfrac>\n</math></span>  ✔</span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">comparison with <span class=\"mjpage\"><math alttext=\"V =  - \\frac{{GM}}{r}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>V</mi>\n<mo>=</mo>\n<mo></mo>\n<mfrac>\n<mrow>\n<mi>G</mi>\n<mi>M</mi>\n</mrow>\n<mi>r</mi>\n</mfrac>\n</math></span>   <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">«to give answer»</span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"> </p>\n<div class=\"question_part_label\">ai.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><em><strong>ALTERNATIVE 1</strong></em><br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">«at the position of the planet» the potential depends only on the mass of the star /does not depend on the radius of the star ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">the potential will not change and so the energy will not change ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><em><strong>ALTERNATIVE 2</strong></em><br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">r / distance between the centres of the objects / orbital radius remains unchanged ✔<br/></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\">since <span class=\"mjpage\"><math alttext=\"{E_{Total}} =  - \\frac{1}{2}\\frac{{GMm}}{r}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mrow>\n<msub>\n<mi>E</mi>\n<mrow>\n<mi>T</mi>\n<mi>o</mi>\n<mi>t</mi>\n<mi>a</mi>\n<mi>l</mi>\n</mrow>\n</msub>\n</mrow>\n<mo>=</mo>\n<mo></mo>\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n<mfrac>\n<mrow>\n<mi>G</mi>\n<mi>M</mi>\n<mi>m</mi>\n</mrow>\n<mi>r</mi>\n</mfrac>\n</math></span>, energy will not change <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"> </p>\n<div class=\"question_part_label\">aii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"\\frac{{kQ}}{{{{(0.600 + 0.820)}^2}}} = \\frac{{kq}}{{{{0.820}^2}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mi>k</mi>\n<mi>Q</mi>\n</mrow>\n<mrow>\n<mrow>\n<msup>\n<mrow>\n<mo stretchy=\"false\">(</mo>\n<mn>0.600</mn>\n<mo>+</mo>\n<mn>0.820</mn>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mi>k</mi>\n<mi>q</mi>\n</mrow>\n<mrow>\n<mrow>\n<msup>\n<mrow>\n<mn>0.820</mn>\n</mrow>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n</math></span>  ✔</span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"\\frac{Q}{q} = « \\frac{{{{(0.600 + 0.820)}^2}}}{{{{0.820}^2}}} = 2.9988 \\approx » 3\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mi>Q</mi>\n<mi>q</mi>\n</mfrac>\n<mo>=</mo>\n<mrow>\n<mo>«</mo>\n</mrow>\n<mfrac>\n<mrow>\n<mrow>\n<msup>\n<mrow>\n<mo stretchy=\"false\">(</mo>\n<mn>0.600</mn>\n<mo>+</mo>\n<mn>0.820</mn>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mrow>\n<msup>\n<mrow>\n<mn>0.820</mn>\n</mrow>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n<mo>=</mo>\n<mn>2.9988</mn>\n<mo>≈</mo>\n<mrow>\n<mo>»</mo>\n</mrow>\n<mn>3</mn>\n</math></span>  <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></span></p>\n<p style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"> </p>\n<div class=\"question_part_label\">b.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was generally well answered but with candidates sometimes getting in to trouble over negative signs but otherwise producing well-presented answers.</p>\n<div class=\"question_part_label\">ai.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>A large number of candidates thought that the total energy of the planet would change, mostly double.</p>\n<div class=\"question_part_label\">aii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The majority of candidates had an idea of the basic technique here but it was surprisingly common to see the squared missing from the expression for field strengths.</p>\n<div class=\"question_part_label\">b.</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"d-fields"
],
"subtopics": [
"a-4-rigid-body-mechanics",
"d-1-gravitational-fields",
"d-2-electric-and-magnetic-fields"
]
},
{
"question_id": "19M.2.SL.TZ1.3",
"Question": "<div class=\"specification\">\n<p>A beam of microwaves is incident normally on a pair of identical narrow slits S1 and S2.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n<p style=\"text-align: left;\">When a microwave receiver is initially placed at W which is equidistant from the slits, a maximum in intensity is observed. The receiver is then moved towards Z along a line parallel to the slits. Intensity maxima are observed at X and Y with one minimum between them. W, X and Y are consecutive maxima.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p style=\"text-align:left;\">Explain why intensity maxima are observed at X and Y.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p style=\"text-align:left;\">The distance from S1 to Y is 1.243 m and the distance from S2 to Y is 1.181 m.<br/><br/>Determine the frequency of the microwaves.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p style=\"text-align:left;\">Outline <strong>one</strong> reason why the maxima observed at W, X and Y will have different intensities from each other.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>two waves superpose/mention of superposition/mention of «constructive» interference ✔</p>\n<p>they arrive in phase/there is a path length difference of an integer number of wavelengths ✔</p>\n<p><em>Ignore references to nodes/antinodes</em>.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>path difference = 0.062 «m» ✔</p>\n<p>so wavelength = 0.031 «m» ✔</p>\n<p>frequency = 9.7 × 10<sup>9</sup> «Hz» ✔</p>\n<p><em>If no unit is given, assume the answer is in Hz. Accept other prefixes (eg 9.7 GHz)</em></p>\n<p><em>Award <strong>[2 max]</strong> for 4.8 x 10<sup>9</sup> Hz.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>intensity varies with distance<em><strong> OR</strong></em> points are different distances from the slits ✔</p>\n<p><em>Accept “Intensity is modulated by a single slit diffraction envelope”</em>.</p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates were able to discuss the interference that is taking place in this question, but few were able to fully describe the path length difference. That said, the quality of responses on this type of question seems to have improved over the last few examination sessions with very few candidates simply discussing the crests and troughs of waves.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates struggled with this question. Few were able to calculate a proper path length difference, and then use that to calculate the wavelength and frequency. Many candidates went down blind paths of trying various equations from the data booklet, and some seemed to believe that the wavelength is just the reciprocal of the frequency.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This is one of many questions on this paper where candidates wrote vague answers that did not clearly connect to physics concepts or include key information. There were many overly simplistic answers like “they are farther away” without specifying what they are farther away from. Candidates should be reminded that their responses should go beyond the obvious and include some evidence of deeper understanding.</p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-1-simple-harmonic-motion",
"c-2-wave-model",
"c-3-wave-phenomena"
]
},
{
"question_id": "19M.2.SL.TZ1.5",
"Question": "<div class=\"specification\">\n<p>A small metal pendulum bob of mass 75 g is suspended at rest from a fixed point with a length of thread of negligible mass. Air resistance is negligible. The bob is then displaced to the left.</p>\n<p>At time <em>t</em> = 0 the bob is moving horizontally to the right at 0.8 m s<sup>1</sup>. It collides with a small stationary object also of mass 75 g. Both objects then move together with motion that is simple harmonic.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the speed of the combined masses immediately after the collision.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the collision is inelastic.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Describe the changes in gravitational potential energy of the oscillating system from <em>t</em> = 0 as it oscillates through one cycle of its motion.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>0.40 «m s<sup>1</sup>» ✔</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>initial energy 24 mJ and final energy 12 mJ ✔</p>\n<p>energy is lost/unequal /change in energy is 12 mJ ✔</p>\n<p>inelastic collisions occur when energy is lost ✔<br/><br/></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>maximum GPE at extremes, minimum in centre ✔</p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Candidates fell into some broad categories on this question. This was a “show that” question, so there was an expectation of a mathematical argument. Many were able to successfully show that the initial and final kinetic energies were different and connect this to the concept of inelastic collisions. Some candidates tried to connect conservation of momentum unsuccessfully, and some simply wrote an extended response about the nature of inelastic collisions and noted that the bobs stuck together without any calculations. This approach was awarded zero marks.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This straightforward question had surprisingly poorly answers. Candidate answers tended to be overly vague, such as “as the bob went higher the GPE increased and as it fell the GPE decreased.” Candidates needed to specify when GPE would be at maximum and minimum values. Some candidates mistakenly assumed that at t=0 the pendulum bob was at maximum height despite being told otherwise in the question stem.</p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"d-fields"
],
"subtopics": [
"a-2-forces-and-momentum",
"a-3-work-energy-and-power",
"d-1-gravitational-fields"
]
},
{
"question_id": "19M.2.SL.TZ1.6",
"Question": "<div class=\"specification\">\n<p>The Moon has no atmosphere and orbits the Earth. The diagram shows the Moon with rays of light from the Sun that are incident at 90° to the axis of rotation of the Moon.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>A black body is on the Moons surface at point A. Show that the maximum temperature that this body can reach is 400 K. Assume that the Earth and the Moon are the same distance from the Sun.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Another black body is on the Moons surface at point B.</p>\n<p>Outline, without calculation, why the aximum temperature of the black body at point B is less than at point A.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The albedo of the Earths atmosphere is 0.28. Outline why the maximum temperature of a black body on the Earth when the Sun is overhead is less than that at point A on the Moon.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why a force acts on the Moon.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why this force does no work on the Moon.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.ii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>T</em> = <span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"{\\left( {\\frac{{1360}}{\\sigma }} \\right)^{0.25}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mrow>\n<msup>\n<mrow>\n<mo>(</mo>\n<mrow>\n<mfrac>\n<mrow>\n<mn>1360</mn>\n</mrow>\n<mi>σ</mi>\n</mfrac>\n</mrow>\n<mo>)</mo>\n</mrow>\n<mrow>\n<mn>0.25</mn>\n</mrow>\n</msup>\n</mrow>\n</math></span>   </span>✔</p>\n<p>390 «K» ✔</p>\n<p><em>Must see 1360 (from data booklet) used for MP1.</em></p>\n<p><em>Must see at least 2 s.f</em>.</p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>energy/Power/Intensity lower at B ✔</p>\n<p>connection made between energy/power/intensity and temperature of blackbody ✔</p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>(28%) of suns energy is scattered/reflected by earths atmosphere <em><strong>OR</strong></em> only 72% of incident energy gets absorbed by blackbody ✔</p>\n<p><em>Must be clear that the energy is being scattered by the atmosphere.</em></p>\n<p><em>Award <strong>[0]</strong> for simple definition of “albedo”</em>.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>gravitational attraction/force/field «of the planet/Moon» ✔</p>\n<p><em>Do not accept “gravity”</em>.</p>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>the force/field and the velocity/displacement are at 90° to each other<em><strong> OR</strong></em> there is no change in GPE of the moon ✔</p>\n<p><em>Award <strong>[0]</strong> for any mention of no net force on the satellite.</em></p>\n<p><em>Do not accept acceleration is perpendicular to velocity.</em></p>\n<div class=\"question_part_label\">c.ii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates struggled with this question. A significant portion attempted to apply Weins Law and simply stated that a particular wavelength was the peak and then used that to determine the temperature. Some did use the solar constant from the data booklet and were able to calculate the correct temperature. As part of their preparation for the exam candidates should thoroughly review the data booklet and be aware of what constants are given there. As with all “show that” questions candidates should be reminded to include an unrounded answer.</p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This is question is another example of candidates not thinking beyond the obvious in the question. Many simply said that point B is farther away, or that it is at an angle. Some used vague terms like “the sunlight is more spread out” rather than using proper physics terms. Few candidates connected the lower intensity at B with the lower temperature of the blackbody.</p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was assessing the understanding of the concept of albedo. Many candidates were able to connect that an albedo of 0.28 meant that 28% of the incident energy from the sun was being reflected or scattered by the atmosphere before reaching the black body.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was generally well answered, although some candidates simply used the vague term “gravity” rather than specifying that it is a gravitational force or a gravitational field. Candidates need to be reminded about using proper physics terms and not more general, “every day” terms on the exam.</p>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Some candidates connected the idea that the gravitational force is perpendicular to the velocity (and hence the displacement) for the mark. It was also allowed to discuss that there is no change in gravitational potential energy, so therefore no work was being done. It was not acceptable to simply state that the net displacement over one full orbit is zero. Unfortunately, some candidates suggested that there is no net force on the moon so there is no work done, or that the moon is so much smaller so no work could be done on it.</p>\n<div class=\"question_part_label\">c.ii.</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"b-the-particulate-nature-of-matter",
"d-fields"
],
"subtopics": [
"a-2-forces-and-momentum",
"a-3-work-energy-and-power",
"b-2-greenhouse-effect",
"d-1-gravitational-fields"
]
},
{
"question_id": "19M.2.SL.TZ2.1",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">A student strikes a tennis ball that is initially at rest so that it leaves the racquet at a speed of 64 m s<sup>1</sup>. The ball has a mass of 0.058 kg and the contact between the ball and the racquet lasts for 25 ms.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">The student strikes the tennis ball at point P. The tennis ball is initially directed at an angle of 7.00° to the horizontal.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The following data are available.<br/></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Height of P = 2.80 m<br/></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Distance of student from net = 11.9 m<br/></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Height of net = 0.910 m<br/></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Initial speed of tennis ball = 64 m s<sup>-1</sup></span></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Calculate the average force exerted by the racquet on the ball.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">ai.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Calculate the average power delivered to the ball during the impact.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">aii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Calculate the time it takes the tennis ball to reach the net.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">bi.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Show that the tennis ball passes over the net.</span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">bii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Determine the speed of the tennis ball as it strikes the ground.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">biii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">The student models the bounce of the tennis ball to predict the angle <em>θ</em> at which the ball leaves a surface of clay and a surface of grass.</span></p>\n<p><span style=\"background-color:#ffffff;\"><img src=\"\"/></span></p>\n<p><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\">The model assumes<br/></span></span></p>\n<p><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\">• during contact with the surface the ball slides.<br/>• the sliding time is the same for both surfaces.<br/>• the sliding frictional force is greater for clay than grass.<br/>• the normal reaction force is the same for both surfaces.<br/></span></span></p>\n<p><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\">Predict for the students model, without calculation, whether θ is greater for a clay surface or for a grass surface.</span></span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"F = \\frac{{\\Delta mv}}{{\\Delta t}}/m\\frac{{\\Delta v}}{{\\Delta t}}/\\frac{{0.058 \\times 64.0}}{{25 \\times {{10}^{ - 3}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>F</mi>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mi mathvariant=\"normal\">Δ</mi>\n<mi>m</mi>\n<mi>v</mi>\n</mrow>\n<mrow>\n<mi mathvariant=\"normal\">Δ</mi>\n<mi>t</mi>\n</mrow>\n</mfrac>\n<mrow>\n<mo>/</mo>\n</mrow>\n<mi>m</mi>\n<mfrac>\n<mrow>\n<mi mathvariant=\"normal\">Δ</mi>\n<mi>v</mi>\n</mrow>\n<mrow>\n<mi mathvariant=\"normal\">Δ</mi>\n<mi>t</mi>\n</mrow>\n</mfrac>\n<mrow>\n<mo>/</mo>\n</mrow>\n<mfrac>\n<mrow>\n<mn>0.058</mn>\n<mo>×</mo>\n<mn>64.0</mn>\n</mrow>\n<mrow>\n<mn>25</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>3</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n</math></span>  ✔</span></p>\n<p><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"F\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>F</mi>\n</math></span></span><em><span style=\"background-color:#ffffff;\"> =</span></em><span style=\"background-color:#ffffff;\"> 148«<span class=\"mjpage\"><math alttext=\"{\\text{N}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mrow>\n<mtext>N</mtext>\n</mrow>\n</math></span>»≈150«<span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span class=\"mjpage\"><math alttext=\"{\\text{N}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mrow>\n<mtext>N</mtext>\n</mrow>\n</math></span></span>»  ✔</span></p>\n<p> </p>\n<div class=\"question_part_label\">ai.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong><span style=\"background-color:#ffffff;\">ALTERNATIVE 1</span></strong></em></p>\n<p><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"P = \\frac{{\\frac{1}{2}m{v^2}}}{t}/\\frac{{\\frac{1}{2} \\times 0.058 \\times {{64.0}^2}}}{{25 \\times {{10}^{ - 3}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>P</mi>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n<mi>m</mi>\n<mrow>\n<msup>\n<mi>v</mi>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n<mi>t</mi>\n</mfrac>\n<mrow>\n<mo>/</mo>\n</mrow>\n<mfrac>\n<mrow>\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n<mo>×</mo>\n<mn>0.058</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>64.0</mn>\n</mrow>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>25</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>3</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n</math></span>  <strong>✔</strong></span></p>\n<p><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"P = 4700/4800«{\\text{W}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>P</mi>\n<mo>=</mo>\n<mn>4700</mn>\n<mrow>\n<mo>/</mo>\n</mrow>\n<mn>4800</mn>\n<mrow>\n<mo>«</mo>\n</mrow>\n<mrow>\n<mtext>W</mtext>\n</mrow>\n</math></span>»  <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></span></p>\n<p> </p>\n<p><em><strong><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\">ALTERNATIVE 2</span></span></strong></em></p>\n<p><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"P = {\\text{average}}Fv/148 \\times \\frac{{64.0}}{2}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>P</mi>\n<mo>=</mo>\n<mrow>\n<mtext>average</mtext>\n</mrow>\n<mi>F</mi>\n<mi>v</mi>\n<mrow>\n<mo>/</mo>\n</mrow>\n<mn>148</mn>\n<mo>×</mo>\n<mfrac>\n<mrow>\n<mn>64.0</mn>\n</mrow>\n<mn>2</mn>\n</mfrac>\n</math></span>  <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></p>\n<p><span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span class=\"mjpage\"><math alttext=\"P = 4700/4800«{\\text{W}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>P</mi>\n<mo>=</mo>\n<mn>4700</mn>\n<mrow>\n<mo>/</mo>\n</mrow>\n<mn>4800</mn>\n<mrow>\n<mo>«</mo>\n</mrow>\n<mrow>\n<mtext>W</mtext>\n</mrow>\n</math></span>»  <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></p>\n<p> </p>\n<div class=\"question_part_label\">aii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color:#ffffff;\">horizontal component of velocity is 64.0 <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">×</span> cos7° = 63.52 «<span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">ms<sup></sup></span><sup>1</sup>» ✔</span></p>\n<p><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"t = « \\frac{{11.9}}{{63.52}} =» 0.187/0.19 « {\\text{s}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>t</mi>\n<mo>=</mo>\n<mrow>\n<mo>«</mo>\n</mrow>\n<mfrac>\n<mrow>\n<mn>11.9</mn>\n</mrow>\n<mrow>\n<mn>63.52</mn>\n</mrow>\n</mfrac>\n<mo>=</mo>\n<mrow>\n<mo>»</mo>\n</mrow>\n<mn>0.187</mn>\n<mrow>\n<mo>/</mo>\n</mrow>\n<mn>0.19</mn>\n<mrow>\n<mo>«</mo>\n</mrow>\n<mrow>\n<mtext>s</mtext>\n</mrow>\n</math></span>»  <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"> ✔</span></span></span></p>\n<p><em><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\">Do not award BCA. Check working.<br/></span></span></em></p>\n<p><em><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\">Do not award ECF from using 64 m s<sup>-1</sup>.</span></span></em></p>\n<div class=\"question_part_label\">bi.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><span style=\"background-color:#ffffff;\"><strong>ALTERNATIVE 1</strong><br/></span></em></p>\n<p><em><span style=\"background-color:#ffffff;\">u<sub>y </sub></span></em><span style=\"background-color:#ffffff;\">= 64 </span><span style=\"background-color:#ffffff;\">sin7</span><span style=\"background-color:#ffffff;\">/7.80</span><em><span style=\"background-color:#ffffff;\"> «</span></em><span style=\"background-color:#ffffff;\">ms</span><sup><span style=\"background-color:#ffffff;\"><span style=\"text-align:left;color:#000000;text-indent:0px;letter-spacing:normal;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-variant:normal;font-weight:400;text-decoration:none;display:inline !important;white-space:normal;float:none;background-color:#ffffff;\"></span></span><span style=\"background-color:#ffffff;\">1</span></sup><em><span style=\"background-color:#ffffff;\">»</span></em><span style=\"background-color:#ffffff;\">✔</span><em><span style=\"background-color:#ffffff;\"><br/></span></em></p>\n<p><span style=\"background-color:#ffffff;\">decrease in height = 7.80 <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">×</span> 0.187 + <span class=\"mjpage\"><math alttext=\"\\frac{1}{2}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n</math></span> <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">×</span> 9.81 <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">×</span> 0.187<sup>2</sup>/1.63 «m» ✔<br/></span></p>\n<p><span style=\"background-color:#ffffff;\">final height = «<span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">2.80 1.63</span>» = 1.1/1.2 «m» ✔<br/></span></p>\n<p><span style=\"background-color:#ffffff;\">«higher than net so goes over»<br/></span></p>\n<p><span style=\"background-color:#ffffff;\"><em><strong>ALTERNATIVE 2</strong></em><br/></span></p>\n<p><span style=\"background-color:#ffffff;\">vertical distance to fall to net <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">«</span>= <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">2.80 0.91</span>» = 1.89 «m»✔<br/></span></p>\n<p><span style=\"background-color:#ffffff;\">time to fall this distance found using <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">«</span>=1.89 = 7.8<em>t</em> + <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span class=\"mjpage\"><math alttext=\"\\frac{1}{2}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n</math></span></span> <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">×</span> 9.81 <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">×</span><em>t</em><sup>2</sup>»<br/></span></p>\n<p><span style=\"background-color:#ffffff;\"><em>t </em>= 0.21 «s»✔<br/></span></p>\n<p><span style=\"background-color:#ffffff;\">0.21 «s» &gt; 0.187 «s» ✔<br/></span></p>\n<p><span style=\"background-color:#ffffff;\">«reaches the net before it has fallen far enough so goes over»</span><em><span style=\"background-color:#ffffff;\"><br/></span></em></p>\n<p><em><span style=\"background-color:#ffffff;\">Other alternatives are possible<br/></span></em></p>\n<div class=\"question_part_label\">bii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><span style=\"background-color:#ffffff;\"><strong>ALTERNATIVE 1</strong><br/></span></em></p>\n<p><span style=\"background-color:#ffffff;\">Initial KE + PE = final KE /</span></p>\n<p><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"\\frac{1}{2}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n</math></span> × 0.058 × 64<sup>2</sup> + 0.058 × 9.81 × 2.80 = <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"><span class=\"mjpage\"><math alttext=\"\\frac{1}{2}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n</math></span></span> <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">×</span> 0.058 <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">×</span> <em>v</em><sup>2</sup> ✔<br/></span></p>\n<p><span style=\"background-color:#ffffff;\"><em>v</em> = 64.4 «<span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">ms<sup>1</sup></span>» ✔</span><span style=\"background-color:#ffffff;\"><br/></span></p>\n<p><span style=\"background-color:#ffffff;\"><em><strong>ALTERNATIVE 2</strong></em><br/></span></p>\n<p><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"{v_v} = « \\sqrt {{{7.8}^2} + 2 \\times 9.81 \\times 2.8} » = 10.8 « {\\text{m}} {{\\text{s}}^{ - 1}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mrow>\n<msub>\n<mi>v</mi>\n<mi>v</mi>\n</msub>\n</mrow>\n<mo>=</mo>\n<mrow>\n<mo>«</mo>\n</mrow>\n<msqrt>\n<mrow>\n<msup>\n<mrow>\n<mn>7.8</mn>\n</mrow>\n<mn>2</mn>\n</msup>\n</mrow>\n<mo>+</mo>\n<mn>2</mn>\n<mo>×</mo>\n<mn>9.81</mn>\n<mo>×</mo>\n<mn>2.8</mn>\n</msqrt>\n<mrow>\n<mo>»</mo>\n</mrow>\n<mo>=</mo>\n<mn>10.8</mn>\n<mrow>\n<mo>«</mo>\n</mrow>\n<mrow>\n<mtext>m</mtext>\n</mrow>\n<mrow>\n<msup>\n<mrow>\n<mtext>s</mtext>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>1</mn>\n</mrow>\n</msup>\n</mrow>\n</math></span>»  <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span> </span></p>\n<p><span style=\"background-color:#ffffff;\">« <span class=\"mjpage\"><math alttext=\"v = \\sqrt {{{63.5}^2} + {{10.8}^2}} \" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>v</mi>\n<mo>=</mo>\n<msqrt>\n<mrow>\n<msup>\n<mrow>\n<mn>63.5</mn>\n</mrow>\n<mn>2</mn>\n</msup>\n</mrow>\n<mo>+</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10.8</mn>\n</mrow>\n<mn>2</mn>\n</msup>\n</mrow>\n</msqrt>\n</math></span> »</span></p>\n<p><span style=\"background-color:#ffffff;\"><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"v = 64.4 « {\\text{m}} {{\\text{s}}^{ - 1}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>v</mi>\n<mo>=</mo>\n<mn>64.4</mn>\n<mrow>\n<mo>«</mo>\n</mrow>\n<mrow>\n<mtext>m</mtext>\n</mrow>\n<mrow>\n<msup>\n<mrow>\n<mtext>s</mtext>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>1</mn>\n</mrow>\n</msup>\n</mrow>\n</math></span>»   <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></span></p>\n<p><em><span style=\"background-color:#ffffff;\"> </span></em></p>\n<div class=\"question_part_label\">biii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color:#ffffff;\">so horizontal velocity component at lift off for clay is smaller ✔<br/></span></p>\n<p><span style=\"background-color:#ffffff;\">normal force is the same so vertical component of velocity is the same ✔<br/></span></p>\n<p><span style=\"background-color:#ffffff;\">so bounce angle on clay is greater ✔</span><em><span style=\"background-color:#ffffff;\"><br/></span></em></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>At both HL and SL many candidates scored both marks for correctly answering this. A straightforward start to the paper. For those not gaining both marks it was possible to gain some credit for calculating either the change in momentum or the acceleration. At SL some used 64 ms-1 as a value for a and continued to use this value over the next few parts to the question.</p>\n<div class=\"question_part_label\">ai.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was well answered although a significant number of candidates approached it using P = Fv but forgot to divide v by 2 to calculated the average velocity. This scored one mark out of 2.</p>\n<div class=\"question_part_label\">aii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question scored well at HL but less so at SL. One common mistake was to calculate the direct distance to the top of the net and assume that the ball travelled that distance with constant speed. At SL particularly, another was to consider the motion only when the ball is in contact with the racquet.</p>\n<div class=\"question_part_label\">bi.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>There were a number of approaches students could take to answer this and examiners saw examples of them all. One approach taken was to calculate the time taken to fall the distance to the top of the net and to compare this with the time calculated in bi) for the ball to reach the net. This approach, which is shown in the mark scheme, required solving a quadratic in t which is beyond the mathematical requirements of the syllabus. This mathematical technique was only required if using this approach and not required if, for example, calculating heights.</p>\n<p>A common mistake was to forget that the ball has a vertical acceleration. Examiners were able to award credit/ECF for correct parts of an otherwise flawed method.</p>\n<div class=\"question_part_label\">bii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This proved difficult for candidates at both HL and SL. Many managed to calculate the final vertical component of the velocity of the ball.</p>\n<div class=\"question_part_label\">biii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>As the command term in this question is predict a bald answer of clay was acceptable for one mark. This was a testing question that candidates found demanding but there were some very well-reasoned answers. The most common incorrect answer involved suggesting that the greater frictional force on the clay court left the ball with less kinetic energy and so a smaller angle. At SL many gained the answer that the angle on clay would be greater with the argument that frictional force is greater and so the distance the ball slides is less.</p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-1-kinematics",
"a-2-forces-and-momentum",
"a-3-work-energy-and-power"
]
},
{
"question_id": "19M.2.SL.TZ2.14",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Show that, when the speed of the train is 10 m s-1, the frequency of the periodic force is 0.4 Hz.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n <span style=\"background-color:#ffffff;\">\n Outline, with reference to the curve, why it is unsafe to drive a train across the bridge at 30 m s\n <sup>\n -1\n </sup>\n for this amount of damping.\n </span>\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n The damping of the bridge system can be varied. Draw, on the graph, a second curve when the damping is larger.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n time period\n </span>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n T = «\n <span class=\"mjpage\">\n <math alttext=\"\\frac{25}{10}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 25\n </mn>\n <mn>\n 10\n </mn>\n </mfrac>\n </math>\n </span>\n »\n </span>\n </em>\n <span style=\"background-color:#ffffff;\">\n = 2.5 s\n </span>\n <em>\n <span style=\"background-color:#ffffff;\">\n <strong>\n AND\n </strong>\n f =\n <span class=\"mjpage\">\n <math alttext=\"\\frac{1}{T}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mi>\n T\n </mi>\n </mfrac>\n </math>\n </span>\n </span>\n </em>\n </p>\n <p>\n <strong>\n <em>\n <span style=\"background-color:#ffffff;\">\n OR\n </span>\n </em>\n </strong>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n evidence of f =\n <span class=\"mjpage\">\n <math alttext=\"\\frac{10}{25}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 10\n </mn>\n <mn>\n 25\n </mn>\n </mfrac>\n </math>\n </span>\n ✔\n </span>\n </em>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n <span style=\"background-color:#ffffff;\">\n Answer 0.4 Hz is given, check correct working is shown.\n </span>\n </span>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n 30 m s\n <sup>\n 1\n </sup>\n corresponds to\n <em>\n f\n </em>\n = 1.2 Hz ✔\n <br/>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n the amplitude of vibration is a maximum for this speed\n <br/>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n corresponds to the resonant frequency ✔\n </span>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n similar shape with lower amplitude ✔\n <br/>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n maximum shifted slightly to left of the original curve ✔\n </span>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n <span style=\"background-color:#ffffff;\">\n Amplitude must be lower than the original, but allow the amplitude to be equal at the extremes.\n </span>\n </span>\n </em>\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n The question was correctly answered by almost all candidates.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n The answers to this question were generally well presented and a correct argument was presented by almost all candidates. Resonance was often correctly referred to.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n A correct curve, with lower amplitude and shifted left, was drawn by most candidates.\n </p>\n</div>\n",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-4-standing-waves-and-resonance"
]
},
{
"question_id": "19M.2.SL.TZ2.15",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Identify, on the HR diagram, the position of the Sun. Label the position S.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n During its evolution, the Sun is likely to be a red giant of surface temperature 3000 K and luminosity 10\n <sup>\n 4\n </sup>\n L\n <var style=\"color:#222222;font-family:sans-serif;font-size:13.93px;font-style:italic;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n </var>\n <sub style=\"color:#222222;font-family:sans-serif;font-size:80%;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;line-height:1;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n ☉\n </sub>\n . Later it is likely to be a white dwarf of surface temperature 10 000 K and luminosity 10-4 L\n <var style=\"color:#222222;font-family:sans-serif;font-size:13.93px;font-style:italic;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n </var>\n <sub style=\"color:#222222;font-family:sans-serif;font-size:80%;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;line-height:1;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n ☉\n </sub>\n . Calculate the\n <span class=\"mjpage\">\n <math alttext=\"\\frac{{{\\text{radius of the Sun as a white dwarf}}}}{{{\\text{radius of the Sun as a red giant}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mrow>\n <mtext>\n radius of the Sun as a white dwarf\n </mtext>\n </mrow>\n </mrow>\n <mrow>\n <mrow>\n <mtext>\n radius of the Sun as a red giant\n </mtext>\n </mrow>\n </mrow>\n </mfrac>\n </math>\n </span>\n .\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n the letter S should be in the region of the shaded area\n </span>\n <em>\n <span style=\"background-color:#ffffff;\">\n ✔\n </span>\n </em>\n </p>\n <p>\n <em>\n <img height=\"463\" src=\"\" width=\"740\"/>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n <img height=\"117\" src=\"\" width=\"205\"/>\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Locating the Suns position on the HR diagram was correctly done by most candidates, although a few were unsure of the surface temperature of the Sun.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n Calculating the ratio of the radius of a white dwarf to a red giant star was done quite well by most candidates. However quite a few candidates made POT errors or forgot to take the final square root.\n </p>\n</div>\n",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-5-fusion-and-stars"
]
},
{
"question_id": "19M.2.SL.TZ2.2",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">A container of volume 3.2 × 10-6 m<sup>3</sup> is filled with helium gas at a pressure of 5.1 × 10<sup>5</sup> Pa and temperature 320 K. Assume that this sample of helium gas behaves as an ideal gas.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">A helium atom has a volume of 4.9 × 10<sup>-31</sup> m<sup>3</sup>.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">The molar mass of helium is 4.0 g mol<sup>-1</sup>. Show that the mass of a helium atom is 6.6 × 10<sup>-27</sup> kg.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Estimate the average speed of the helium atoms in the container.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Show that the number of helium atoms in the container is about 4 × 10<sup>20</sup>.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Calculate the ratio  <span class=\"mjpage\"><math alttext=\"\\frac{{{\\text{total volume of helium atoms}}}}{{{\\text{volume of helium gas}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mrow>\n<mtext>total volume of helium atoms</mtext>\n</mrow>\n</mrow>\n<mrow>\n<mrow>\n<mtext>volume of helium gas</mtext>\n</mrow>\n</mrow>\n</mfrac>\n</math></span>.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">di.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Explain, using your answer to (d)(i) and with reference to the kinetic model, why this sample of helium can be assumed to be an ideal gas.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">dii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"m = \\frac{{4.0 \\times {{10}^{ - 3}}}}{{6.02 \\times {{10}^{23}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>m</mi>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mn>4.0</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>3</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>6.02</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mn>23</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n</math></span>«kg»</span><em><span style=\"background-color:#ffffff;\"><br/></span></em></p>\n<p><em><span style=\"background-color:#ffffff;\"><strong>OR</strong><br/></span></em></p>\n<p><span style=\"background-color:#ffffff;\">6.64 <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">×</span> 10<span style=\"font-size:14px;\"><sup><span style=\"text-align:left;color:#000000;text-indent:0px;letter-spacing:normal;font-family:Verdana , Arial , Helvetica , sans-serif;font-variant:normal;font-weight:400;text-decoration:none;display:inline !important;white-space:normal;float:none;background-color:#ffffff;\">27 </span></sup></span></span><span style=\"background-color:#ffffff;\">«kg»</span><em><span style=\"background-color:#ffffff;\"> ✔</span></em></p>\n<p> </p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"\\frac{1}{2}m{v^2} = \\frac{3}{2}kT/v = \\sqrt {\\frac{{3kT}}{m}} /\\sqrt {\\frac{{3 \\times 1.38 \\times {{10}^{ - 23}} \\times 320}}{{6.6 \\times {{10}^{ - 27}}}}} \" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mn>1</mn>\n<mn>2</mn>\n</mfrac>\n<mi>m</mi>\n<mrow>\n<msup>\n<mi>v</mi>\n<mn>2</mn>\n</msup>\n</mrow>\n<mo>=</mo>\n<mfrac>\n<mn>3</mn>\n<mn>2</mn>\n</mfrac>\n<mi>k</mi>\n<mi>T</mi>\n<mrow>\n<mo>/</mo>\n</mrow>\n<mi>v</mi>\n<mo>=</mo>\n<msqrt>\n<mfrac>\n<mrow>\n<mn>3</mn>\n<mi>k</mi>\n<mi>T</mi>\n</mrow>\n<mi>m</mi>\n</mfrac>\n</msqrt>\n<mrow>\n<mo>/</mo>\n</mrow>\n<msqrt>\n<mfrac>\n<mrow>\n<mn>3</mn>\n<mo>×</mo>\n<mn>1.38</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>23</mn>\n</mrow>\n</msup>\n</mrow>\n<mo>×</mo>\n<mn>320</mn>\n</mrow>\n<mrow>\n<mn>6.6</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>27</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n</msqrt>\n</math></span>  <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></p>\n<p><span style=\"background-color:#ffffff;\"><em>v</em> = 1.4 <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">×</span> 10<sup>3</sup> «<span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">ms</span><sup><span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\"></span><span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">1</span></sup>» ✔</span> </p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"N = \\frac{{pV}}{{kT}}/\\frac{{5.1 \\times {{10}^5} \\times 3.2 \\times {{10}^{ - 6}}}}{{1.38 \\times {{10}^{ - 23}} \\times 320}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>N</mi>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mi>p</mi>\n<mi>V</mi>\n</mrow>\n<mrow>\n<mi>k</mi>\n<mi>T</mi>\n</mrow>\n</mfrac>\n<mrow>\n<mo>/</mo>\n</mrow>\n<mfrac>\n<mrow>\n<mn>5.1</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mn>5</mn>\n</msup>\n</mrow>\n<mo>×</mo>\n<mn>3.2</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>6</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>1.38</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>23</mn>\n</mrow>\n</msup>\n</mrow>\n<mo>×</mo>\n<mn>320</mn>\n</mrow>\n</mfrac>\n</math></span></span></p>\n<p><em><strong>OR</strong></em></p>\n<p><span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"N = \\frac{{pV{N_A}}}{{RT}}/\\frac{{5.1 \\times {{10}^5} \\times 3.2 \\times {{10}^{ - 6}} \\times 6.02 \\times {{10}^{23}}}}{{8.31 \\times 320}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>N</mi>\n<mo>=</mo>\n<mfrac>\n<mrow>\n<mi>p</mi>\n<mi>V</mi>\n<mrow>\n<msub>\n<mi>N</mi>\n<mi>A</mi>\n</msub>\n</mrow>\n</mrow>\n<mrow>\n<mi>R</mi>\n<mi>T</mi>\n</mrow>\n</mfrac>\n<mrow>\n<mo>/</mo>\n</mrow>\n<mfrac>\n<mrow>\n<mn>5.1</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mn>5</mn>\n</msup>\n</mrow>\n<mo>×</mo>\n<mn>3.2</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>6</mn>\n</mrow>\n</msup>\n</mrow>\n<mo>×</mo>\n<mn>6.02</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mn>23</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>8.31</mn>\n<mo>×</mo>\n<mn>320</mn>\n</mrow>\n</mfrac>\n</math></span>   <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">✔</span></span></p>\n<p><span style=\"background-color:#ffffff;\"><em>N</em> = 3.7 <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">× </span>10<sup>20</sup> ✔</span></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<span style=\"background-color:#ffffff;\"><span class=\"mjpage\"><math alttext=\"\\frac{{4 \\times {{10}^{20}} \\times 4.9 \\times {{10}^{ - 31}}}}{{3.2 \\times {{10}^{ - 6}}}} =» 6 \\times {10^{ - 5}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mn>4</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mn>20</mn>\n</mrow>\n</msup>\n</mrow>\n<mo>×</mo>\n<mn>4.9</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>31</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>3.2</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo></mo>\n<mn>6</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n<mo>=</mo>\n<mrow>\n<mo>»</mo>\n</mrow>\n<mn>6</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mn>10</mn>\n<mrow>\n<mo></mo>\n<mn>5</mn>\n</mrow>\n</msup>\n</mrow>\n</math></span>  ✔</span></p>\n<div class=\"question_part_label\">di.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color:#ffffff;\">«For an ideal gas» the size of the particles is small compared to the distance between them/size of the container/gas<br/></span></p>\n<p><span style=\"background-color:#ffffff;\"><em><strong>OR</strong></em><br/></span></p>\n<p><span style=\"background-color:#ffffff;\">«For an ideal gas» the volume of the particles is negligible/the volume of the particles is small compared to the volume of the container/gas<br/></span></p>\n<p><span style=\"background-color:#ffffff;\"><em><strong>OR</strong></em><br/></span></p>\n<p><span style=\"background-color:#ffffff;\">«For an ideal gas» particles are assumed to be point objects ✔<br/></span></p>\n<p><span style=\"background-color:#ffffff;\">calculation/ratio/result in (d)(i) shows that volume of helium atoms is negligible compared to/much smaller than volume of helium gas/container «hence assumption is justified» ✔</span></p>\n<div class=\"question_part_label\">dii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>The mark was awarded for a clear substitution or an answer to at least 3sf. Many gained the mark for a clear substitution with a conversion from g to kg somewhere in their response. Fewer gave the answer to the correct number of sf.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>At HL this was very well answered but at SL many just worked out E=3/2kT and left it as a value for KE.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Again at HL this was very well answered with the most common approach being to calculate the number of moles and then multiply by N<sub>A</sub> to calculate the number of atoms. At SL many candidates calculated n but stopped there. Also at SL there was some evidence of candidates working backwards and magically producing a value for n that gave a result very close to that required after multiplying by N<sub>A</sub>.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was well answered with the most common mistake being to use the volume of a single atom rather than the total volume of the atoms.</p>\n<div class=\"question_part_label\">di.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>In general this was poorly answered at SL. Many other non-related gas properties given such as no / negligible intermolecular forces, low pressure, high temperature. Some candidates interpreted the ratio as meaning it is a low density gas. At HL candidates seemed more able to focus on the key part feature of the question, which was the nature of the volumes involved. Examiners were looking for an assumption of the kinetic theory related to the volume of the atoms/gas and then a link to the ratio calculated in ci). The command terms were slightly different at SL and HL, giving slightly more guidance at SL.</p>\n<div class=\"question_part_label\">dii.</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"a-3-work-energy-and-power",
"b-1-thermal-energy-transfers",
"b-3-gas-laws"
]
},
{
"question_id": "19M.2.SL.TZ2.7",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">The average temperature of ocean surface water is 289 K. Oceans behave as black bodies.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Show that the intensity radiated by the oceans is about 400 W m<sup>-2</sup>.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color:#ffffff;\">Explain why some of this radiation is returned to the oceans from the atmosphere.</span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>5.67 <span style=\"background-color:#ffffff;\">×</span> 10<span style=\"background-color:#ffffff;\"><sup>8</sup> <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">×</span> 289<sup>4</sup></span></p>\n<p><em><strong><span style=\"background-color:#ffffff;\">OR</span></strong></em></p>\n<p><span style=\"background-color:#ffffff;\">= 396 «W m<sup style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:11.6px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">2</sup>» ✔</span></p>\n<p><span style=\"background-color:#ffffff;\"><span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">«≈ 400 W m</span><sup style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:11.6px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">2</sup><span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">»</span></span></p>\n<p> </p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color:#ffffff;\">«most of the radiation emitted by the oceans is in the» infrared ✔<br/></span></p>\n<p><span style=\"background-color:#ffffff;\">«this radiation is» absorbed by greenhouse gases/named greenhouse gas in the atmosphere ✔<br/></span></p>\n<p><span style=\"background-color:#ffffff;\">«the gases» reradiate/re-emit ✔<br/></span></p>\n<p><span style=\"background-color:#ffffff;\">partly back towards oceans/in all directions/awareness that radiation in other directions is also present ✔</span></p>\n<div class=\"question_part_label\">b.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was well answered with candidates scoring the mark for either a correct substitution or an answer given to at least one more sf than the show that value. Some candidates used 298 rather than 289.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>For many this was a well-rehearsed answer which succinctly scored full marks. For others too many vague terms were used. There was much talk about energy being trapped or reflected and the ozone layer was often included. The word albedo was often written down with no indication of what it means and the albedo effect also featured.</p>\n<div class=\"question_part_label\">b.</div>\n</div>",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-2-greenhouse-effect"
]
},
{
"question_id": "19N.3.SL.TZ0.1",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">A student investigates how the period<em> T</em> of a simple pendulum varies with the maximum speed <em>v</em> of the pendulums bob by releasing the pendulum from rest from different initial angles. A graph of the variation of <em>T</em> with <em>v</em> is plotted.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Suggest, by reference to the graph, why it is unlikely that the relationship between <em>T</em> and <em>v</em> is linear.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Determine the fractional uncertainty in <em>v</em> when <em>T</em> = 2.115 s, correct to <strong>one</strong> significant figure.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The student hypothesizes that the relationship between <em>T</em> and <em>v</em> is <em>T = a + bv</em><sup>2</sup>, where <em>a</em> and <em>b</em> are constants. To verify this hypothesis a graph showing the variation of <em>T</em> with <em>v</em><sup>2</sup> is plotted. The graph shows the data and the line of best fit.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Determine <em>b</em>, giving an appropriate unit for <em>b</em>.</span></span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The lines of the minimum and maximum gradient are shown.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Estimate the absolute uncertainty in <em>a</em>.</span></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">a straight line cannot be drawn through all error bars<br/><em><strong>OR</strong></em><br/>the graph/line of best fit is /curved/not straight/parabolic etc.<br/><em><strong>OR</strong></em><br/>graph has increasing/variable gradient ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Do not allow “a line cannot be drawn through all error bars” without specifying “straight”.</span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>v</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>15</mn><mo></mo><mo>«</mo><mi mathvariant=\"normal\">m</mi><mo></mo><mo></mo><msup><mi mathvariant=\"normal\">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math>  <em><strong>AND </strong></em> <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>∆</mo><mi>v</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>05</mn><mo></mo><mo>«</mo><mi mathvariant=\"normal\">m</mi><mo></mo><mo></mo><msup><mi mathvariant=\"normal\">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✔</span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>05</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>15</mn></mrow></mfrac><mo>=</mo></math>»0.04 <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">✔</span></span></span></p>\n<p><em><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">NOTE: Accept 4 %</span></span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>use of 2 correct points on the line with Δ<em>v</em><sup>2 </sup>&gt; 2 ✔</p>\n<p><em>b</em> in range 0.012 to 0.013 ✔</p>\n<p>s<sup>3 </sup>m<sup>2 </sup>✔</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>a</mi><mi>max</mi></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>101</mn></math> «s» ±0.001 «s» <em><strong>AND</strong></em> <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>a</mi><mi>min</mi></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>095</mn></math>«s» ±0.001 «s» ✔</p>\n<p>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>2</mn><mo>.</mo><mn>101</mn><mo>-</mo><mn>2</mn><mo>.</mo><mn>095</mn></mrow><mn>2</mn></mfrac><mo>=</mo></math>» 0.003 «s» ✔</p>\n<div class=\"question_part_label\">d.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.</div>\n</div>",
"topics": [
"tools"
],
"subtopics": [
"tool-3-mathematics"
]
},
{
"question_id": "19N.2.HL.TZ0.11",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Monochromatic light of very low intensity is incident on a metal surface. The light causes the emission of electrons almost instantaneously. Explain how this observation</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">In an experiment to demonstrate the photoelectric effect, light of wavelength 480nm is incident on a metal surface.</span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The graph shows the variation of the current<em> <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>I</mi></math></em> in the ammeter with the potential <em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math></em> of the cathode.</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">does not support the wave nature of light.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">does support the photon nature of light.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate, in eV, the work function of the metal surface.</span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The intensity of the light incident on the surface is reduced by half without changing the wavelength. Draw, on the graph, the variation of the current <em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>I</mi></math></em> with potential <em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math></em> after this change.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«low intensity light would» transfer energy to the electron at a low rate/slowly ✔<br/>time would be required for the electron «to absorb the required energy» to escape/be emitted ✔<br/></span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: OWTTE</span></em></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«in the photon theory of light» the electron interacts with a single photon ✔<br/>and absorbs all the energy <em><strong>OR</strong> </em>and can leave the metal immediately ✔<br/></span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Reference to photon-electron collision scores MP1</span></em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ϕ</mi><mo>=</mo><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><mi>λ</mi></mfrac><mo>-</mo><msub><mi>E</mi><mi mathvariant=\"normal\">K</mi></msub></math> <span style=\"background-color: #ffffff;\">✔</span></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi mathvariant=\"normal\">K</mi></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>«</mo><mi>eV</mi><mo>»</mo></math><span style=\"background-color: #ffffff;\"> ✔</span></p>\n<p><span style=\"background-color: #ffffff;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ϕ</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>480</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>9</mn></mrow></msup></mrow></mfrac><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>=</mo><mo>»</mo><mo></mo><mn>1</mn><mo>.</mo><mn>1</mn><mo></mo><mo>«</mo><mi>eV</mi><mo>»</mo></math><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">✔</span></span></p>\n<p><span style=\"font-size: 14px;\"><em><span style=\"background-color: #ffffff;\"><span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\">NOTE: Allow reading from the graph of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi>k</mi></msub><mo>=</mo><mn mathvariant=\"italic\">1</mn><mo mathvariant=\"italic\">.4</mo></math>leading to an answer of 1.2«eV».</span></span></em></span></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">similar curve lower than original ✔<br/></span></p>\n<p><span style=\"background-color: #ffffff;\">with same horizontal intercept ✔</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"246\" src=\"\" width=\"401\"/></span></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-2-quantum-physics"
]
},
{
"question_id": "19N.2.HL.TZ0.6",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a(i))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Show that the pressure at B is about 130 kPa.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Calculate the ratio\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n </mfrac>\n </math>\n .\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b(i))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n determine the thermal energy removed from the system.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n explain why the entropy of the gas decreases.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b(iii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n state and explain whether the second law of thermodynamics is violated.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a(i))\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n P\n </mi>\n <mi mathvariant=\"normal\">\n B\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 250\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 5\n </mn>\n <mstyle displaystyle=\"true\">\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </mstyle>\n </msup>\n </mrow>\n </mfrac>\n <mo>\n </mo>\n <mo>\n «\n </mo>\n <mi>\n from\n </mi>\n <mo>\n </mo>\n <msub>\n <mi>\n P\n </mi>\n <mi mathvariant=\"normal\">\n B\n </mi>\n </msub>\n <msup>\n <mfenced>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n </mo>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n </mrow>\n </mfenced>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n <mo>\n =\n </mo>\n <mn>\n 250\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <msup>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n <mo>\n »\n </mo>\n </math>\n <span style=\"background-color:#ffffff;\">\n ✔\n </span>\n </p>\n <p>\n = 127 kPa\n <span style=\"background-color:#ffffff;\">\n ✔\n </span>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a(ii))\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n «\n </mo>\n <mn>\n 127\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n </mo>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mn>\n 250\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n </mo>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n <mo>\n »\n </mo>\n </math>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n 1.31 ✔\n </span>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b(i))\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n work done\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ∆\n </mo>\n <mi>\n W\n </mi>\n <mo>\n =\n </mo>\n <mo>\n «\n </mo>\n <mo>\n -\n </mo>\n <mo>\n »\n </mo>\n <mn>\n 250\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n <mo>\n =\n </mo>\n <mo>\n «\n </mo>\n <mo>\n -\n </mo>\n <mo>\n »\n </mo>\n <mn>\n 375\n </mn>\n <mo>\n </mo>\n <mo>\n «\n </mo>\n <mi mathvariant=\"normal\">\n J\n </mi>\n <mo>\n »\n </mo>\n </math>\n <span style=\"background-color:#ffffff;\">\n ✔\n </span>\n </p>\n <p>\n change in internal energy\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ∆\n </mo>\n <mi>\n U\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 300\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 31\n </mn>\n <mo>\n ×\n </mo>\n <mfenced>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 150\n </mn>\n </mrow>\n </mfenced>\n <mo>\n =\n </mo>\n <mo>\n «\n </mo>\n <mo>\n -\n </mo>\n <mo>\n »\n </mo>\n <mn>\n 561\n </mn>\n <mo>\n </mo>\n <mo>\n «\n </mo>\n <mi mathvariant=\"normal\">\n J\n </mi>\n <mo>\n »\n </mo>\n </math>\n <br/>\n <em>\n <strong>\n OR\n <br/>\n </strong>\n </em>\n <em>\n <strong>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ∆\n </mo>\n <mi>\n U\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mi>\n P\n </mi>\n <mo>\n ∆\n </mo>\n <mi>\n V\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 375\n </mn>\n <mo>\n =\n </mo>\n <mo>\n «\n </mo>\n <mo>\n -\n </mo>\n <mo>\n »\n </mo>\n <mn>\n 563\n </mn>\n <mo>\n </mo>\n <mo>\n «\n </mo>\n <mi mathvariant=\"normal\">\n J\n </mi>\n <mo>\n »\n </mo>\n </math>\n </strong>\n </em>\n <span style=\"background-color:#ffffff;\">\n ✔\n </span>\n </p>\n <p>\n thermal energy removed\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ∆\n </mo>\n <mi>\n Q\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 375\n </mn>\n <mo>\n +\n </mo>\n <mn>\n 561\n </mn>\n <mo>\n =\n </mo>\n <mn>\n 936\n </mn>\n <mo>\n </mo>\n <mo>\n «\n </mo>\n <mi mathvariant=\"normal\">\n J\n </mi>\n <mo>\n »\n </mo>\n </math>\n <br/>\n <em>\n <strong>\n OR\n <br/>\n </strong>\n </em>\n <em>\n <strong>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ∆\n </mo>\n <mi>\n Q\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 375\n </mn>\n <mo>\n +\n </mo>\n <mn>\n 563\n </mn>\n <mo>\n =\n </mo>\n <mn>\n 938\n </mn>\n <mo>\n </mo>\n <mo>\n «\n </mo>\n <mi mathvariant=\"normal\">\n J\n </mi>\n <mo>\n »\n </mo>\n </math>\n </strong>\n </em>\n <span style=\"background-color:#ffffff;\">\n ✔\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ∆\n </mo>\n <mi>\n Q\n </mi>\n <mo>\n =\n </mo>\n <mo>\n «\n </mo>\n <mi>\n n\n </mi>\n <mi>\n C\n </mi>\n <mi>\n p\n </mi>\n <mo>\n ∆\n </mo>\n <mi>\n T\n </mi>\n <mo>\n =\n </mo>\n <mo>\n »\n </mo>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mi>\n n\n </mi>\n <mi>\n R\n </mi>\n <mi>\n T\n </mi>\n </math>\n <span style=\"background-color:#ffffff;\">\n ✔\n </span>\n </p>\n <p>\n thermal energy removed\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ∆\n </mo>\n <mi>\n Q\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 300\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 31\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 150\n </mn>\n </math>\n <span style=\"background-color:#ffffff;\">\n ✔\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 935\n </mn>\n <mo>\n </mo>\n <mo>\n «\n </mo>\n <mi mathvariant=\"normal\">\n J\n </mi>\n <mo>\n »\n </mo>\n </math>\n </span>\n <span style=\"background-color:#ffffff;\">\n ✔\n </span>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b(ii))\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n «from b(i)»\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ∆\n </mo>\n <mi>\n Q\n </mi>\n </math>\n is negative\n <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n ✔\n </span>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ∆\n </mo>\n <mi>\n S\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mo>\n ∆\n </mo>\n <mi>\n Q\n </mi>\n </mrow>\n <mi>\n T\n </mi>\n </mfrac>\n </math>\n <em>\n <strong>\n AND\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ∆\n </mo>\n <mi>\n S\n </mi>\n </math>\n </strong>\n </em>\n is negative\n <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n ✔\n </span>\n </span>\n </p>\n <p>\n </p>\n <p>\n <strong>\n ALTERNATIVE 2\n </strong>\n </p>\n <p>\n <em>\n T\n </em>\n and/or\n <em>\n V\n </em>\n decreases ✔\n </p>\n <p>\n less disorder/more order «so\n <em>\n S\n </em>\n decreases» ✔\n </p>\n <p>\n </p>\n <p>\n <strong>\n ALTERNATIVE 3\n </strong>\n </p>\n <p>\n <em>\n T\n </em>\n decreases ✔\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ∆\n </mo>\n <mi>\n S\n </mi>\n <mo>\n =\n </mo>\n <mi>\n K\n </mi>\n <mo>\n ×\n </mo>\n <mi>\n ln\n </mi>\n <mfenced>\n <mfrac>\n <mrow>\n <mi>\n T\n </mi>\n <mn>\n 2\n </mn>\n </mrow>\n <mrow>\n <mi>\n T\n </mi>\n <mn>\n 1\n </mn>\n </mrow>\n </mfrac>\n </mfenced>\n <mo>\n &lt;\n </mo>\n <mn>\n 0\n </mn>\n </math>\n ✔\n </p>\n <p>\n <em>\n </em>\n </p>\n <p>\n <em>\n NOTE: Answer given, look for a valid reason that S decreases.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b(iii))\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n not violated ✔\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n the entropy of the surroundings must have increased\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n the overall entropy of the system and the surroundings is the same or increased ✔\n </span>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-4-rigid-body-mechanics"
]
},
{
"question_id": "19N.2.SL.TZ0.1",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">The graph shows the variation with time<em> t</em> of the horizontal force <em>F</em> exerted on a tennis ball by a racket.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"356\" src=\"\" style=\"margin-right: auto; margin-left: auto; display: block;\" width=\"457\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The tennis ball was stationary at the instant when it was hit. The mass of the tennis ball is 5.8 × 10<sup>2</sup> kg. The area under the curve is 0.84 N s.</span></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate the speed of the ball as it leaves the racket.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Show that the average force exerted on the ball by the racket is about 50 N.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Determine, with reference to the work done by the average force, the horizontal distance travelled by the ball while it was in contact with the racket.</span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Draw a graph to show the variation with<em> t</em> of the horizontal speed <em>v</em> of the ball while it was in contact with the racket. Numbers are <strong>not</strong> required on the axes.</span></p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">links 0.84 to Δ<em>p</em> ✔</span></p>\n<p><span style=\"background-color: #ffffff;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>v</mi><mo>=</mo></math>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>84</mn></mrow><mrow><mn>5</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo></math>» 14.5 «m s<sup>1</sup>»✔<br/></span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Award <strong>[2]</strong> for bald correct answer</span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>use of Δ<em>t = </em><span style=\"background-color: #ffffff;\">«</span>(28 12) × 10<sup>3 </sup>=<span style=\"background-color: #ffffff;\">»</span> 16 × 10<sup>3</sup> <span style=\"background-color: #ffffff;\">«</span>s<span style=\"background-color: #ffffff;\">» <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">✔</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover><mi>F</mi><mo>¯</mo></mover></math> =«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mo>∆</mo><mi>p</mi></mrow><mrow><mo>∆</mo><mi>t</mi></mrow></mfrac><mo>=</mo></math>» <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>84</mn></mrow><mrow><mn>16</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math> <em><strong>OR</strong></em>  53 «N» ✔</span></span></p>\n<p><em><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">NOTE: Accept a time interval from 14 to 16 </span></span></em><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">ms</span></span><em><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"> <br/>Allow ECF from incorrect time interval</span></span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>E</em><sub>k </sub><em>= <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> × </em>5.8 × 10<sup>2 </sup>× 14.5<sup>2 </sup>✔</p>\n<p><em style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">E</em><sub style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">k</sub> = <em>W <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">✔</span></em></p>\n<p><span style=\"font-size: 14px;\"><em><span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\">s = </span></em><span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mi>W</mi><mi>F</mi></mfrac><mo>=</mo><mfrac><mstyle displaystyle=\"true\"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>5</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>×</mo><mn>14</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></mstyle><mn>53</mn></mfrac><mo>=</mo></math>» 0.12 « m » ✔</span></span></span></p>\n<p> </p>\n<p><em>Allow ECF from (a) and (b)</em></p>\n<p><em>Allow ECF from MP1</em></p>\n<p><em>Award <strong>[2]</strong> max for a calculation without reference to work done, eg: average velocity × time</em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"241\" src=\"\" width=\"370\"/></p>\n<p><span style=\"background-color: #ffffff;\">graph must show increasing speed from an initial of zero all the time ✔<br/>overall correct curvature ✔</span></p>\n<div class=\"question_part_label\">d.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.</div>\n</div>",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-1-kinematics",
"a-2-forces-and-momentum",
"a-3-work-energy-and-power"
]
},
{
"question_id": "19N.2.SL.TZ0.3",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">The solid line in the graph shows the variation with distance <em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>x</mi></math></em> of the displacement <em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>y</mi></math></em> of a travelling wave at <em>t</em> = 0. The dotted line shows the wave 0.20ms later. The period of the wave is longer than 0.20 ms.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"296\" src=\"\" style=\"margin-right: auto; margin-left: auto; display: block;\" width=\"612\"/></span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">One end of a string is attached to an oscillator and the other is fixed to a wall. When the frequency of the oscillator is 360 Hz the standing wave shown is formed on the string.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"172\" src=\"\" style=\"margin-right: auto; margin-left: auto; display: block;\" width=\"521\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Point X (not shown) is a point on the string at a distance of 10 cm from the oscillator.</span></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate, in ms<sup>1</sup>, the speed for this wave.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate, in Hz, the frequency for this wave.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The graph also shows the displacement of two particles, P and Q, in the medium at <em>t</em> = 0. State and explain which particle has the larger magnitude of acceleration at <em>t</em> = 0.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">State the number of all other points on the string that have the same amplitude and phase as X.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The frequency of the oscillator is reduced to 120Hz. On the diagram, draw the standing wave that will be formed on the string.</span></p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>v = </em><span style=\"background-color: #ffffff;\">«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>05</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>20</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac><mo>=</mo></math>» 250 «ms<sup>1</sup>»✔</span></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>λ </em>= 0.30 «m» ✔<br/><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi></math> = «<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>250</mn><mrow><mn>0</mn><mo>.</mo><mn>30</mn></mrow></mfrac><mo>=</mo></math>» 830 «Hz» ✔</span></p>\n<p><em>NOTE: </em><em><span style=\"background-color: #ffffff;\">Allow ECF from (a)(i)<br/>Allow ECF from wrong wavelength for MP2</span></em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Q ✔<br/>acceleration is proportional to displacement «and Q has larger displacement» ✔</span></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">3 «points» ✔</span></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">first harmonic mode drawn ✔</span></p>\n<p><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Allow if only one curve drawn, either solid or dashed.</span></em></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-1-simple-harmonic-motion",
"c-2-wave-model",
"c-4-standing-waves-and-resonance"
]
},
{
"question_id": "19N.2.SL.TZ0.4",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">A proton is moving in a region of uniform magnetic field. The magnetic field is directed into the plane of the paper. The arrow shows the velocity of the proton at one instant and the dotted circle gives the path followed by the proton.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">The speed of the proton is 2.0 × 10<sup>6</sup> m s<sup>1</sup> and the magnetic field strength <em>B</em> is 0.35T.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Explain why the path of the proton is a circle.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Show that the radius of the path is about 6 cm.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate the time for <strong>one</strong> complete revolution.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Explain why the kinetic energy of the proton is constant.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">magnetic force is to the left «at the instant shown»<br/><em><strong>OR</strong></em><br/>explains a rule to determine the direction of the magnetic force ✔</span></p>\n<p><span style=\"background-color: #ffffff;\">force is perpendicular to velocity/«direction of» motion<br/><em><strong>OR</strong></em><br/>force is constant in magnitude ✔</span></p>\n<p><span style=\"background-color: #ffffff;\">force is centripetal/towards the centre ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Accept reference to acceleration instead of force</span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>q</mi><mi>v</mi><mi>B</mi><mo>=</mo><mfrac><mrow><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup></mrow><mi>R</mi></mfrac></math><span style=\"background-color: #ffffff;\">✔</span></p>\n<p><span style=\"background-color: #ffffff;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>27</mn></mrow></msup><mo>×</mo><mn>2</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow><mrow><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>35</mn></mrow></mfrac></math> <em><strong>OR</strong></em> 0.060 « m »</span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Award MP2 for full replacement or correct answer to at least 2 significant figures</span></em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant=\"normal\">π</mi><mi>R</mi></mrow><mi>v</mi></mfrac></math><span style=\"background-color: #ffffff;\">✔</span></p>\n<p><span style=\"background-color: #ffffff;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>2</mn><mi mathvariant=\"normal\">π</mi><mo>×</mo><mn>0</mn><mo>.</mo><mn>06</mn></mrow><mrow><mn>2</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac><mo>=</mo><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>7</mn></mrow></msup></math> « s » ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Award <strong>[2]</strong> for bald correct answer</span></em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em><strong>ALTERNATIVE 1</strong></em><br/>work done by force is change in kinetic energy ✔<br/>work done is zero/force perpendicular to velocity ✔ <br/></span></p>\n<p><span style=\"background-color: #ffffff;\"><em>NOTE: Award <strong>[2]</strong> for a reference to work done is zero hence E<sub>k</sub> remains constant</em><br/></span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>ALTERNATIVE 2</strong></em><br/>proton moves at constant speed ✔<br/>kinetic energy depends on speed ✔<br/></span></p>\n<p><span style=\"background-color: #ffffff;\"><em>NOTE: Accept mention of speed or velocity indistinctly in MP2</em><br/></span></p>\n<p> </p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"d-fields"
],
"subtopics": [
"a-2-forces-and-momentum",
"a-3-work-energy-and-power",
"d-3-motion-in-electromagnetic-fields"
]
},
{
"question_id": "19N.2.SL.TZ0.5",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">An electron is placed at a distance of 0.40 m from a fixed point charge of 6.0 mC.</span></p>\n<p style=\"text-align: center;\"> </p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Show that the electric field strength due to the point charge at the position of the electron is 3.4 × 10<sup>8</sup> NC<sup>1</sup>.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate the magnitude of the initial acceleration of the electron.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Describe the subsequent motion of the electron.</span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi><mo>=</mo><mfrac><mrow><mi>k</mi><mo>×</mo><mi>q</mi></mrow><msup><mi>r</mi><mn>2</mn></msup></mfrac></math> <span style=\"background-color: #ffffff;\">✔</span></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi><mo>=</mo><mfrac><mrow><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><mn>6</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>4</mn><mn>2</mn></msup></mrow></mfrac></math>  <em><strong>OR  <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>37</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mo> </mo><mo>«</mo><mi mathvariant=\"normal\">N</mi><mo></mo><msup><mi mathvariant=\"normal\">C</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> </strong></em><strong><span style=\"background-color: #ffffff;\">✔</span></strong></p>\n<p><em>NOTE: <span style=\"background-color: #ffffff;\">Ignore any negative sign.</span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo>=</mo><mi>q</mi><mo>×</mo><mi>E</mi><mo> </mo></math><em><strong> OR  <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mo>=</mo><mn>5</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo></mo><mo>«</mo><mi mathvariant=\"normal\">N</mi><mo>»</mo></math> </strong></em><strong><span style=\"background-color: #ffffff;\">✔</span></strong></p>\n<p><strong><span style=\"background-color: #ffffff;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>5</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup></mrow><mrow><mn>9</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>31</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>5</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>19</mn></msup><mo>«</mo><mo></mo><mi mathvariant=\"normal\">m</mi><mo></mo><msup><mi mathvariant=\"normal\">s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">✔</span></span></strong></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Ignore any negative sign. <br/>Award <strong>[1]</strong> for a calculation leading to </span></em><span style=\"background-color: #ffffff;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi><mo>=</mo><mo>«</mo><mo></mo><mi mathvariant=\"normal\">m</mi><mo></mo><msup><mi mathvariant=\"normal\">s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo></math></span><em><span style=\"background-color: #ffffff;\"><br/>Award <strong>[2]</strong> for bald correct answer</span></em></p>\n<p> </p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">the electron moves away from the point charge/to the right «along the line joining them» ✔<br/>decreasing acceleration ✔<br/>increasing speed ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Allow ECF from MP1 if a candidate mistakenly evaluates the force as attractive so concludes that the acceleration will increase</span></em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"d-fields"
],
"subtopics": [
"a-2-forces-and-momentum",
"d-2-electric-and-magnetic-fields"
]
},
{
"question_id": "19N.2.SL.TZ0.7",
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">A stationary nucleus of uranium-238 undergoes alpha decay to form thorium-234.</span></p>\n<p><span style=\"background-color: #ffffff;\">The following data are available.</span></p>\n<p style=\"text-align: left; padding-left: 30px;\"><span style=\"background-color: #ffffff;\">Energy released in decay                         4.27 MeV<br/>Binding energy per nucleon for helium      7.07 MeV<br/>Binding energy per nucleon for thorium    7.60 MeV</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Radioactive decay is said to be “random” and “spontaneous”. Outline what is meant by each of these terms.</span></p>\n<p><span style=\"background-color: #ffffff;\">Random: </span></p>\n<p><span style=\"background-color: #ffffff;\">Spontaneous:</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate the binding energy per nucleon for uranium-238.</span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate the ratio <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mi>kinetic</mi><mo> </mo><mi>energy</mi><mo> </mo><mi>of</mi><mo> </mo><mi>alpha</mi><mo> </mo><mi>particle</mi></mrow><mrow><mi>kinetic</mi><mo> </mo><mi>energy</mi><mo> </mo><mi>of</mi><mo> </mo><mi>thorium</mi><mo> </mo><mi>nucleus</mi></mrow></mfrac></math>.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>random:</em><br/>it cannot be predicted which nucleus will decay<br/><em><strong>OR</strong></em><br/>it cannot be predicted when a nucleus will decay ✔<br/></span></p>\n<p><span style=\"background-color: #ffffff;\"><em>NOTE: OWTTE</em><br/></span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\"><em>spontaneous:</em><br/>the decay cannot be influenced/modified in any way ✔<br/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">NOTE: </span><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">OWTTE</span><br/></span></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">234 × 7.6  <em><strong>OR </strong></em> 4 × 7.07 ✔</span></p>\n<p><em>BE</em><sub>U </sub>=<span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">« 234<span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> ×</span> 7.6<span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> + 4 × 7.07 4.27 =</span>» <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1802</mn></math> « MeV » ✔</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mi>B</mi><msub><mi>E</mi><mi mathvariant=\"normal\">U</mi></msub></mrow><mi>A</mi></mfrac><mo>=</mo><mo>«</mo><mfrac><mn>1802</mn><mn>238</mn></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>7</mn><mo>.</mo><mn>57</mn></math> <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">« MeV » ✔</span></span></span></p>\n<p><span style=\"font-size: 14px;\"><em><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\"> NOTE: Allow ECF from MP2<br/>Award <strong>[3]</strong> for bald correct answer<br/>Allow conversion to J, final answer is 1.2 <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">×</span> 10<sup>12</sup></span></span></span></em></span></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">states or applies conservation of momentum ✔</span></p>\n<p><span style=\"background-color: #ffffff;\">ratio is «<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><msub><mi>E</mi><mrow><mi mathvariant=\"normal\">k</mi><mi>α</mi></mrow></msub><msub><mi>E</mi><mi>kTh</mi></msub></mfrac><mo>=</mo><mfrac><mstyle displaystyle=\"true\"><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>α</mi></msub></mrow></mfrac></mstyle><mstyle displaystyle=\"true\"><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>Th</mi></msub></mrow></mfrac></mstyle></mfrac><mo>=</mo><mfrac><mn>234</mn><mn>4</mn></mfrac></math>» 58.5 <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">✔</span><br/></span></p>\n<p><em> NOTE: Award<strong> [2]</strong> for bald correct answer</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"a-3-work-energy-and-power",
"e-3-radioactive-decay"
]
},
{
"question_id": "20N.3.SL.TZ0.1",
"Question": "<div class=\"specification\">\n<p><span class=\"fontstyle0\">A spherical soap bubble is made of a thin film of soapy water. The bubble has an internal air pressure <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>P</mi><mi mathvariant=\"normal\">i</mi></msub></math></span><em><span class=\"fontstyle0\"> </span></em><span class=\"fontstyle0\">and is formed in air of constant pressure </span><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>P</mi><mi mathvariant=\"normal\">o</mi></msub></math><span class=\"fontstyle0\">. The theoretical prediction for the variation of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfenced><mrow><msub><mi>P</mi><mtext>i</mtext></msub><mo>-</mo><msub><mi>P</mi><mtext>o</mtext></msub></mrow></mfenced></math></span><span class=\"fontstyle0\"> is given by the equation</span></p>\n<p style=\"text-align: center;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>(</mo><msub><mi>P</mi><mi mathvariant=\"normal\">i</mi></msub><mo>-</mo><msub><mi>P</mi><mi mathvariant=\"normal\">o</mi></msub><mo>)</mo><mo>=</mo><mfrac><mrow><mn>4</mn><mi mathvariant=\"normal\">g</mi></mrow><mi>R</mi></mfrac></math></p>\n<p style=\"text-align: left;\"><span class=\"fontstyle0\">where </span><span class=\"fontstyle2\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math> </span><span class=\"fontstyle0\">is a constant for the thin film and </span><span class=\"fontstyle3\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> </span><span class=\"fontstyle0\">is the radius of the bubble.</span></p>\n<p style=\"text-align: left;\">Data for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfenced><mrow><msub><mi>P</mi><mtext>i</mtext></msub><mo>-</mo><msub><mi>P</mi><mtext>o</mtext></msub></mrow></mfenced></math><span class=\"fontstyle0\"> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math>  were collected under controlled conditions and plotted as a graph showing the variation of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfenced><mrow><msub><mi>P</mi><mtext>i</mtext></msub><mo>-</mo><msub><mi>P</mi><mtext>o</mtext></msub></mrow></mfenced></math> with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>1</mn><mi>R</mi></mfrac></math>.<br/> </span></p>\n<p style=\"text-align: left;\"><span class=\"fontstyle0\"><img height=\"662\" src=\"\" width=\"788\"/></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">Suggest whether the data are consistent with the theoretical prediction.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">Show that the value of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math></span><span class=\"fontstyle2\"> </span><span class=\"fontstyle0\">is about 0.03.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">Identify the fundamental units of </span><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">In order to find the uncertainty for </span><span class=\"fontstyle2\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math></span><span class=\"fontstyle0\">, a maximum gradient line would be drawn. On the graph, sketch the maximum gradient line for the data.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">The percentage uncertainty for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math></span><span class=\"fontstyle2\"> </span><span class=\"fontstyle0\">is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>15</mn><mo>%</mo></math>. State </span><span class=\"fontstyle2\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math></span><span class=\"fontstyle0\">, with its absolute uncertainty.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">The expected value of </span><span class=\"fontstyle2\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math> </span><span class=\"fontstyle0\">is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>027</mn></math>. Comment on your result</span>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(v).</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">«theory suggests» <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>P</mi><mi mathvariant=\"normal\">i</mi></msub><mo>-</mo><msub><mi>P</mi><mi mathvariant=\"normal\">o</mi></msub></math> </span><span class=\"fontstyle0\">is proportional to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>1</mn><mi>R</mi></mfrac></math> </span><span class=\"fontstyle3\">✓</span></p>\n<p><span class=\"fontstyle3\"><br/></span><span class=\"fontstyle0\">graph/line of best fit is straight/linear «so yes»<br/></span><span class=\"fontstyle4\"><em><strong>OR</strong></em><br/></span><span class=\"fontstyle0\">graph/line of best fit passes through the origin «so yes» </span><span class=\"fontstyle3\">✓</span></p>\n<p> </p>\n<p><em><span class=\"fontstyle2\">MP1: Accept linear<br/></span></em></p>\n<p><em><span class=\"fontstyle2\">MP2 do not award if there is any contradiction<br/>eg: graph not proportional, does not pass through origin.</span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">gradient <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo></math> «<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn><mi>γ</mi></math>» <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>0</mn><mo>.</mo><mn>10</mn></math><br/></span><span class=\"fontstyle2\"><em><strong>OR</strong></em><br/></span><span class=\"fontstyle0\">use of equation with coordinates of a point </span><span class=\"fontstyle3\">✓</span></p>\n<p><span class=\"fontstyle3\"><br/></span><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>025</mn></math> <span class=\"fontstyle3\">✓</span></p>\n<p> </p>\n<p><em><span class=\"fontstyle5\">MP1 allow gradients in range <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>098</mn></math> to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>102</mn></math><br/></span></em></p>\n<p><em><span class=\"fontstyle6\">MP2 allow a range <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>024</mn></math> to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>026</mn></math> for </span><span class=\"fontstyle4\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math></span></em></p>\n<p> </p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>kg</mi><mo></mo><msup><mi mathvariant=\"normal\">s</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> <span class=\"fontstyle2\">✓</span></p>\n<p> </p>\n<p><em><span class=\"fontstyle3\">Accept <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mi>kg</mi><msup><mi mathvariant=\"normal\">s</mi><mn>2</mn></msup></mfrac></math></span></em></p>\n<p><span class=\"fontstyle3\"> </span></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">straight line, gradient <strong>g</strong></span><span class=\"fontstyle2\"><strong>reater</strong> </span><span class=\"fontstyle0\">than line of best fit, and within the error bars </span><span class=\"fontstyle3\">✓</span></p>\n<p><span class=\"fontstyle3\"><img src=\"\"/></span></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>15</mn><mo>%</mo></math> of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>025</mn></math>» = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>00375</mn></math><br/></span><span class=\"fontstyle2\"><em><strong>OR</strong></em><br/></span><span class=\"fontstyle0\">«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>15</mn><mo>%</mo></math> of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>030</mn></math>» = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>0045</mn></math> </span><span class=\"fontstyle3\">✓<br/></span></p>\n<p><span class=\"fontstyle0\">rounds uncertainty to 1sf<br/><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>±</mo><mn>0</mn><mo>.</mo><mn>004</mn></math><br/></span><span class=\"fontstyle2\"><em><strong>OR</strong></em><br/></span><span class=\"fontstyle0\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>±</mo><mn>0</mn><mo>.</mo><mn>005</mn></math> </span><span class=\"fontstyle3\">✓</span></p>\n<p> </p>\n<p><em><span class=\"fontstyle4\">Allow ECF from (b)(i)<br/>Award </span><strong><span class=\"fontstyle2\">[2] </span></strong><span class=\"fontstyle4\">marks for a bald correct answer</span></em></p>\n<div class=\"question_part_label\">b(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">Experimental value matches this/correct, as expected value within the range </span><span class=\"fontstyle2\">✓<br/></span><span class=\"fontstyle3\"><em><strong>OR</strong></em><br/></span><span class=\"fontstyle0\">experimental value does not match/incorrect, as it is not within range </span><span class=\"fontstyle2\">✓</span></p>\n<div class=\"question_part_label\">b(v).</div>\n</div>",
"Examiners report": "",
"topics": [
"tools"
],
"subtopics": [
"tool-3-mathematics"
]
},
{
"question_id": "20N.3.SL.TZ0.2",
"Question": "<div class=\"specification\">\n<p>A student studies the relationship between the centripetal force applied to an object undergoing circular motion and its period <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>.</p>\n<p>The object (mass <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>m</mi></math>) is attached by a light inextensible string, through a tube, to a weight <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math> which hangs vertically. The string is free to move through the tube. A student swings the mass in a horizontal, circular path, adjusting the period <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> of the motion until the radius <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> is constant. The radius of the circle and the mass of the object are measured and remain constant for the entire experiment.</p>\n<p><img src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\"/></p>\n<p style=\"text-align: center;\">© International Baccalaureate Organization 2020.</p>\n<p>The student collects the measurements of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> five times, for weight <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math>. The weight is then doubled (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi>W</mi></math>) and the data collection repeated. Then it is repeated with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>3</mn><mi>W</mi></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn><mi>W</mi></math>. The results are expected to support the relationship</p>\n<p style=\"text-align: center;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant=\"normal\">π</mi><mn>2</mn></msup><mi>m</mi><mi>r</mi></mrow><msup><mi>T</mi><mn>2</mn></msup></mfrac><mo>.</mo></math></p>\n</div><div class=\"specification\">\n<p>In reality, there is friction in the system, so in this case <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math> is less than the total centripetal force in the system. A suitable graph is plotted to determine the value of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>m</mi><mi>r</mi></math> experimentally. The value of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>m</mi><mi>r</mi></math> was also calculated directly from the measured values of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>m</mi></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math>.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State why the experiment is repeated with different values of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Predict from the equation whether the value of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>m</mi><mi>r</mi></math> found experimentally will be larger, the same or smaller than the value of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>m</mi><mi>r</mi></math> calculated directly.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The measurements of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> were collected five times. Explain how repeated measurements of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> reduced the random error in the final experimental value of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>m</mi><mi>r</mi></math>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why repeated measurements of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> would not reduce any systematic error in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">In order to draw a graph « of </span><span class=\"fontstyle2\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math> </span><span class=\"fontstyle0\">versus <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>1</mn><msup><mi mathvariant=\"normal\">T</mi><mn>2</mn></msup></mfrac></math> »<br/></span><span class=\"fontstyle3\"><em><strong>OR</strong></em><br/></span></p>\n<p><span class=\"fontstyle0\">to confirm proportionality between «<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math></span><span class=\"fontstyle2\"> </span><span class=\"fontstyle0\">and </span><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>T</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> <span class=\"fontstyle2\">»<br/></span></p>\n<p><span class=\"fontstyle3\"><em><strong>OR</strong></em><br/></span></p>\n<p><span class=\"fontstyle0\">to confirm relationship between «<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math></span><span class=\"fontstyle2\"> </span><span class=\"fontstyle0\">and </span><span class=\"fontstyle2\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> »<br/></span></p>\n<p><em><span class=\"fontstyle3\"><strong>OR</strong></span></em><span class=\"fontstyle3\"><br/></span></p>\n<p><span class=\"fontstyle0\">because </span><span class=\"fontstyle2\">W </span><span class=\"fontstyle0\">is the independent variable in the experiment </span><span class=\"fontstyle4\">✓</span></p>\n<p> </p>\n<p><em><span class=\"fontstyle2\">OWTTE</span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\"><strong>ALTERNATIVE 1</strong></span></p>\n<p><span class=\"fontstyle2\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi><mo>+</mo><mpadded lspace=\"-1px\"><mi>friction</mi></mpadded><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant=\"normal\">π</mi><mn>2</mn></msup><mi>m</mi><mi>r</mi></mrow><msup><mi>T</mi><mn>2</mn></msup></mfrac></math></span></p>\n<p><span class=\"fontstyle3\"><em><strong>OR</strong></em></span></p>\n<p><span class=\"fontstyle2\">centripetal force is larger «than <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math>» / <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math> is smaller «than centripetal» </span><span class=\"fontstyle4\">✓</span></p>\n<p><span class=\"fontstyle2\">«so» experimental </span><span class=\"fontstyle5\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>m</mi><mi>r</mi></math> </span><span class=\"fontstyle2\">is smaller «than calculated value» </span><span class=\"fontstyle4\">✓</span></p>\n<p> </p>\n<p><strong><span class=\"fontstyle0\">ALTERNATIVE 2 </span></strong><span class=\"fontstyle2\"><strong>(refers to graph)</strong><br/></span></p>\n<p><span class=\"fontstyle2\">reference to «friction force is» a systematic error «and does not affect gradient» </span><span class=\"fontstyle4\">✓</span></p>\n<p><span class=\"fontstyle2\">«so» </span><span class=\"fontstyle5\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>m</mi><mi>r</mi></math> </span><span class=\"fontstyle2\">is the same </span><span class=\"fontstyle4\">✓</span></p>\n<p> </p>\n<p><em><span class=\"fontstyle5\">MP2 awarded only with correct justification.<br/>Candidates can gain zero, MP1 alone or full marks.</span></em></p>\n<p><em><span class=\"fontstyle5\">OWTTE</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">mention of mean/average value «of </span><span class=\"fontstyle2\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math></span><span class=\"fontstyle0\">» </span><span class=\"fontstyle3\">✓</span></p>\n<p><span class=\"fontstyle0\">this reduces uncertainty in </span><span class=\"fontstyle2\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> </span><span class=\"fontstyle0\">/ result<br/></span><span class=\"fontstyle4\"><em><strong>OR</strong></em><br/></span><span class=\"fontstyle0\">more accurate/precise </span><span class=\"fontstyle3\">✓</span></p>\n<p> </p>\n<p><em><span class=\"fontstyle2\">Reference to “random errors average out” scores MP1</span></em></p>\n<p><em><span class=\"fontstyle2\">Accept “closer to true value”, “more reliable value” OWTTE for MP2</span></em></p>\n<p> </p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">systematic errors «usually» constant/always present/ not influenced by repetition </span><span class=\"fontstyle2\">✓</span></p>\n<p> </p>\n<p><em><span class=\"fontstyle3\">OWTTE</span></em></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates scored. Different wording was used to express the aim of confirming the relationship.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most successful candidates chose to consider a single point then concluding that the calculated <em>mr</em> would be smaller than the real value as <em>W</em> &lt; centripetal force, or even went into analysing the dependence of the frictional force with <em>W</em>. Many were able to deduce this. Some candidates thought that a graph would still have the same gradient (if friction was constant) and mentioned systematic error, so <em>mr</em> was not changed which was also accepted.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates stated that the mean of 5 values of <em>T</em> was used to obtain an answer closer to the true value if there were no systematic errors. Some just repeated the question.</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Usually very well answered acknowledging that systematic errors are constant and present throughout all  measurements.</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
"topics": [
"inquiry"
],
"subtopics": [
"i-1-2-designing",
"i-2-3-interpreting-results",
"inquiry-1-exploring-and-designing",
"inquiry-2-collecting-and-processing-data"
]
},
{
"question_id": "20N.2.HL.TZ0.10",
"Question": "<div class=\"specification\">\n<p>The de Broglie wavelength <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi></math> of a particle accelerated close to the speed of light is approximately</p>\n<p style=\"text-align: center;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi><mo>≈</mo><mfrac><mrow><mi>h</mi><mi>c</mi></mrow><mi>E</mi></mfrac></math></p>\n<p>where <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math> is the energy of the particle.<br/>A beam of electrons of energy <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mo></mo><mi>eV</mi></math> is produced in an accelerator.</p>\n</div><div class=\"specification\">\n<p>The electron beam is used to study the nuclear radius of carbon-12. The beam is directed from the left at a thin sample of carbon-12. A detector is placed at an angle <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>θ</mi></math> relative to the direction of the incident beam.</p>\n<p><img height=\"137\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"378\"/></p>\n<p>The graph shows the variation of the intensity of electrons with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>θ</mi></math>. There is a minimum of intensity for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>θ</mi><mo>=</mo><msub><mi>θ</mi><mn>0</mn></msub></math>.</p>\n<p><img height=\"235\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"365\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the wavelength of an electron in the beam is about <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>15</mn></mrow></msup><mo></mo><mi mathvariant=\"normal\">m</mi></math>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Discuss how the results of the experiment provide evidence for matter waves.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The accepted value of the diameter of the carbon-12 nucleus is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn><mo>.</mo><mn>94</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>15</mn></mrow></msup><mo></mo><mi mathvariant=\"normal\">m</mi></math>. Estimate the angle <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>θ</mi><mn>0</mn></msub></math> at which the minimum of the intensity is formed.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why electrons with energy of approximately <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>7</mn></msup><mo></mo><mi>eV</mi></math> would be unsuitable for the investigation of nuclear radii.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Experiments with many nuclides suggest that the radius of a nucleus is proportional to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>A</mi><mstyle displaystyle=\"false\"><mfrac><mn>1</mn><mn>3</mn></mfrac></mstyle></msup></math>, where <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> is the number of nucleons in the nucleus. Show that the density of a nucleus remains approximately the same for all nuclei.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>63</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>34</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow><mrow><mn>1</mn><mo>.</mo><mn>60</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>×</mo><mn>4</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow></mfrac></math> <em><strong>OR <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>2</mn><mo>.</mo><mn>96</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>15</mn></mrow></msup><mo>«</mo><mi mathvariant=\"normal\">m</mi><mo>»</mo></math></strong></em> ✓ </span></p>\n<p><em><span class=\"fontstyle2\"><br/>Answer to at least <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn mathvariant=\"italic\">2</mn></math> s.f. (i.e. 3.0)</span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">«</span><span class=\"fontstyle1\">the shape of the graph suggests that</span><span class=\"fontstyle0\">» </span><span class=\"fontstyle1\">electrons undergo diffraction </span><span class=\"fontstyle0\">«</span><span class=\"fontstyle1\">with carbon nuclei</span><span class=\"fontstyle0\">» </span><span class=\"fontstyle3\">✓</span></p>\n<p><span class=\"fontstyle1\">only waves diffract </span><span class=\"fontstyle3\">✓</span></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>sin</mi><msub><mi>θ</mi><mn>0</mn></msub><mo>=</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>96</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>15</mn></mrow></msup></mrow><mrow><mn>4</mn><mo>.</mo><mn>94</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>15</mn></mrow></msup></mrow></mfrac><mo>«</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>599</mn><mo>»</mo></math> </span><span class=\"fontstyle3\">✓</span></p>\n<p><span class=\"fontstyle0\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>37</mn><mo></mo><mo>«</mo><mpadded lspace=\"-1px\"><mi>degrees</mi></mpadded><mo>»</mo></math> <em><strong>OR </strong></em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>64</mn><mo>/</mo><mn>0</mn><mo>.</mo><mn>65</mn><mo></mo><mo>«</mo><mi>rad</mi><mo>»</mo></math> </span><span class=\"fontstyle3\">✓</span></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">the de Broglie wavelength of electrons is </span><span class=\"fontstyle2\">«</span><span class=\"fontstyle0\">much</span><span class=\"fontstyle2\">» </span><span class=\"fontstyle0\">longer than the size of a nucleus </span><span class=\"fontstyle3\">✓</span></p>\n<p><span class=\"fontstyle3\"><br/></span><span class=\"fontstyle0\">hence electrons would not undergo diffraction<br/></span><span class=\"fontstyle4\"><em><strong>OR</strong></em><br/></span><span class=\"fontstyle0\">no diffraction pattern would be observed </span><span class=\"fontstyle3\">✓</span></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">volume of a nucleus proportional to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mfenced><msup><mi>A</mi><mstyle displaystyle=\"false\"><mfrac><mn>1</mn><mn>3</mn></mfrac></mstyle></msup></mfenced><mn>3</mn></msup><mo>=</mo><mi>A</mi></math> </span><em><strong><span class=\"fontstyle2\">AND </span></strong></em><span class=\"fontstyle0\">mass proportional to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> </span><span class=\"fontstyle3\">✓</span></p>\n<p><span class=\"fontstyle0\">the ratio <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mi>mass</mi><mpadded lspace=\"+1px\"><mi>volume</mi></mpadded></mfrac></math> independent of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> </span><span class=\"fontstyle4\">«</span><span class=\"fontstyle0\">hence density the same for all nuclei</span><span class=\"fontstyle4\">» </span><span class=\"fontstyle3\">✓</span></p>\n<p> </p>\n<p><em><span class=\"fontstyle5\">Both needed for MP1</span></em></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>An easy calculation with only one energy conversion to consider and a 'show' answer to help. </p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was challenging for candidates many of whom seemed to have little idea of the experiment. Many answers discussed deflection, with the idea that forces between the electron and the nucleus causing it to deflect at a particular angle. This was often combined with the word interference to suggest evidence of matter waves. A number of answers described a demonstration the candidates remembered seeing so answers talked about fuzzy green rings.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was answered reasonably well with only the odd omission of the sine in the equation.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Candidates generally scored poorly on this question. There was confusion between this experiment and another diffraction one, so often the new wavelength was compared to the spacing between atoms. Also, in line with answers to b(i) there were suggestions that the electrons did not have sufficient energy to reach the nucleus or would be deflected by too great an angle to be seen.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question proved challenging and it wasn't common to find answers that scored both marks. Of those that had the right approach some missed out on both marks by describing A as the mass of the nucleus rather than proportional to the mass of the nucleus.</p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-1-structure-of-the-atom",
"e-2-quantum-physics"
]
},
{
"question_id": "20N.2.HL.TZ0.6",
"Question": "<div class=\"specification\">\n<p>One possible fission reaction of uranium-235 (U-235) is</p>\n<p style=\"text-align: center;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi mathvariant=\"normal\">U</mi><mprescripts></mprescripts><mn>92</mn><mn>235</mn></mmultiscripts><mo>+</mo><mmultiscripts><mi mathvariant=\"normal\">n</mi><mprescripts></mprescripts><mn>0</mn><mn>1</mn></mmultiscripts><mo>→</mo><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><mn>54</mn><mn>140</mn></mmultiscripts><mo>+</mo><mmultiscripts><mi>Sr</mi><mprescripts></mprescripts><mn>38</mn><mn>94</mn></mmultiscripts><mo>+</mo><mn>2</mn><mmultiscripts><mi mathvariant=\"normal\">n</mi><mprescripts></mprescripts><mn>0</mn><mn>1</mn></mmultiscripts></math></p>\n<p style=\"text-align: left;\">Mass of one atom of U-235 <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>235</mn><mo></mo><mi mathvariant=\"normal\">u</mi></math><br/>Binding energy per nucleon for U-235 <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>7</mn><mo>.</mo><mn>59</mn><mo></mo><mi>MeV</mi></math><br/>Binding energy per nucleon for Xe-140 <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>8</mn><mo>.</mo><mn>29</mn><mo></mo><mi>MeV</mi></math><br/>Binding energy per nucleon for Sr-94 <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>8</mn><mo>.</mo><mn>59</mn><mo></mo><mi>MeV</mi></math></p>\n</div><div class=\"specification\">\n<p>A nuclear power station uses U-235 as fuel. Assume that every fission reaction of U-235 gives rise to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>180</mn><mo></mo><mi>MeV</mi></math> of energy.</p>\n</div><div class=\"specification\">\n<p>A sample of waste produced by the reactor contains <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>.</mo><mn>0</mn><mo></mo><mi>kg</mi></math> of strontium-94 (Sr-94). Sr-94 is radioactive and undergoes beta-minus (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi mathvariant=\"normal\">β</mi><mo>-</mo></msup></math>) decay into a daughter nuclide X. The reaction for this decay is</p>\n<p style=\"text-align: center;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Sr</mi><mprescripts></mprescripts><mn>38</mn><mn>94</mn></mmultiscripts><mo>→</mo><mi mathvariant=\"normal\">X</mi><mo>+</mo><msub><mover><mi mathvariant=\"normal\">v</mi><mo>¯</mo></mover><mi>e</mi></msub><mo>+</mo><mi>e</mi></math>.</p>\n<p> </p>\n</div><div class=\"specification\">\n<p>The graph shows the variation with time of the mass of Sr-94 remaining in the sample.</p>\n<p><img height=\"367\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"576\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State what is meant by binding energy of a nucleus.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why quantities such as atomic mass and nuclear binding energy are often expressed in non-SI units.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the energy released in the reaction is about <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>180</mn><mo></mo><mi>MeV</mi></math>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Estimate, in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">J</mi><mo></mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>, the specific energy of U-235.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The power station has a useful power output of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>.</mo><mn>2</mn><mo></mo><mi>GW</mi></math> and an efficiency of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>36</mn><mo></mo><mo>%</mo></math>. Determine the mass of U-235 that undergoes fission in one day.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The specific energy of fossil fuel is typically <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>30</mn><mo></mo><mtext>MJ</mtext><mo></mo><msup><mtext>kg</mtext><mrow><mo></mo><mn>1</mn></mrow></msup></math>. Suggest, with reference to your answer to (b)(i), <strong>one</strong> advantage of U-235 compared with fossil fuels in a power station.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Write down the proton number of nuclide X.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the half-life of Sr-94.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the mass of Sr-94 remaining in the sample after <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>10</mn></math> minutes.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(iii).</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">energy required to </span><span class=\"fontstyle2\">«</span><span class=\"fontstyle0\">completely</span><span class=\"fontstyle2\">» </span><span class=\"fontstyle0\">separate the nucleons<br/></span><span class=\"fontstyle3\"><em><strong>OR</strong></em><br/></span><span class=\"fontstyle0\">energy released when a nucleus is formed from its constituent nucleons </span><span class=\"fontstyle4\">✓</span></p>\n<p><em><span class=\"fontstyle5\"><br/>Allow protons </span><span class=\"fontstyle3\"><strong>AND</strong> </span><span class=\"fontstyle5\">neutrons.</span></em></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">the values </span><span class=\"fontstyle2\">«</span><span class=\"fontstyle0\">in SI units</span><span class=\"fontstyle2\">» </span><span class=\"fontstyle0\">would be very small </span><span class=\"fontstyle3\">✓</span></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle3\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>140</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>29</mn><mo>+</mo><mn>94</mn><mo>×</mo><mn>8</mn><mo>.</mo><mn>59</mn><mo>-</mo><mn>235</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>59</mn></math> <em><strong>OR </strong></em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>184</mn><mo></mo><mo>«</mo><mi>MeV</mi><mo>»</mo></math> ✓</span></p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle3\">see <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mi>energy</mi><mo>=</mo><mo>»</mo><mo></mo><mn>180</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>60</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup></math> <em><strong>AND</strong></em> <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mi>mass</mi><mo>=</mo><mo>»</mo><mo></mo><mn>235</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>66</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>27</mn></mrow></msup></math> ✓</span></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>7</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>13</mn></msup><mo></mo><mo>«</mo><mi mathvariant=\"normal\">J</mi><mo></mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">energy produced in one day<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo></mo><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>36</mn></mrow></mfrac><mo>=</mo><mn>2</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>14</mn></msup><mo></mo><mo>«</mo><mi mathvariant=\"normal\">J</mi><mo>»</mo></math> ✓</span></p>\n<p><span class=\"fontstyle0\">mass<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo></mo><mo>=</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>14</mn></msup></mrow><mrow><mn>7</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>13</mn></msup></mrow></mfrac><mo>=</mo><mn>3</mn><mo>.</mo><mn>9</mn><mo></mo><mo>«</mo><mi>kg</mi><mo>»</mo></math> ✓</span></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«specific energy of uranium is much greater than that of coal, hence» more energy can be produced from the same mass of fuel / per <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>kg</mtext></math><br/><em><strong>OR</strong></em><br/>less fuel can be used to create the same amount of energy ✓</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>39</mn></math> </span><span class=\"fontstyle2\">✓</span></p>\n<p><em><span class=\"fontstyle3\"><br/>Do not allow <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi mathvariant=\"normal\">X</mi><mprescripts></mprescripts><mn>39</mn><mn>94</mn></mmultiscripts></math> unless the proton number is indicated.</span></em></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>75</mn><mo></mo><mo>«</mo><mi mathvariant=\"normal\">s</mi><mo>»</mo></math> <span class=\"fontstyle3\">✓</span></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong>ALTERNATIVE 1</strong></em></p>\n<p><span class=\"fontstyle0\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>10</mn><mo></mo><mi>min</mi></math><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>8</mn><mo></mo><msub><mi>t</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></math> ✓</span></p>\n<p><span class=\"fontstyle0\">mass remaining<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mn>8</mn></msup><mo>=</mo><mn>3</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>«</mo><mi>kg</mi><mo>»</mo></math> ✓</span></p>\n<p> </p>\n<p><em><strong>ALTERNATIVE 2</strong></em></p>\n<p><span class=\"fontstyle0\">decay constant<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo></mo><mo>=</mo><mo>«</mo><mfrac><mrow><mi>ln</mi><mn>2</mn></mrow><mn>75</mn></mfrac><mo>=</mo><mo>»</mo><mn>9</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo></mo><mo>«</mo><msup><mi mathvariant=\"normal\">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</span></p>\n<p><span class=\"fontstyle0\">mass remaining<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo></mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mi>e</mi><mrow><mo>-</mo><mn>9</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>600</mn></mrow></msup><mo>=</mo><mn>3</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo></mo><mo>«</mo><mi>kg</mi><mo>»</mo></math> ✓</span></p>\n<div class=\"question_part_label\">c(iii).</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Generally, well answered but candidates did miss the mark by discussing the constituents of a nucleus rather than the nucleons, or protons and neutrons. There seemed to be fewer comments than usual about 'the energy required to bind the nucleus together'. </p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Well answered with some candidates describing the values as too large or small.</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Well answered.</p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This caused problems for some with mass often correctly calculated but energy causing more difficulty with the eV conversion either being inaccurate or omitted. Candidates were allowed error carried forward for the second mark as long as they were dividing an energy by a mass.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates had the right idea, but common problems included forgetting the efficiency or not converting to days.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>HL only. This was well answered.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates answered this correctly.</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates answered this correctly.</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was answered well with most candidates (even at HL) going down the number of half-lives route rather than the exponential calculation route.</p>\n<div class=\"question_part_label\">c(iii).</div>\n</div>",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-4-rigid-body-mechanics"
]
},
{
"question_id": "20N.2.HL.TZ0.7",
"Question": "<div class=\"specification\">\n<p>A vertical solid cylinder of uniform cross-sectional area <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> floats in water. The cylinder is partially submerged. When the cylinder floats at rest, a mark is aligned with the water surface. The cylinder is pushed vertically downwards so that the mark is a distance <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>x</mi></math> below the water surface.</p>\n<p style=\"text-align: center;\"><img height=\"210\" src=\"\" width=\"509\"/></p>\n<p style=\"text-align: left;\">At time <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>t</mi><mo>=</mo><mn>0</mn></math> the cylinder is released. The resultant vertical force <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math> on the cylinder is related to the displacement <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>x</mi></math> of the mark by</p>\n<p style=\"text-align: center;\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo>=</mo><mo>-</mo><mi>ρ</mi><mi>A</mi><mi>g</mi><mi>x</mi></math></p>\n<p style=\"text-align: left;\">where <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ρ</mi></math> is the density of water.</p>\n</div><div class=\"specification\">\n<p>The cylinder was initially pushed down a distance <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>250</mn><mo></mo><mi mathvariant=\"normal\">m</mi></math>.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why the cylinder performs simple harmonic motion when released.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The mass of the cylinder is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>118</mn><mo></mo><mi>kg</mi></math> and the cross-sectional area of the cylinder is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mo>.</mo><mn>29</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo></mo><msup><mi mathvariant=\"normal\">m</mi><mn>2</mn></msup></math>. The density of water is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>.</mo><mn>03</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo></mo><mi>kg</mi><mo></mo><msup><mi mathvariant=\"normal\">m</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></math>. Show that the angular frequency of oscillation of the cylinder is about <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn><mo>.</mo><mn>4</mn><mo></mo><mo></mo><mi>rad</mi><mo></mo><msup><mi mathvariant=\"normal\">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the maximum kinetic energy <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi>kmax</mi></msub></math> of the cylinder.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw, on the axes, the graph to show how the kinetic energy of the cylinder varies with time during <strong>one</strong> period of oscillation <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>.</p>\n<p><img height=\"371\" src=\"\" style=\"display: block;margin-left:auto;margin-right:auto;\" width=\"610\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">the </span><span class=\"fontstyle2\">«</span><span class=\"fontstyle0\">restoring</span><span class=\"fontstyle2\">» </span><span class=\"fontstyle0\">force/acceleration is proportional to displacement </span><span class=\"fontstyle3\">✓ </span></p>\n<p><em><span class=\"fontstyle4\"><br/>Allow use of symbols i.e. </span><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo>∝</mo><mo>-</mo><mi>x</mi></math><span class=\"fontstyle4\"> or </span><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi><mo>∝</mo><mo>-</mo><mi>x</mi></math></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">Evidence of equating <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>m</mi><msup><mi>ω</mi><mn>2</mn></msup><mi>x</mi><mo>=</mo><mi>ρ</mi><mi>A</mi><mi>g</mi><mi>x</mi></math> «to obtain <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mi>ρ</mi><mi>A</mi><mi>g</mi></mrow><mi>m</mi></mfrac><mo>=</mo><msup><mi>ω</mi><mn>2</mn></msup></math>» ✓</span></p>\n<p> </p>\n<p><span class=\"fontstyle0\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ω</mi><mo>=</mo><msqrt><mfrac><mrow><mn>1</mn><mo>.</mo><mn>03</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo>×</mo><mn>2</mn><mo>.</mo><mn>29</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></mrow><mn>118</mn></mfrac></msqrt></math> <em><strong>OR </strong></em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn><mo>.</mo><mn>43</mn><mo>«</mo><mi>rad</mi><mo></mo><msup><mi mathvariant=\"normal\">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</span></p>\n<p> </p>\n<p><em><span class=\"fontstyle0\">Answer to at least <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn mathvariant=\"italic\">3</mn></math> s.f.</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi mathvariant=\"normal\">K</mi></msub></math> </span><span class=\"fontstyle1\">is a maximum when <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>x</mi><mo>=</mo><mn>0</mn></math> hence</span><span class=\"fontstyle0\">» <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mrow><mi mathvariant=\"normal\">K</mi><mo>,</mo><mo> </mo><mi>max</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>118</mn><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>4</mn><mn>2</mn></msup><mfenced><mrow><mn>0</mn><mo>.</mo><msup><mn>250</mn><mn>2</mn></msup><mo>-</mo><msup><mn>0</mn><mn>2</mn></msup></mrow></mfenced></math> </span><span class=\"fontstyle3\">✓</span></p>\n<p><br/><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>71</mn><mo>.</mo><mn>4</mn><mo> </mo><mo>«</mo><mi mathvariant=\"normal\">J</mi><mo>»</mo></math> <span class=\"fontstyle3\">✓</span></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">energy never negative </span><span class=\"fontstyle2\">✓</span></p>\n<p><span class=\"fontstyle0\">correct shape with two maxima </span><span class=\"fontstyle2\">✓</span></p>\n<p><img src=\"\"/></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was well answered with candidates gaining credit for answers in words or symbols.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Again, very well answered.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>A straightforward calculation with the most common mistake being missing the squared on the omega.</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates answered with a graph that was only positive so scored the first mark.</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"c-wave-behaviour"
],
"subtopics": [
"a-4-rigid-body-mechanics",
"c-1-simple-harmonic-motion"
]
},
{
"question_id": "20N.2.HL.TZ0.8",
"Question": "<div class=\"specification\">\n<p>The diagram shows the electric field lines of a positively charged conducting sphere of radius <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> and charge <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi></math>.</p>\n<p><img height=\"213\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"352\"/></p>\n<p>Points A and B are located on the same field line.</p>\n</div><div class=\"specification\">\n<p>A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>16</mn></mrow></msup><mo></mo><mi mathvariant=\"normal\">J</mi></math>. Point A is at a distance of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>5</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo></mo><mi mathvariant=\"normal\">m</mi></math> from the centre of the sphere. Point B is at a distance of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo></mo><mi mathvariant=\"normal\">m</mi></math> from the centre of the sphere.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why the electric potential decreases from A to B.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw, on the axes, the variation of electric potential <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math> with distance <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> from the centre of the sphere.</p>\n<p><img height=\"236\" src=\"\" style=\"display: block;margin-left:auto;margin-right:auto;\" width=\"336\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the electric potential difference between points A and B.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the charge <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi></math> of the sphere.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\"><em><strong>ALTERNATIVE 1</strong></em><br/></span><span class=\"fontstyle2\">work done on moving a positive test charge in any outward direction is negative </span><span class=\"fontstyle3\">✓<br/></span><span class=\"fontstyle2\">potential difference is proportional to this work </span><span class=\"fontstyle4\">«</span><span class=\"fontstyle2\">so </span><span class=\"fontstyle5\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math> </span><span class=\"fontstyle2\">decreases from A to B</span><span class=\"fontstyle4\">» </span><span class=\"fontstyle3\">✓</span></p>\n<p> </p>\n<p><span class=\"fontstyle0\"><em><strong>ALTERNATIVE 2</strong></em><br/></span><span class=\"fontstyle2\">potential gradient is directed opposite to the field so inwards </span><span class=\"fontstyle3\">✓<br/></span><span class=\"fontstyle2\">the gradient indicates the direction of increase of </span><span class=\"fontstyle4\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math> </span><span class=\"fontstyle5\">«</span><span class=\"fontstyle2\">hence </span><span class=\"fontstyle4\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math> </span><span class=\"fontstyle2\">increases towards the centre/decreases from A to B</span><span class=\"fontstyle5\">» </span><span class=\"fontstyle3\">✓</span></p>\n<p> </p>\n<p><span class=\"fontstyle0\"><em><strong>ALTERNATIVE 3</strong></em><br/></span><span class=\"fontstyle2\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi><mo>=</mo><mfrac><mrow><mi>k</mi><mi>Q</mi></mrow><mi>R</mi></mfrac></math> </span><span class=\"fontstyle3\">so as </span><span class=\"fontstyle2\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> </span><span class=\"fontstyle3\">increases </span><span class=\"fontstyle2\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math> </span><span class=\"fontstyle3\">decreases </span><span class=\"fontstyle4\">✓<br/></span><span class=\"fontstyle2\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math> </span><span class=\"fontstyle3\">is positive as </span><span class=\"fontstyle2\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi></math> </span><span class=\"fontstyle3\">is positive </span><span class=\"fontstyle4\">✓</span></p>\n<p><span class=\"fontstyle2\"> </span></p>\n<p><span class=\"fontstyle0\"><em><strong>ALTERNATIVE 4</strong></em><br/></span><span class=\"fontstyle2\">the work done per unit charge in bringing a positive charge from infinity </span><span class=\"fontstyle3\">✓<br/></span><span class=\"fontstyle2\">to point B is less than point A </span><span class=\"fontstyle3\">✓</span></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">curve decreasing asymptotically for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi><mo>&gt;</mo><mi>R</mi></math> </span><span class=\"fontstyle2\">✓</span></p>\n<p><span class=\"fontstyle0\">non <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>-</mo></math> zero constant between <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn></math> and </span><span class=\"fontstyle3\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> </span><span class=\"fontstyle2\">✓</span></p>\n<p><img src=\"\"/></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mfrac><mi>W</mi><mi>q</mi></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>16</mn></mrow></msup></mrow><mrow><mn>1</mn><mo>.</mo><mn>60</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo> </mo><mo>«</mo><mi mathvariant=\"normal\">V</mi><mo>»</mo></math> <span class=\"fontstyle0\">✓</span></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><mi>Q</mi><mo>×</mo><mfenced><mrow><mfrac><mn>1</mn><mrow><mn>5</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></mrow></mfenced><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></math> ✓</span></p>\n<p><span class=\"fontstyle0\"><br/><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>8</mn></mrow></msup><mo></mo><mo>«</mo><mi mathvariant=\"normal\">C</mi><mo>»</mo></math> ✓</span></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">to highlight similarities between </span><span class=\"fontstyle2\">«</span><span class=\"fontstyle0\">different</span><span class=\"fontstyle2\">» </span><span class=\"fontstyle0\">fields </span><span class=\"fontstyle3\">✓</span></p>\n<div class=\"question_part_label\">d.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>The majority who answered in terms of potential gained one mark. Often the answers were in terms of work done rather than work done per unit charge or missed the fact that the potential is positive.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was well answered.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most didn't realise that the key to the answer is the definition of potential or potential difference and tried to answer using one of the formulae in the data booklet, but incorrectly.</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Even though many were able to choose the appropriate formula from the data booklet they were often hampered in their use of the formula by incorrect techniques when using fractions.</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was generally well answered with only a small number of answers suggesting greater international cooperation.</p>\n<div class=\"question_part_label\">d.</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"d-fields",
"nature-of-science"
],
"subtopics": [
"a-4-rigid-body-mechanics",
"d-2-electric-and-magnetic-fields"
]
},
{
"question_id": "20N.2.HL.TZ0.9",
"Question": "<div class=\"specification\">\n<p>The diagram shows an alternating current generator with a rectangular coil rotating at a constant frequency in a uniform magnetic field.</p>\n<p><img height=\"199\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"506\"/></p>\n</div><div class=\"specification\">\n<p>The graph shows how the generator output voltage <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math> varies with time <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>t</mi></math>.</p>\n<p><img height=\"382\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"520\"/></p>\n<p>Electrical power produced by the generator is delivered to a consumer some distance away.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain, by reference to Faradays law of induction, how an electromotive force (emf) is induced in the coil.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The average power output of the generator is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>8</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo></mo><mi mathvariant=\"normal\">W</mi></math>. Calculate the root mean square (rms) value of the generator output current.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The voltage output from the generator is stepped up before transmission to the consumer. Estimate the factor by which voltage has to be stepped up in order to reduce power loss in the transmission line by a factor of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mn>2</mn></msup></math>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The frequency of the generator is doubled with no other changes being made. Draw, on the axes, the variation with time of the voltage output of the generator.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">there is a magnetic flux </span><span class=\"fontstyle2\">«</span><span class=\"fontstyle0\">linkage</span><span class=\"fontstyle2\">» </span><span class=\"fontstyle0\">in the coil / coil cuts magnetic field </span><span class=\"fontstyle3\">✓</span></p>\n<p><span class=\"fontstyle0\">this flux </span><span class=\"fontstyle2\">«</span><span class=\"fontstyle0\">linkage</span><span class=\"fontstyle2\">» </span><span class=\"fontstyle0\">changes as the angle varies/coil rotates </span><span class=\"fontstyle3\">✓</span></p>\n<p><span class=\"fontstyle2\">«</span><span class=\"fontstyle0\">Faradays law</span><span class=\"fontstyle2\">» </span><span class=\"fontstyle0\">connects induced emf with rate of change of flux </span><span class=\"fontstyle2\">«</span><span class=\"fontstyle0\">linkage</span><span class=\"fontstyle2\">» </span><span class=\"fontstyle0\">with time </span><span class=\"fontstyle3\">✓</span></p>\n<p><em><span class=\"fontstyle4\"><br/>Do not award MP2 or 3 for answers that dont discuss flux.</span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>V</mi><mi>rms</mi></msub><mo>=</mo><mfrac><mrow><mn>25</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow><msqrt><mn>2</mn></msqrt></mfrac><mo>«</mo><mo>=</mo><mn>17</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo></mo><mo></mo><mi mathvariant=\"normal\">V</mi><mo>»</mo></math> ✓</span></p>\n<p> </p>\n<p><span class=\"fontstyle0\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>I</mi><mi>rms</mi></msub><mo>=</mo><mfrac><mrow><mn>8</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup></mrow><mrow><mn>17</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow></mfrac><mo>=</mo><mn>48</mn><mo></mo><mo>«</mo><mi mathvariant=\"normal\">A</mi><mo>»</mo></math> ✓</span></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">«</span><span class=\"fontstyle1\">power loss proportional to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>I</mi><mn>2</mn></msup></math> hence the step-up factor is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mn>2</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mn>2</mn></msup></msqrt><mo>»</mo><mo></mo><mn>16</mn></math> </span><span class=\"fontstyle3\">✓</span></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">peak emf doubles </span><span class=\"fontstyle2\">✓</span></p>\n<p><span class=\"fontstyle3\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> </span><span class=\"fontstyle0\">halves </span><span class=\"fontstyle2\">✓</span></p>\n<p><em><span class=\"fontstyle3\"><br/>Must show at least 1 cycle.</span></em></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was well answered with the majority discussing changes in flux rather than wires cutting field lines, which was good to see.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Generally well answered.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was well answered by many, but some candidates left the answer as a surd. The most common guess here involved the use of root 2.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Well answered, with the majority of candidates scoring at least 1 mark.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
"topics": [
"b-the-particulate-nature-of-matter",
"d-fields"
],
"subtopics": [
"b-4-thermodynamics",
"d-4-induction"
]
},
{
"question_id": "20N.2.SL.TZ0.1",
"Question": "<div class=\"specification\">\n<p>A company delivers packages to customers using a small unmanned aircraft. Rotating horizontal blades exert a force on the surrounding air. The air above the aircraft is initially stationary.</p>\n<p><img height=\"179\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"319\"/></p>\n<p>The air is propelled vertically downwards with speed <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>v</mi></math>. The aircraft hovers motionless above the ground. A package is suspended from the aircraft on a string. The mass of the aircraft is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>95</mn><mtext>kg</mtext></math> and the combined mass of the package and string is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>45</mn><mo></mo><mi>kg</mi></math>. The mass of air pushed downwards by the blades in one second is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>.</mo><mn>7</mn><mo></mo><mi>kg</mi></math>.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the value of the resultant force on the aircraft when hovering.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline, by reference to Newtons third law, how the upward lift force on the aircraft is achieved.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>v</mi></math>. State your answer to an appropriate number of significant figures.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The package and string are now released and fall to the ground. The lift force on the aircraft remains unchanged. Calculate the initial acceleration of the aircraft.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">zero </span><span class=\"fontstyle2\">✓</span></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">Blades exert a downward force on the air </span><span class=\"fontstyle2\">✓</span></p>\n<p><span class=\"fontstyle0\"><br/>air exerts an equal and opposite force on the blades </span><span class=\"fontstyle3\">«</span><span class=\"fontstyle0\">by Newtons third law</span><span class=\"fontstyle3\">»<br/></span><span class=\"fontstyle4\"><em><strong>OR</strong></em><br/></span><span class=\"fontstyle0\">air exerts a reaction force on the blades </span><span class=\"fontstyle3\">«</span><span class=\"fontstyle0\">by Newtons third law</span><span class=\"fontstyle3\">» </span><span class=\"fontstyle2\">✓</span></p>\n<p><em><span class=\"fontstyle5\"><br/>Downward direction required for </span><strong><span class=\"fontstyle4\">MP1</span></strong></em><span class=\"fontstyle4\">.</span></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">«</span><span class=\"fontstyle1\">lift force/change of momentum in one second</span><span class=\"fontstyle0\">» <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>1</mn><mo>.</mo><mn>7</mn><mi>v</mi></math> </span><span class=\"fontstyle3\">✓</span></p>\n<p><span class=\"fontstyle3\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>.</mo><mn>7</mn><mi>v</mi><mo>=</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>95</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>45</mn></mrow></mfenced><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></math> ✓</span></p>\n<p><span class=\"fontstyle4\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>v</mi><mo>=</mo><mn>8</mn><mo>.</mo><mn>1</mn><mo>«</mo><msup><mi>ms</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <em><strong>AND </strong></em></span><span class=\"fontstyle1\">answer expressed to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math> sf only </span><span class=\"fontstyle3\">✓</span></p>\n<p><span class=\"fontstyle5\">Allow <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn mathvariant=\"italic\">8</mn><mo mathvariant=\"italic\">.</mo><mn mathvariant=\"italic\">2</mn></math> from </span><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi><mo mathvariant=\"italic\">=</mo><mn mathvariant=\"italic\">10</mn><mo mathvariant=\"italic\"></mo><mi>m</mi><msup><mi>s</mi><mrow><mo mathvariant=\"italic\">-</mo><mn mathvariant=\"italic\">2</mn></mrow></msup></math>.</p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">vertical force = lift force weight </span><span class=\"fontstyle2\"><em><strong>OR</strong></em> <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></math> <em><strong>OR</strong></em> <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>4</mn><mo>.</mo><mn>4</mn><mo></mo><mo>«</mo><mi mathvariant=\"normal\">N</mi><mo>»</mo><mo> </mo></math></span><span class=\"fontstyle4\">✓</span></p>\n<p><span class=\"fontstyle0\">acceleration<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>95</mn></mrow></mfrac><mo>=</mo><mn>4</mn><mo>.</mo><mn>6</mn><mo></mo><mo>«</mo><msup><mi>ms</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>»</mo><mo> </mo></math></span><span class=\"fontstyle4\">✓</span></p>\n<div class=\"question_part_label\">b.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div>",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-1-kinematics",
"a-2-forces-and-momentum",
"a-3-work-energy-and-power"
]
},
{
"question_id": "20N.2.SL.TZ0.12",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the terminal velocity of the sphere.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c(i))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the force exerted by the spring on the sphere when the sphere is at rest.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n radius of sphere\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 012\n </mn>\n <mo>\n </mo>\n <mo>\n «\n </mo>\n <mi mathvariant=\"normal\">\n m\n </mi>\n <mo>\n »\n </mo>\n </math>\n ✓\n </p>\n <p>\n </p>\n <p>\n weight of sphere\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 6\n </mn>\n <mi>\n π\n </mi>\n <mi>\n η\n </mi>\n <mi>\n r\n </mi>\n <mi>\n v\n </mi>\n <mo>\n +\n </mo>\n <mi>\n ρ\n </mi>\n <mi>\n V\n </mi>\n <mi>\n g\n </mi>\n </math>\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n v\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mfenced>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 26\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </msup>\n <mo>\n -\n </mo>\n <mn>\n 915\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 24\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n <mo>\n ×\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 81\n </mn>\n </mrow>\n <mrow>\n <mn>\n 6\n </mn>\n <mi mathvariant=\"normal\">\n π\n </mi>\n <mo>\n ×\n </mo>\n <mn>\n 37\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n v\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 84\n </mn>\n <mo>\n </mo>\n <mo>\n «\n </mo>\n <mi mathvariant=\"normal\">\n m\n </mi>\n <mo>\n </mo>\n <msup>\n <mi mathvariant=\"normal\">\n s\n </mi>\n <mrow>\n <mo>\n \n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n <mo>\n »\n </mo>\n <mo>\n </mo>\n </math>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <span class=\"fontstyle0\">\n Accept use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n g\n </mi>\n <mo mathvariant=\"italic\">\n =\n </mo>\n <mn mathvariant=\"italic\">\n 10\n </mn>\n </math>\n leading to\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n v\n </mi>\n <mo mathvariant=\"italic\">\n =\n </mo>\n <mn mathvariant=\"italic\">\n 7\n </mn>\n <mo mathvariant=\"italic\">\n .\n </mo>\n <mn mathvariant=\"italic\">\n 0\n </mn>\n <mo mathvariant=\"italic\">\n </mo>\n <mo>\n «\n </mo>\n <mi mathvariant=\"normal\">\n m\n </mi>\n <mo>\n </mo>\n <msup>\n <mi mathvariant=\"normal\">\n s\n </mi>\n <mrow>\n <mo>\n \n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n <mo>\n »\n </mo>\n </math>\n </span>\n </em>\n </p>\n <p>\n <em>\n <span class=\"fontstyle0\">\n Allow implicit calculation of radius for MP1\n </span>\n </em>\n </p>\n <p>\n <em>\n <span class=\"fontstyle0\">\n Do not allow ECF for MP3 if buoyant force omitted.\n </span>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c(i))\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n F\n </mi>\n <mo>\n =\n </mo>\n <mi>\n m\n </mi>\n <mi>\n g\n </mi>\n <mo>\n -\n </mo>\n <mi>\n ρ\n </mi>\n <mi>\n V\n </mi>\n <mi>\n g\n </mi>\n </math>\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <em>\n <strong>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n F\n </mi>\n <mo>\n =\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0126\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 81\n </mn>\n </mrow>\n </mfenced>\n <mo>\n -\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 915\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 24\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 81\n </mn>\n </mrow>\n </mfenced>\n </math>\n </strong>\n </em>\n ✓\n </p>\n <p>\n </p>\n <p>\n <span class=\"fontstyle0\">\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n F\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 86\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </msup>\n <mo>\n </mo>\n <mo>\n «\n </mo>\n <mi mathvariant=\"normal\">\n N\n </mi>\n <mo>\n »\n </mo>\n </math>\n ✓\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span class=\"fontstyle0\">\n Accept use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n g\n </mi>\n <mo mathvariant=\"italic\">\n =\n </mo>\n <mn mathvariant=\"italic\">\n 10\n </mn>\n </math>\n leading to\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n F\n </mi>\n <mo>\n =\n </mo>\n <mn mathvariant=\"italic\">\n 6\n </mn>\n <mo mathvariant=\"italic\">\n .\n </mo>\n <mn mathvariant=\"italic\">\n 0\n </mn>\n <mo mathvariant=\"italic\">\n ×\n </mo>\n <msup>\n <mn mathvariant=\"italic\">\n 10\n </mn>\n <mrow>\n <mo mathvariant=\"italic\">\n -\n </mo>\n <mn mathvariant=\"italic\">\n 2\n </mn>\n </mrow>\n </msup>\n <mo mathvariant=\"italic\">\n </mo>\n <mi>\n N\n </mi>\n </math>\n </span>\n </em>\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Only those candidates who forgot to include the buoyant force missed marks here.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c(i))\n </div><div class=\"card-body\">\n <p>\n Continuing from b, most candidates scored full marks.\n </p>\n</div>\n",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-2-forces-and-momentum"
]
},
{
"question_id": "20N.2.SL.TZ0.15",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the apparent brightness\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n b\n </mi>\n <mo>\n ∝\n </mo>\n <mfrac>\n <mrow>\n <mi>\n A\n </mi>\n <msup>\n <mi>\n T\n </mi>\n <mn>\n 4\n </mn>\n </msup>\n </mrow>\n <msup>\n <mi>\n d\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mfrac>\n </math>\n , where\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n d\n </mi>\n </math>\n is the distance of the object from Earth,\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n </math>\n is the surface temperature of the object and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n A\n </mi>\n </math>\n is the surface area of the object.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Two of the brightest objects in the night sky seen from Earth are the planet Venus and the star Sirius. Explain why the equation\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n b\n </mi>\n <mo>\n ∝\n </mo>\n <mfrac>\n <mrow>\n <mi>\n A\n </mi>\n <msup>\n <mi>\n T\n </mi>\n <mn>\n 4\n </mn>\n </msup>\n </mrow>\n <msup>\n <mi>\n d\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mfrac>\n </math>\n is applicable to Sirius but not to Venus.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n substitution of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n L\n </mi>\n <mo>\n =\n </mo>\n <mi>\n σ\n </mi>\n <mi>\n A\n </mi>\n <msup>\n <mi>\n T\n </mi>\n <mn>\n 4\n </mn>\n </msup>\n </math>\n into\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n b\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mi>\n L\n </mi>\n <mrow>\n <mn>\n 4\n </mn>\n <msup>\n <mi>\n πd\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </math>\n giving\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n b\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n σ\n </mi>\n <mi>\n A\n </mi>\n <msup>\n <mi>\n T\n </mi>\n <mn>\n 4\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 4\n </mn>\n <msup>\n <mi>\n πd\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </math>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span class=\"fontstyle0\">\n Removal of constants\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n σ\n </mi>\n </math>\n and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 4\n </mn>\n <mi mathvariant=\"normal\">\n π\n </mi>\n </math>\n is optional\n </span>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <span class=\"fontstyle0\">\n equation applies to Sirius/stars that are luminous/emit light «from fusion»\n </span>\n <span class=\"fontstyle2\">\n ✓\n </span>\n </p>\n <p>\n <span class=\"fontstyle0\">\n but Venus reflects the Suns light/does not emit light\n </span>\n <span class=\"fontstyle3\">\n «\n </span>\n <span class=\"fontstyle0\">\n from fusion\n </span>\n <span class=\"fontstyle3\">\n »\n </span>\n <span class=\"fontstyle2\">\n ✓\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span class=\"fontstyle0\">\n OWTTE\n </span>\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-5-fusion-and-stars"
]
},
{
"question_id": "20N.2.SL.TZ0.3",
"Question": "<div class=\"specification\">\n<p>A sample of vegetable oil, initially in the liquid state, is placed in a freezer that transfers thermal energy from the sample at a constant rate. The graph shows how temperature <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> of the sample varies with time <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>t</mi></math>.</p>\n<p><img height=\"299\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"515\"/></p>\n<p>The following data are available.</p>\n<p style=\"padding-left: 30px;\">Mass of the sample <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>0</mn><mo>.</mo><mn>32</mn><mo></mo><mi>kg</mi></math><br/>Specific latent heat of fusion of the oil <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>130</mn><mo></mo><mi>kJ</mi><mo></mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math><br/>Rate of thermal energy transfer <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>15</mn><mo></mo><mi mathvariant=\"normal\">W</mi></math></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the thermal energy transferred from the sample during the first <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>30</mn></math> minutes.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Estimate the specific heat capacity of the oil in its liquid phase. State an appropriate unit for your answer.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The sample begins to freeze during the thermal energy transfer. Explain, in terms of the molecular model of matter, why the temperature of the sample remains constant during freezing.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the mass of the oil that remains unfrozen after <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>60</mn></math> minutes.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mn>15</mn><mo>×</mo><mn>30</mn><mo>×</mo><mn>60</mn><mo>»</mo><mo>=</mo><mn>27000</mn><mo></mo><mo>«</mo><mi mathvariant=\"normal\">J</mi><mo>»</mo></math> ✓</span></p>\n<p> </p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>27</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>32</mn><mo>×</mo><mi>c</mi><mo>×</mo><mfenced><mrow><mn>290</mn><mo>-</mo><mn>250</mn></mrow></mfenced></math> <em><strong>OR </strong></em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2100</mn></math> ✓</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">J</mi><mo></mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo></mo><msup><mi mathvariant=\"normal\">K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> <em><strong>OR</strong></em> <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">J</mi><mo></mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo></mo><msup><mo></mo><mn>0</mn></msup><msup><mi mathvariant=\"normal\">C</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> ✓</p>\n<p><span class=\"fontstyle0\"><em><br/>Allow any appropriate unit that is</em> <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>g</mi><mi>y</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>s</mi><mi>s</mi><mo>×</mo><mi>t</mi><mi>e</mi><mi>r</mi><mi>m</mi><mi>p</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>u</mi><mi>r</mi><mi>e</mi></mrow></mfrac></math></span></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">«intermolecular» bonds are formed during freezing </span><span class=\"fontstyle2\">✓</span></p>\n<p><span class=\"fontstyle0\"><br/>bond-forming process releases energy<br/></span><span class=\"fontstyle3\"><em><strong>OR</strong></em><br/></span><span class=\"fontstyle4\">«</span><span class=\"fontstyle0\">intermolecular</span><span class=\"fontstyle4\">» </span><span class=\"fontstyle0\">PE decreases </span><span class=\"fontstyle4\">«</span><span class=\"fontstyle0\">and the difference is transferred as heat</span><span class=\"fontstyle4\">» </span><span class=\"fontstyle2\">✓</span></p>\n<p><span class=\"fontstyle2\"><br/></span><span class=\"fontstyle4\">«</span><span class=\"fontstyle0\">average random</span><span class=\"fontstyle4\">» </span><span class=\"fontstyle0\">KE of the molecules does not decrease/change </span><span class=\"fontstyle2\">✓</span></p>\n<p><span class=\"fontstyle2\"><br/></span><span class=\"fontstyle0\">temperature is related to «average» KE of the molecules «hence unchanged» </span><span class=\"fontstyle2\">✓</span></p>\n<p> </p>\n<p><em><span class=\"fontstyle5\">To award MP3 or MP4 molecules/particles/atoms must be mentioned.</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">mass of frozen oil <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mo>=</mo><mfrac><mrow><mn>27</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow><mrow><mn>130</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow></mfrac><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>21</mn><mo></mo><mo>«</mo><mi>kg</mi><mo>»</mo></math> </span><span class=\"fontstyle2\">✓</span></p>\n<p><span class=\"fontstyle0\">unfrozen mass <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>32</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>21</mn><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>11</mn><mo></mo><mo>«</mo><mi>kg</mi><mo>»</mo></math> </span><span class=\"fontstyle2\">✓</span></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div>",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-1-thermal-energy-transfers"
]
},
{
"question_id": "20N.2.SL.TZ0.5",
"Question": "<div class=\"specification\">\n<p>The graph shows how current <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>I</mi></math> varies with potential difference <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math> across a component X.</p>\n<p><img height=\"357\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"532\"/></p>\n</div><div class=\"specification\">\n<p>Component X and a cell of negligible internal resistance are placed in a circuit.</p>\n<p>A variable resistor R is connected in series with component X. The ammeter reads <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>20</mn><mo></mo><mi>mA</mi></math>.</p>\n<p style=\"text-align: center;\"><img height=\"157\" src=\"\" width=\"187\"/></p>\n</div><div class=\"specification\">\n<p>Component X and the cell are now placed in a potential divider circuit.</p>\n<p><img height=\"131\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"241\"/></p>\n<p> </p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why component X is considered non-ohmic.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the resistance of the variable resistor.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the power dissipated in the circuit.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">current is not «directly» proportional to the potential difference<br/></span><span class=\"fontstyle2\"><em><strong>OR</strong></em><br/></span><span class=\"fontstyle0\">resistance of X is not constant<br/></span><span class=\"fontstyle2\"><em><strong>OR</strong></em><br/></span><span class=\"fontstyle0\">resistance of X changes «with current/voltage» </span><span class=\"fontstyle3\">✓</span></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong>ALTERNATIVE 1</strong></em></p>\n<p><span class=\"fontstyle0\">voltage across X<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo></mo><mo>«</mo><mi mathvariant=\"normal\">V</mi><mo>»</mo></math> ✓</span></p>\n<p><span class=\"fontstyle0\">voltage across R<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mo>=</mo><mn>4</mn><mo>.</mo><mn>0</mn><mo>-</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>»</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>7</mn><mo></mo><mo>«</mo><mi mathvariant=\"normal\">V</mi><mo>»</mo></math> ✓</span></p>\n<p><span class=\"fontstyle0\">resistance of variable resistor <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>7</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>020</mn></mrow></mfrac><mo>»</mo><mo>=</mo><mn>85</mn><mo></mo><mo>«</mo><mi mathvariant=\"normal\">Ω</mi><mo>»</mo></math> ✓</span></p>\n<p> </p>\n<p><em><strong>ALTERNATIVE 2</strong></em></p>\n<p>overall resistance <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mo>=</mo><mfrac><mrow><mn>4</mn><mo>.</mo><mn>0</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>020</mn></mrow></mfrac><mo>»</mo><mo>=</mo><mn>200</mn><mo></mo><mo>«</mo><mi mathvariant=\"normal\">Ω</mi><mo>»</mo></math> ✓</p>\n<p>resistance of X <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mo>=</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>020</mn></mrow></mfrac><mo>»</mo><mo>=</mo><mn>115</mn><mo></mo><mo>«</mo><mi mathvariant=\"normal\">Ω</mi><mo>»</mo></math> ✓</p>\n<p>resistance of variable resistor <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mo>=</mo><mn>200</mn><mo>-</mo><mn>115</mn><mo>»</mo><mo>=</mo><mn>85</mn><mo></mo><mo>«</mo><mi mathvariant=\"normal\">Ω</mi><mo>»</mo></math> ✓</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>power <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mo>=</mo><mn>4</mn><mo>.</mo><mn>0</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>020</mn><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>080</mn><mo></mo><mo>«</mo><mi mathvariant=\"normal\">W</mi><mo>»</mo></math> <span class=\"fontstyle0\">✓</span></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">from <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn></math> to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>60</mn><mo></mo><mi>mA</mi></math> </span><span class=\"fontstyle2\">✓</span></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span class=\"fontstyle0\">allows zero current through component X / potential divider arrangement </span><span class=\"fontstyle2\">✓</span></p>\n<p><span class=\"fontstyle0\">provides greater range </span><span class=\"fontstyle3\">«</span><span class=\"fontstyle0\">of current through component X</span><span class=\"fontstyle3\">» </span><span class=\"fontstyle2\">✓</span></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-5-current-and-circuits"
]
},
{
"question_id": "20N.2.SL.TZ0.7",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline why the cylinder performs simple harmonic motion when released.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The mass of the cylinder is\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 118\n </mn>\n <mo>\n </mo>\n <mi>\n kg\n </mi>\n </math>\n and the cross-sectional area of the cylinder is\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 29\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n <mo>\n </mo>\n <msup>\n <mi mathvariant=\"normal\">\n m\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n . The density of water is\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 03\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n </mo>\n <mi>\n kg\n </mi>\n <mo>\n </mo>\n <msup>\n <mi mathvariant=\"normal\">\n m\n </mi>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </math>\n . Show that the angular frequency of oscillation of the cylinder is about\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n </mo>\n <mo>\n </mo>\n <mi>\n rad\n </mi>\n <mo>\n </mo>\n <msup>\n <mi mathvariant=\"normal\">\n s\n </mi>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw, on the axes, the graph to show how the kinetic energy of the cylinder varies with time during\n <strong>\n one\n </strong>\n period of oscillation\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n </math>\n .\n </p>\n <p>\n <img height=\"371\" src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\" width=\"610\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <span class=\"fontstyle0\">\n the\n </span>\n <span class=\"fontstyle2\">\n «\n </span>\n <span class=\"fontstyle0\">\n restoring\n </span>\n <span class=\"fontstyle2\">\n »\n </span>\n <span class=\"fontstyle0\">\n force/acceleration is proportional to displacement\n </span>\n <span class=\"fontstyle3\">\n ✓\n </span>\n </p>\n <p>\n <em>\n <span class=\"fontstyle4\">\n <br/>\n Allow use of symbols i.e.\n </span>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n F\n </mi>\n <mo>\n ∝\n </mo>\n <mo>\n -\n </mo>\n <mi>\n x\n </mi>\n </math>\n <span class=\"fontstyle4\">\n or\n </span>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n a\n </mi>\n <mo>\n ∝\n </mo>\n <mo>\n -\n </mo>\n <mi>\n x\n </mi>\n </math>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <span class=\"fontstyle0\">\n Evidence of equating\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n m\n </mi>\n <msup>\n <mi>\n ω\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n <mi>\n x\n </mi>\n <mo>\n =\n </mo>\n <mi>\n ρ\n </mi>\n <mi>\n A\n </mi>\n <mi>\n g\n </mi>\n <mi>\n x\n </mi>\n </math>\n «to obtain\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n ρ\n </mi>\n <mi>\n A\n </mi>\n <mi>\n g\n </mi>\n </mrow>\n <mi>\n m\n </mi>\n </mfrac>\n <mo>\n =\n </mo>\n <msup>\n <mi>\n ω\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n » ✓\n </span>\n </p>\n <p>\n </p>\n <p>\n <span class=\"fontstyle0\">\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n ω\n </mi>\n <mo>\n =\n </mo>\n <msqrt>\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 03\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 29\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 81\n </mn>\n </mrow>\n <mn>\n 118\n </mn>\n </mfrac>\n </msqrt>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 43\n </mn>\n <mo>\n «\n </mo>\n <mi>\n rad\n </mi>\n <mo>\n </mo>\n <msup>\n <mi mathvariant=\"normal\">\n s\n </mi>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n <mo>\n »\n </mo>\n </math>\n ✓\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span class=\"fontstyle0\">\n Answer to at least\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn mathvariant=\"italic\">\n 3\n </mn>\n </math>\n s.f.\n </span>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c(ii))\n </div><div class=\"card-body\">\n <p>\n <span class=\"fontstyle0\">\n energy never negative\n </span>\n <span class=\"fontstyle2\">\n ✓\n </span>\n </p>\n <p>\n <span class=\"fontstyle0\">\n correct shape with two maxima\n </span>\n <span class=\"fontstyle2\">\n ✓\n </span>\n </p>\n <p>\n <img src=\"\"/>\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n This was well answered with candidates gaining credit for answers in words or symbols.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Again, very well answered.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c(ii))\n </div><div class=\"card-body\">\n <p>\n Most candidates answered with a graph that was only positive so scored the first mark.\n </p>\n</div>\n",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-1-simple-harmonic-motion"
]
},
{
"question_id": "21M.2.HL.TZ1.10",
"Question": "<div class=\"specification\">\n<p>In an electric circuit used to investigate the photoelectric effect, the voltage is varied until the reading in the ammeter is zero. The stopping voltage that produces this reading is 1.40V.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Describe the photoelectric effect.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the maximum velocity of the photoelectrons is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>700</mn><mo></mo><msup><mtext>kms</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The photoelectrons are emitted from a sodium surface. Sodium has a work function of 2.3eV.</p>\n<p>Calculate the wavelength of the radiation incident on the sodium. State an appropriate unit for your answer.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>electrons are ejected from the surface of a metal <strong>✓</strong></p>\n<p>after gaining energy from photons/electromagnetic radiation <strong>✓</strong></p>\n<p>there is a minimum «threshold» energy/frequency<br/><em><strong>OR</strong></em><br/>maximum «threshold» wavelength <strong>✓</strong></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>e</mi><mi>V</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo> </mo><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup></math>» and manipulation to get <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>v</mi></math> <strong>✓</strong></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>v</mi><mo>=</mo><msqrt><mfrac><mrow><mn>2</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>4</mn></mrow><mrow><mn>9</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>31</mn></mrow></msup></mrow></mfrac></msqrt></math>  <em><strong>OR  </strong></em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>702</mn><mo>«</mo><msup><mtext>kms</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math><strong>✓</strong></p>\n<p><em>Must see either complete substitution or calculation to at least 3 s.f. for <strong>MP2</strong></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><strong><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>.</mo><mn>4</mn></math> ✓</strong></p>\n<p><strong><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>63</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>34</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow><mrow><mn>3</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup></mrow></mfrac></math> ✓</strong></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>3</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>7</mn></mrow></msup><mo> </mo><mtext>m </mtext><mtext mathvariant=\"bold-italic\">OR</mtext><mtext> 340 nm</mtext></math> <strong>✓</strong></p>\n<p><em><br/>Must see an appropriate unit to award<strong> MP3.</strong></em></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div>",
"topics": [
"b-the-particulate-nature-of-matter",
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"b-5-current-and-circuits",
"e-2-quantum-physics"
]
},
{
"question_id": "21M.2.HL.TZ1.2",
"Question": "<div class=\"specification\">\n<p>A planet is in a circular orbit around a star. The speed of the planet is constant. The following data are given:</p>\n<p style=\"padding-left: 120px;\">Mass of planet                                      <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>8</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>24</mn></msup><mo></mo></math>kg<br/>Mass of star                                          <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>3</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>30</mn></msup><mo></mo></math>kg<br/>Distance from the star to the planet <em>R</em>  <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>4</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>10</mn></msup><mo></mo></math>m.</p>\n</div><div class=\"specification\">\n<p>A spacecraft is to be launched from the surface of the planet to escape from the star system. The radius of the planet is 9.1 × 10<sup>3</sup> km.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why a centripetal force is needed for the planet to be in a circular orbit.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the value of the centripetal force.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the gravitational potential due to the planet and the star at the surface of the planet is about 5 × 10<sup>9</sup>Jkg<sup>1</sup>.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Estimate the escape speed of the spacecraft from the planetstar system.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.ii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>«circular motion» involves a changing velocity <strong>✓</strong></p>\n<p>«Tangential velocity» is «always» perpendicular to centripetal force/acceleration <strong>✓</strong></p>\n<p>there must be a force/acceleration towards centre/star <strong>✓</strong></p>\n<p>without a centripetal force the planet will move in a straight line <strong>✓</strong></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo>=</mo><mfrac><mrow><mo>(</mo><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>)</mo><mo>(</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>24</mn></msup><mo>)</mo><mo>(</mo><mn>3</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>30</mn></msup><mo>)</mo></mrow><mrow><mo>(</mo><mn>4</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>10</mn></msup><msup><mo>)</mo><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>8</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup></math> «N» <strong>✓</strong></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>V</em><sub>planet</sub> = «−»<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mo>(</mo><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>)</mo><mo>(</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>24</mn></msup><mo>)</mo></mrow><mrow><mn>9</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac><mo>=</mo></math>«−» 5.9 × 10<sup>7 </sup>«Jkg<sup>1</sup>» <strong>✓</strong></p>\n<p><em>V</em><sub>star</sub> = «−»<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mo>(</mo><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>)</mo><mo>(</mo><mn>3</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>30</mn></msup><mo>)</mo></mrow><mrow><mn>4</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>10</mn></msup></mrow></mfrac><mo>=</mo></math>«−» 4.9 × 10<sup>9 </sup>«Jkg<sup>1</sup>» <strong>✓</strong></p>\n<p><em>V</em><sub>planet</sub> + <em>V</em><sub>star </sub>= «−» 4.9 «09» × 10<sup>9 </sup>«Jkg<sup>1</sup>» <strong>✓</strong></p>\n<p><em><br/></em><em>Must see substitutions and not just equations.</em></p>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>use of <em>v</em><sub>esc</sub> = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mn>2</mn><mi>V</mi></msqrt></math> <strong>✓</strong></p>\n<p><em>v = </em>9.91 × 10<sup>4</sup> «ms<sup>1</sup>» <strong>✓</strong></p>\n<p> </p>\n<p> </p>\n<div class=\"question_part_label\">c.ii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.ii.</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"d-fields"
],
"subtopics": [
"a-2-forces-and-momentum",
"d-1-gravitational-fields"
]
},
{
"question_id": "21M.2.HL.TZ1.8",
"Question": "<div class=\"specification\">\n<p>On a guitar, the strings played vibrate between two fixed points. The frequency of vibration is modified by changing the string length using a finger. The different strings have different wave speeds. When a string is plucked, a standing wave forms between the bridge and the finger.</p>\n<p>                                                       <img src=\"\"/></p>\n</div><div class=\"specification\">\n<p>The string is displaced 0.4cm at point P to sound the guitar. Point P on the string vibrates with simple harmonic motion (shm) in its first harmonic with a frequency of 195Hz. The sounding length of the string is 62cm.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline how a standing wave is produced on the string.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the speed of the wave on the string is about 240ms<sup>1</sup>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Sketch a graph to show how the acceleration of point P varies with its displacement from the rest position.</p>\n<p>                 <img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate, in ms<sup>1</sup>, the maximum velocity of vibration of point P when it is vibrating with a frequency of 195Hz.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate, in terms of <em>g</em>, the maximum acceleration of P.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.iv.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Estimate the displacement needed to double the energy of the string.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.v.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The string is made to vibrate in its third harmonic. State the distance between consecutive nodes. </p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>«travelling» wave moves along the length of the string and reflects «at fixed end» <strong>✓</strong></p>\n<p>superposition/interference of incident and reflected waves <strong>✓</strong></p>\n<p>the superposition of the reflections is reinforced only for certain wavelengths <strong>✓</strong> </p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi><mo>=</mo><mn>2</mn><mi>l</mi><mo>=</mo><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>62</mn><mo>=</mo><mo>«</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo> </mo><mtext>m</mtext><mo>»</mo></math> ✓</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>v</mi><mo>=</mo><mi>f</mi><mi>λ</mi><mo>=</mo><mn>195</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo>=</mo><mn>242</mn><mo> </mo><mo>«</mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✓</p>\n<p><em>Answer must be to 3 or more sf or working shown for<strong> MP2.</strong></em></p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>straight line through origin with negative gradient <strong>✓</strong></p>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>max velocity occurs at x = 0 <strong>✓</strong></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>v</mi><mo>=</mo><mo>«</mo><mo>(</mo><mn>2</mn><mi>π</mi><mo>)</mo><mo>(</mo><mn>195</mn><mo>)</mo><msqrt><mn>0</mn><mo>.</mo><msup><mn>004</mn><mn>2</mn></msup></msqrt><mo>»</mo><mo>=</mo><mn>4</mn><mo>.</mo><mn>9</mn><mo> </mo><mo>«</mo><msup><mtext>m s</mtext><mrow><mo></mo><mn>1</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong></p>\n<div class=\"question_part_label\">b.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi><mo>=</mo><msup><mfenced><mrow><msub><mn>2</mn><mi mathvariant=\"normal\">π</mi></msub><mo> </mo><mn>195</mn></mrow></mfenced><mn>2</mn></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>004</mn><mo>=</mo><mn>6005</mn><mo> </mo><mo>«</mo><msup><mtext>ms</mtext><mrow><mo></mo><mn>2</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>600</mn><mo></mo><mtext>g</mtext></math> <strong>✓</strong></p>\n<div class=\"question_part_label\">b.iv.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>use of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi><mo>∝</mo><msup><mi>A</mi><mn>2</mn></msup><mtext mathvariant=\"bold-italic\"> OR  </mtext><msup><msub><mi>x</mi><mtext>o</mtext></msub><mn>2</mn></msup></math> <strong>✓</strong></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn><msqrt><mn>2</mn></msqrt><mo>=</mo><mn>0</mn><mo>.</mo><mn>57</mn><mo> </mo><mo>«</mo><mtext>cm</mtext><mo>»</mo><mo> </mo><mo>≅</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>6</mn><mo> </mo><mo>«</mo><mtext>cm</mtext><mo>»</mo></math> <strong>✓</strong></p>\n<div class=\"question_part_label\">b.v.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>62</mn><mn>3</mn></mfrac><mo>=</mo><mn>21</mn><mo> </mo><mo>«</mo><mtext>cm</mtext><mo>»</mo></math> <strong>✓</strong></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.iv.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.v.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div>",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-1-simple-harmonic-motion",
"c-2-wave-model",
"c-4-standing-waves-and-resonance"
]
},
{
"question_id": "21M.2.HL.TZ2.10",
"Question": "<div class=\"specification\">\n<p>The table gives data for Jupiter and three of its moons, including the radius <em>r</em> of each object.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"specification\">\n<p>A spacecraft is to be sent from <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Io</mtext></math> to infinity.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate, for the surface of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Io</mtext></math>, the gravitational field strength <em>g</em><sub>Io</sub> due to the mass of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Io</mtext></math>. State an appropriate unit for your answer.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mi>gravitational</mi><mo> </mo><mi>potential</mi><mo> </mo><mi>due</mi><mo> </mo><mi>to</mi><mo> </mo><mi>Jupiter</mi><mo> </mo><mi>at</mi><mo> </mo><mi>the</mi><mo> </mo><mi>orbit</mi><mo> </mo><mi>of</mi><mo> </mo><mi>Io</mi></mrow><mrow><mo> </mo><mi>gravitational</mi><mo> </mo><mi>potential</mi><mo> </mo><mi>due</mi><mo> </mo><mi>to</mi><mo> </mo><mi>Io</mi><mo> </mo><mi>at</mi><mo> </mo><mi>the</mi><mo> </mo><mi>surface</mi><mo> </mo><mi>of</mi><mo> </mo><mi>Io</mi></mrow></mfrac></math> is about 80.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline, using (b)(i), why it is not correct to use the equation <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mfrac><mrow><mn>2</mn><mi>G</mi><mo>×</mo><mtext>mass of Io</mtext></mrow><mtext>radius of Io</mtext></mfrac></msqrt></math> to calculate the speed required for the spacecraft to reach infinity from the surface of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Io</mtext></math>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>An engineer needs to move a space probe of mass 3600kg from Ganymede to Callisto. Calculate the energy required to move the probe from the orbital radius of Ganymede to the orbital radius of Callisto. Ignore the mass of the moons in your calculation. </p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mfrac><mrow><mi>G</mi><mi>M</mi></mrow><msup><mi>r</mi><mn>2</mn></msup></mfrac><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>×</mo><mn>8</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>22</mn></msup></mrow><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfenced><mn>2</mn></msup></mfrac><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>8</mn></math><strong> ✓</strong></p>\n<p>Nkg<sup>1  </sup><em><strong>OR</strong>  </em>ms<sup>2</sup><strong>  ✓</strong></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>27</mn></msup></mrow><mrow><mn>4</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow></mfrac></math><strong>  <em>AND </em> </strong><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>8</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>22</mn></msup></mrow><mrow><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac></math><strong> </strong>seen<strong> ✓</strong></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>27</mn></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow><mrow><mn>4</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mo>×</mo><mn>8</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mn>22</mn></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>78</mn></math><strong>  ✓</strong></p>\n<p><em><br/>For <strong>MP1</strong>, potentials can be seen individually or as a ratio.</em></p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«this is the escape speed for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Io</mtext></math> alone but» gravitational potential / field of Jupiter must be taken into account<strong>  ✓</strong></p>\n<p><em><strong><br/>OWTTE</strong></em></p>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>-</mo><mi>G</mi><msub><mi>M</mi><mtext>Jupiter</mtext></msub><mfenced><mrow><mfrac><mn>1</mn><mrow><mn>1</mn><mo>.</mo><mn>88</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>.</mo><mn>06</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfrac></mrow></mfenced><mo>=</mo><mo>«</mo><mn>5</mn><mo>.</mo><mn>21</mn><mo>×</mo><msup><mn>10</mn><mn>7</mn></msup><mo></mo><msup><mtext>Jkg</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math><strong>  ✓</strong></p>\n<p>«multiplies by 3600kg to get» 1.9×10<sup>11</sup>«J» <strong>✓</strong></p>\n<p><em><br/>Award <strong>[2]</strong> marks if factor of ½ used, taking into account orbital kinetic energies, leading to a final answer of 9.4x10<sup>10</sup>«J».</em></p>\n<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong></em></p>\n<p><em>Award <strong>[2] marks</strong> for a bald correct answer.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div>",
"topics": [
"d-fields"
],
"subtopics": [
"d-1-gravitational-fields"
]
},
{
"question_id": "21M.2.HL.TZ2.8",
"Question": "<div class=\"specification\">\n<p>Monochromatic light of wavelength <em>λ</em> is normally incident on a diffraction grating. The diagram shows adjacent slits of the diffraction grating labelled V, W and X. Light waves are diffracted through an angle <em>θ</em> to form a <strong>second-order</strong> diffraction maximum. Points Z and Y are labelled.</p>\n<p style=\"text-align: center;\">  <img src=\"\"/></p>\n</div><div class=\"specification\">\n<p>State the effect on the graph of the variation of sin<em>θ</em> with <em>n</em> of:</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the phase difference between the waves at V and Y.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State, in terms of <em>λ</em>, the path length between points X and Z.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The separation of adjacent slits is <em>d</em>. Show that for the second-order diffraction maximum <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi>λ</mi><mo>=</mo><mi>d</mi><mi>sin</mi><mo></mo><mi>θ</mi></math>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Monochromatic light of wavelength 633nm is normally incident on a diffraction grating. The diffraction maxima incident on a screen are detected and their angle <em>θ</em> to the central beam is determined. The graph shows the variation of sin<em>θ</em> with the order <em>n</em> of the maximum. The central order corresponds to <em>n</em> = 0.</p>\n<p><img src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\"/></p>\n<p>Determine a mean value for the number of slits per millimetre of the grating.</p>\n<div class=\"marks\">[4]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>using a light source with a smaller wavelength.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>increasing the distance between the diffraction grating and the screen.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.ii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>0 <em><strong>OR</strong> </em>2<em>π</em> <em><strong>OR</strong> </em>360° <strong>✓</strong></p>\n<p> </p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>4<em>λ</em> <strong>✓</strong></p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>sin</mi><mo></mo><mi>θ</mi><mo>«</mo><mo>=</mo><mfrac><mtext>XZ</mtext><mtext>VX</mtext></mfrac><mo>»</mo><mo>=</mo><mfrac><mrow><mn>4</mn><mi>λ</mi></mrow><mrow><mn>2</mn><mi>d</mi></mrow></mfrac></math><strong>✓</strong></p>\n<p><em><br/>Do <strong>not</strong> award <strong>ECF</strong> from(a)(ii).</em></p>\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>identifies gradient with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mi>λ</mi><mi>d</mi></mfrac></math> <em><strong>OR</strong> </em>use of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo></mo><mi>sin</mi><mo></mo><mi>θ</mi><mo>=</mo><mi>n</mi><mi>λ</mi></math><strong> ✓</strong></p>\n<p>gradient = 0.08 <em><strong>OR</strong> </em>correct replacement in equation with coordinates of a point <strong>✓</strong></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mfrac><mrow><mn>633</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>9</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><mn>080</mn></mrow></mfrac><mo>=</mo><mo>«</mo><mn>7</mn><mo>.</mo><mn>91</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mtext>m</mtext><mo>»</mo></math> <strong>✓</strong></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>.</mo><mn>26</mn><mo>×</mo><msup><mn>10</mn><mn>2</mn></msup><mo> </mo><mtext mathvariant=\"bold-italic\">OR</mtext><mo> </mo><mn>1</mn><mo>.</mo><mn>27</mn><mo>×</mo><mn>102</mn><mo>«</mo><msup><mtext>mm</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong></p>\n<p><em><br/>Allow <strong>ECF</strong> from <strong>MP3</strong></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>gradient smaller <strong>✓</strong></p>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>no change <strong>✓</strong></p>\n<div class=\"question_part_label\">c.ii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.ii.</div>\n</div>",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-3-wave-phenomena"
]
},
{
"question_id": "21M.2.HL.TZ2.9",
"Question": "<div class=\"specification\">\n<p>In an experiment to demonstrate the photoelectric effect, monochromatic electromagnetic radiation from source A is incident on the surfaces of metal P and metal Q. Observations of the emission of electrons from P and Q are made.</p>\n<p>The experiment is then repeated with two other sources of electromagnetic radiation: B and C. The table gives the results for the experiment and the wavelengths of the radiation sources.</p>\n<p><img src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline the cause of the electron emission for radiation A.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why electrons are never emitted for radiation C.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why radiation B gives different results.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why there is no effect on the table of results when the intensity of source B is doubled.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Photons with energy 1.1 × 10<sup>18</sup>J are incident on a third metal surface. The maximum energy of electrons emitted from the surface of the metal is 5.1 × 10<sup>19</sup>J.</p>\n<p>Calculate, in eV, the work function of the metal.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>photon transfers «all» energy to electron <strong>✓</strong></p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>photon energy is less than both work functions<br/><em><strong>OR</strong></em><br/>photon energy is insufficient «to remove an electron» <strong>✓</strong></p>\n<p><em><br/>Answer must be in terms of photon energy.</em></p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Identifies P work function lower than Q work function<strong> ✓</strong></p>\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>changing/doubling intensity «changes/doubles number of photons arriving but» does not change energy of photon<strong> ✓</strong></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><strong><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>5</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>18</mn></mrow></msup><mo>-</mo><mi mathvariant=\"normal\">ϕ</mi></math> ✓</strong></p>\n<p>work function <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>= «</mtext><mfrac><mrow><mo>(</mo><mn>11</mn><mo>.</mo><mn>0</mn><mo>-</mo><mn>5</mn><mo>.</mo><mn>1</mn><mo>)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup></mrow><mrow><mn>1</mn><mo>.</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>19</mn></mrow></msup></mrow></mfrac><mtext>= » 3.7 «eV»</mtext></math> <strong> ✓</strong></p>\n<p><em><br/>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div>",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-2-quantum-physics"
]
},
{
"question_id": "21M.2.SL.TZ1.1",
"Question": "<div class=\"specification\">\n<p>Two players are playing table tennis. Player A hits the ball at a height of 0.24m above the edge of the table, measured from the top of the table to the bottom of the ball. The initial speed of the ball is 12.0ms<sup>1</sup> horizontally. Assume that air resistance is negligible.</p>\n<p><img src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\"/></p>\n</div><div class=\"specification\">\n<p>The ball bounces and then reaches a peak height of 0.18m above the table with a horizontal speed of 10.5ms<sup>1</sup>. The mass of the ball is 2.7g.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the time taken for the ball to reach the surface of the table is about 0.2s.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Sketch, on the axes, a graph showing the variation with time of the vertical component of velocity <em>v</em><sub>v</sub> of the ball until it reaches the table surface. Take <em>g</em> to be +10ms<sup>2</sup>.</p>\n<p><img src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The net is stretched across the middle of the table. The table has a length of 2.74m and the net has a height of 15.0cm.</p>\n<p>Show that the ball will go over the net.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the kinetic energy of the ball immediately after the bounce.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Player B intercepts the ball when it is at its peak height. Player B holds a paddle (racket) stationary and vertical. The ball is in contact with the paddle for 0.010s. Assume the collision is elastic.</p>\n<p><img src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\"/></p>\n<p>Calculate the average force exerted by the ball on the paddle. State your answer to an appropriate number of significant figures.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">d.ii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>t</em> = «<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mi>g</mi></mfrac></msqrt></math>=» 0.22 «s»<br/><strong><em>OR</em></strong></p>\n<p><em>t</em> = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mfrac><mrow><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>24</mn></mrow><mrow><mn>9</mn><mo>.</mo><mn>8</mn></mrow></mfrac></msqrt></math>  <strong>✓</strong> </p>\n<p><em>Answer to 2 or more significant figures or formula with variables replaced by correct values.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>increasing straight line from zero up to 0.2s in <em>x</em>-axis <strong>✓</strong></p>\n<p>with gradient = 10 <strong>✓</strong></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong>ALTERNATIVE 1 </strong></em></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>t</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>37</mn></mrow><mn>12</mn></mfrac><mo>=</mo></math>«0.114s» ✓</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>y</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>10</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>114</mn><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>065</mn></math>m ✓</p>\n<p>so (0.24 0.065) = 0.175 &gt; 0.15  <em><strong>OR</strong>  </em>0.065 &lt; (0.24 0.15) «so it goes over the net» <strong>✓</strong></p>\n<p> </p>\n<p><em><strong>ALTERNATIVE 2</strong></em></p>\n<p>«0.24 0.15 = 0.09 = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>10</mn><mo>×</mo><msup><mi>t</mi><mn>2</mn></msup></math> so» <em>t </em>= 0.134s <strong>✓</strong></p>\n<p>0.134 × 12 = 1.6 m <strong>✓</strong></p>\n<p>1.6 &gt; 1.37 «so ball passed the net already»  <strong>✓</strong></p>\n<p> </p>\n<p><em>Allow use of g = 9.8.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong>ALTERNATIVE 1 </strong></em></p>\n<p>KE = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>1</mn><mn>2</mn></mfrac></math><em>mv</em><sup>2</sup> + <em>mgh</em> = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>0.0027 ×10.5<sup>2</sup> + 0.0027 × 9.8 × 0.18 <strong>✓</strong></p>\n<p>0.15«J» <strong>✓</strong></p>\n<p> </p>\n<p><em><strong>ALTERNATIVE 2</strong></em></p>\n<p>Use of <em>v</em><sub>x</sub> = 10.5 <em><strong>AND</strong></em> <em>v</em><sub>y </sub><em>= </em>1.88 to get <em>v</em> = «<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mn>10</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo> </mo><mo>+</mo><mo> </mo><mn>1</mn><mo>.</mo><msup><mn>88</mn><mn>2</mn></msup></msqrt></math>» = 10.67 «ms<sup>1</sup>» <strong>✓</strong></p>\n<p>KE = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> × 0.0027 × 10.67<sup>2</sup> = 0.15«J»  <strong>✓</strong></p>\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Δ</mtext><mi>v</mi><mo> </mo><mo>=</mo><mo> </mo><mn>21</mn></math> «ms<sup>1</sup>» <strong>✓</strong></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>0027</mn><mo> </mo><mo>×</mo><mn>21</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>01</mn></mrow></mfrac></math></p>\n<p><em><strong>OR</strong></em></p>\n<p>5.67«N» <strong>✓</strong></p>\n<p>any answer to 2 significant figures «N» <strong>✓</strong></p>\n<div class=\"question_part_label\">d.ii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.ii.</div>\n</div>",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-1-kinematics",
"a-2-forces-and-momentum",
"a-3-work-energy-and-power"
]
},
{
"question_id": "21M.2.SL.TZ1.2",
"Question": "<div class=\"specification\">\n<p>A planet is in a circular orbit around a star. The speed of the planet is constant.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why a centripetal force is needed for the planet to be in a circular orbit.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the nature of this centripetal force.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the gravitational field of the planet.</p>\n<p>The following data are given:</p>\n<p style=\"padding-left:180px;\">Mass of planet            <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>8</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>24</mn></msup></math>kg<br/>Radius of the planet    <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>9</mn><mo>.</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></math>m.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>«circular motion» involves a changing velocity <strong>✓</strong></p>\n<p>«Tangential velocity» is «always» perpendicular to centripetal force/acceleration <strong>✓</strong></p>\n<p>there must be a force/acceleration towards centre/star <strong>✓</strong></p>\n<p>without a centripetal force the planet will move in a straight line <strong>✓</strong></p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>gravitational force/force of gravity ✓</p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>use of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mi>G</mi><mi>M</mi></mrow><msup><mi>R</mi><mn>2</mn></msup></mfrac></math> ✓</p>\n<p>6.4 «Nkg<sup>1</sup> or ms<sup>2</sup>» ✓</p>\n<div class=\"question_part_label\">b.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div>",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-2-forces-and-momentum"
]
},
{
"question_id": "21M.2.SL.TZ1.3",
"Question": "<div class=\"specification\">\n<p>A mass of 1.0kg of water is brought to its boiling point of 100°C using an electric heater of power 1.6kW.</p>\n</div><div class=\"specification\">\n<p>A mass of 0.86kg of water remains after it has boiled for 200s.</p>\n</div><div class=\"specification\">\n<p>The electric heater has two identical resistors connected in parallel.</p>\n<p><img src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\"/></p>\n<p>The circuit transfers 1.6kW when switch A only is closed. The external voltage is 220V.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The molar mass of water is 18gmol<sup>1</sup>. Estimate the average speed of the water molecules in the vapor produced. Assume the vapor behaves as an ideal gas.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State <strong>one</strong> assumption of the kinetic model of an ideal gas.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Estimate the specific latent heat of vaporization of water. State an appropriate unit for your answer.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why the temperature of water remains at 100°C during this time.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The heater is removed and a mass of 0.30 kg of pasta at 10 °C is added to the boiling water.</p>\n<p>Determine the equilibrium temperature of the pasta and water after the pasta is added. Other heat transfers are negligible.</p>\n<p style=\"padding-left:180px;\">Specific heat capacity of pasta = 1.8kJkg<sup>1</sup>K<sup>1</sup><br/>Specific heat capacity of water = 4.2kJkg<sup>1</sup>K<sup>1</sup></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that each resistor has a resistance of about 30Ω.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the power transferred by the heater when both switches are closed.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.ii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>E</em><sub>k</sub> = « <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>(</mo><mn>1</mn><mo>.</mo><mn>38</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>23</mn></mrow></msup><mo>)</mo><mo>(</mo><mn>373</mn><mo>)</mo></math>» = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>7</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>21</mn></mrow></msup></math>«J» <strong>✓</strong></p>\n<p><em>v = </em>«<em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mfrac><mrow><mn>3</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>38</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>23</mn></mrow></msup><mo>×</mo><mn>6</mn><mo>.</mo><mn>02</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup><mo>×</mo><mn>373</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>018</mn></mrow></mfrac></msqrt></math></em>»<em> = </em>720«ms<sup>1</sup>» <strong>✓</strong></p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>particles can be considered points «without dimensions» <strong>✓</strong></p>\n<p>no intermolecular forces/no forces between particles «except during collisions»<strong>✓</strong></p>\n<p>the volume of a particle is negligible compared to volume of gas <strong>✓</strong></p>\n<p>collisions between particles are elastic <strong>✓</strong></p>\n<p>time between particle collisions are greater than time of collision <strong>✓</strong></p>\n<p>no intermolecular PE/no PE between particles  <strong>✓</strong></p>\n<p> </p>\n<p><em>Accept reference to atoms/molecules for “particle”</em></p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>mL = P</em> t» so «<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi><mo>=</mo><mfrac><mrow><mn>1600</mn><mo>×</mo><mn>200</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>14</mn></mrow></mfrac></math>» = 2.3 x 10<sup>6</sup> «Jkg<sup>-1</sup>» <strong>✓</strong></p>\n<p>Jkg<sup>1 </sup><strong>✓</strong></p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«all» of the energy added is used to increase the «intermolecular» potential energy of the particles/break «intermolecular» bonds/<strong>OWTTE</strong> <strong>✓</strong></p>\n<p><em>Accept reference to atoms/molecules for “particle”</em> </p>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>use of mcΔT <strong>✓</strong></p>\n<p>0.86 × 4200 × (100 <em>T</em>) = 0.3 × 1800 × (<em>T</em> +10) <strong>✓</strong></p>\n<p><em>T</em><sub>eq</sub> = 85.69«°C» ≅ 86«°C» <strong>✓</strong></p>\n<p><em>Accept T<sub>eq</sub> in Kelvin (359 K).</em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mo>=</mo><mfrac><msup><mi>v</mi><mn>2</mn></msup><mi>R</mi></mfrac><mo> </mo><mi>so</mi><mo> </mo><mfrac><msup><mn>220</mn><mn>2</mn></msup><mn>1600</mn></mfrac><mo> </mo><mi>so</mi><mo> </mo><mi>R</mi><mo>=</mo><mn>30</mn><mo>.</mo><mn>25</mn></math> «Ω» <strong>✓</strong></p>\n<p><em>Must see either the substituted values <strong>OR</strong> a value for R to at least three s.f.</em></p>\n<p> </p>\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>use of parallel resistors addition so <em>R</em><sub>eq</sub> = 15«Ω» <strong>✓</strong></p>\n<p><em>P</em> = 3200«W» <strong>✓</strong></p>\n<div class=\"question_part_label\">d.ii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.ii.</div>\n</div>",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-1-thermal-energy-transfers",
"b-3-gas-laws",
"b-5-current-and-circuits"
]
},
{
"question_id": "21M.2.SL.TZ1.6",
"Question": "<div class=\"specification\">\n<p>On a guitar, the strings played vibrate between two fixed points. The frequency of vibration is modified by changing the string length using a finger. The different strings have different wave speeds. When a string is plucked, a standing wave forms between the bridge and the finger.</p>\n<p>                                                       <img src=\"\"/></p>\n</div><div class=\"specification\">\n<p>The string is displaced 0.4cm at point P to sound the guitar. Point P on the string vibrates with simple harmonic motion (shm) in its first harmonic with a frequency of 195Hz. The sounding length of the string is 62cm.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline how a standing wave is produced on the string.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the speed of the wave on the string is about 240ms<sup>1</sup>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Sketch a graph to show how the acceleration of point P varies with its displacement from the rest position.</p>\n<p>                 <img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>«travelling» wave moves along the length of the string and reflects «at fixed end» <strong>✓</strong></p>\n<p>superposition/interference of incident and reflected waves <strong>✓</strong></p>\n<p>the superposition of the reflections is reinforced only for certain wavelengths <strong>✓</strong> </p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi><mo>=</mo><mn>2</mn><mi>l</mi><mo>=</mo><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>62</mn><mo>=</mo><mo>«</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo> </mo><mtext>m</mtext><mo>»</mo></math> <strong>✓</strong></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>v</mi><mo>=</mo><mi>f</mi><mi>λ</mi><mo>=</mo><mn>195</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo>=</mo><mn>242</mn><mo> </mo><mo>«</mo><msup><mtext>ms</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong></p>\n<p><em>Answer must be to 3 or more sf <strong>or</strong> working shown for<strong> MP2.</strong></em></p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>straight line through origin with negative gradient <strong>✓</strong></p>\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-1-simple-harmonic-motion",
"c-2-wave-model",
"c-4-standing-waves-and-resonance"
]
},
{
"question_id": "21M.2.SL.TZ1.7",
"Question": "<div class=\"specification\">\n<p>Conservation of energy and conservation of momentum are two examples of conservation laws.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline the significance of conservation laws for physics.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>When a pi meson π- (du̅) and a proton (uud) collide, a possible outcome is a sigma baryon Σ<sup>0</sup> (uds) and a kaon meson Κ<sup>0</sup> (ds̅).</p>\n<p><br/>Apply <strong>three</strong> conservation laws to show that this interaction is possible.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>they express fundamental principles of nature <strong>✓</strong></p>\n<p>allow to model situations <strong>✓</strong></p>\n<p>allow to calculate unknown variables <strong>✓</strong></p>\n<p>allow to predict possible outcomes <strong>✓</strong></p>\n<p>allow to predict missing quantities/particles <strong>✓</strong></p>\n<p>allow comparison of different system states <strong>✓</strong></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>three correct conservation laws listed <strong>✓</strong></p>\n<p>at least one conservation law correctly demonstrated <strong>✓</strong></p>\n<p>all three conservation laws correctly demonstrated <strong>✓</strong></p>\n<div class=\"question_part_label\">b.</div>\n</div>",
"Examiners report": "",
"topics": [
"nature-of-science"
],
"subtopics": []
},
{
"question_id": "21M.2.SL.TZ1.8",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline how a standing wave is produced on the string.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the speed of the wave on the string is about 240ms\n <sup>\n 1\n </sup>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Sketch a graph to show how the acceleration of point P varies with its displacement from the rest position.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The string is made to vibrate in its third harmonic. State the distance between consecutive nodes.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n «travelling» wave moves along the length of the string and reflects «at fixed end»\n <strong>\n ✓\n </strong>\n </p>\n <p>\n superposition/interference of incident and reflected waves\n <strong>\n ✓\n </strong>\n </p>\n <p>\n the superposition of the reflections is reinforced only for certain wavelengths\n <strong>\n ✓\n </strong>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 2\n </mn>\n <mi>\n l\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 62\n </mn>\n <mo>\n =\n </mo>\n <mo>\n «\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 24\n </mn>\n <mo>\n </mo>\n <mtext>\n m\n </mtext>\n <mo>\n »\n </mo>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n v\n </mi>\n <mo>\n =\n </mo>\n <mi>\n f\n </mi>\n <mi>\n λ\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 195\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 24\n </mn>\n <mo>\n =\n </mo>\n <mn>\n 242\n </mn>\n <mo>\n </mo>\n <mo>\n «\n </mo>\n <msup>\n <mtext>\n m s\n </mtext>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n <mo>\n »\n </mo>\n </math>\n ✓\n </p>\n <p>\n <em>\n Answer must be to 3 or more sf or working shown for\n <strong>\n MP2.\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n straight line through origin with negative gradient\n <strong>\n ✓\n </strong>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 62\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 21\n </mn>\n <mo>\n </mo>\n <mo>\n «\n </mo>\n <mtext>\n cm\n </mtext>\n <mo>\n »\n </mo>\n </math>\n <strong>\n ✓\n </strong>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-1-simple-harmonic-motion",
"c-2-wave-model",
"c-4-standing-waves-and-resonance"
]
},
{
"question_id": "21M.2.SL.TZ2.1",
"Question": "<div class=\"specification\">\n<p>A football player kicks a stationary ball of mass 0.45kg towards a wall. The initial speed of the ball after the kick is 19ms<sup>1</sup> and the ball does not rotate. Air resistance is negligible and there is no wind.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The players foot is in contact with the ball for 55ms. Calculate the average force that acts on the ball due to the football player.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The ball leaves the ground at an angle of 22°. The horizontal distance from the initial position of the edge of the ball to the wall is 11m. Calculate the time taken for the ball to reach the wall.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The top of the wall is 2.4m above the ground. Deduce whether the ball will hit the wall.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>In practice, air resistance affects the ball. Outline the effect that air resistance has on the vertical acceleration of the ball. Take the direction of the acceleration due to gravity to be positive.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The player kicks the ball again. It rolls along the ground without sliding with a horizontal velocity of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>.</mo><mn>40</mn><mo></mo><msup><mtext>ms</mtext><mrow><mo></mo><mn>1</mn></mrow></msup></math>. The radius of the ball is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>11</mn><mo></mo><mtext>m</mtext></math>. Calculate the angular velocity of the ball. State an appropriate SI unit for your answer.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Δ</mtext><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>19</mn><mo> </mo><mtext mathvariant=\"bold-italic\">OR  </mtext><mi>a</mi><mo> </mo><mo>=</mo><mfrac><mn>19</mn><mrow><mn>0</mn><mo>.</mo><mn>055</mn></mrow></mfrac></math> <strong>✓</strong> </p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mo>=</mo><mi>F</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>19</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>055</mn></mrow></mfrac><mo>»</mo><mn>160</mn><mo> </mo><mo>«</mo><mtext>N</mtext><mo>»</mo></math> <strong>✓</strong></p>\n<p><em>Allow <strong>[2]</strong> marks for a bald correct answer.</em></p>\n<p><em>Allow <strong>ECF</strong> for <strong>MP2</strong> if 19 sin22 <strong>OR</strong> 19 cos22 used.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>horizontal speed =</mtext><mo> </mo><mn>19</mn><mo>×</mo><mi>cos</mi><mo></mo><mn>22</mn><mo> </mo><mo>«</mo><mo>=</mo><mn>17</mn><mo>.</mo><mn>6</mn><msup><mtext>ms</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong> </p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>time</mtext><mo>=</mo><mo>«</mo><mfrac><mtext>distance</mtext><mtext>speed</mtext></mfrac><mo>=</mo><mfrac><mn>11</mn><mrow><mn>19</mn><mo></mo><mi>cos</mi><mo></mo><mn>22</mn></mrow></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>62</mn><mo></mo><mo>«</mo><mtext>s</mtext><mo>»</mo></math> <strong>✓</strong></p>\n<p><em>Allow <strong>ECF</strong> for <strong>MP2</strong></em></p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>initial vertical speed</mtext><mo>=</mo><mn>19</mn><mo>×</mo><mi>sin</mi><mo></mo><mn>22</mn><mo> </mo><mo>«</mo><mo>=</mo><mo> </mo><mn>7</mn><mo>.</mo><mn>1</mn><mo></mo><msup><mtext>ms</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <strong>✓</strong> </p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mn>7</mn><mo>.</mo><mn>12</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>624</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>9</mn><mo>.</mo><mn>81</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>624</mn><mn>2</mn></msup><mo>=</mo><mo>»</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>5</mn><mo></mo><mo>«</mo><mtext>m</mtext><mo>»</mo></math> <strong>✓</strong></p>\n<p>ball does not hit wall <em><strong>OR</strong> </em>2.5«m» &gt; 2.4«m» <strong>✓</strong></p>\n<p><em><br/>Allow <strong>ECF</strong> from (b)(i) and from <strong>MP1</strong> </em></p>\n<p><em>Allow g=10ms<sup>2</sup></em></p>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>air resistance opposes «direction of» motion<br/><em><strong>OR</strong></em><br/>air resistance opposes velocity <strong>✓</strong></p>\n<p>on the way up «vertical» acceleration is increased <em><strong>OR</strong> </em>greater than g <strong>✓</strong></p>\n<p>on the way down «vertical» acceleration is decreased <em><strong>OR</strong> </em>smaller than g <strong>✓</strong></p>\n<p><em><br/>Allow deceleration/acceleration but meaning must be clear</em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>13</mn><mo></mo><mo>«</mo><mtext>rad</mtext><mo>»</mo><mo></mo><msup><mtext>s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math><strong>✓</strong></p>\n<p><em><br/>Unit must be seen for mark</em></p>\n<p><em>Accept Hz</em></p>\n<p><em>Accept <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn><mo> </mo><mi>π</mi><mo></mo><mo>«</mo><mtext>rad</mtext><mo>»</mo><mo></mo><msup><mtext>s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></em></p>\n<div class=\"question_part_label\">d.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.</div>\n</div>",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-1-kinematics",
"a-2-forces-and-momentum"
]
},
{
"question_id": "21M.2.SL.TZ2.5",
"Question": "<div class=\"specification\">\n<p>A vertical tube, open at both ends, is completely immersed in a container of water. A loudspeaker above the container connected to a signal generator emits sound. As the tube is raised the loudness of the sound heard reaches a maximum because a standing wave has formed in the tube.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Describe <strong>two</strong> ways in which standing waves differ from travelling waves.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline how a standing wave forms in the tube.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The tube is raised until the loudness of the sound reaches a maximum for a <strong>second time</strong>.</p>\n<p>Draw, on the following diagram, the position of the nodes in the tube when the second maximum is heard.</p>\n<p><img src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Between the first and second positions of maximum loudness, the tube is raised through 0.37m. The speed of sound in the air in the tube is 320ms<sup>1</sup>. Determine the frequency of the sound emitted by the loudspeaker.</p>\n<p> </p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.iii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>energy is not propagated by standing waves <strong>✓</strong></p>\n<p>amplitude constant for travelling waves <em><strong>OR</strong> </em>amplitude varies with position for standing waves <em><strong>OR</strong> </em>standing waves have nodes/antinodes <strong>✓</strong></p>\n<p>phase varies with position for travelling waves <em><strong>OR</strong> </em>phase constant inter-node for standing waves <strong>✓</strong></p>\n<p>travelling waves can have any wavelength <em><strong>OR</strong> </em>standing waves have discrete wavelengths<strong> ✓</strong></p>\n<p><strong><em><br/>OWTTE</em></strong></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«sound» wave «travels down tube and» is reflected <strong>✓</strong></p>\n<p>incident and reflected wave superpose/combine/interfere <strong>✓</strong></p>\n<p><strong><em><br/>OWTTE</em></strong></p>\n<p><em>Do not award <strong>MP1</strong> if the reflection is quoted at the walls/container</em></p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>nodes shown at water surface <em><strong>AND </strong></em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>2</mn><mn>3</mn></mfrac></math>way up tube (by eye) <strong>✓</strong></p>\n<p><em><br/>Accept drawing of displacement diagram for correct harmonic without nodes specifically identified. </em></p>\n<p><em>Award <strong>[0]</strong> if waveform is shown below the water surface</em></p>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>74</mn><mo></mo><mo>«</mo><mtext>m</mtext><mo>»</mo></math> <strong>✓</strong></p>\n<p><strong><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo>=</mo><mo>«</mo><mfrac><mi>c</mi><mi>λ</mi></mfrac><mo>=</mo><mfrac><mn>320</mn><mrow><mn>0</mn><mo>.</mo><mn>74</mn></mrow></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>430</mn><mo> </mo><mo>«</mo><mtext>Hz</mtext><mo>»</mo></math> ✓</strong></p>\n<p><em><br/>Allow <strong>ECF</strong> from <strong>MP1</strong></em></p>\n<div class=\"question_part_label\">b.iii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.iii.</div>\n</div>",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-4-standing-waves-and-resonance"
]
},
{
"question_id": "21M.2.SL.TZ2.6",
"Question": "<div class=\"specification\">\n<p>A photovoltaic cell is supplying energy to an external circuit. The photovoltaic cell can be modelled as a practical electrical cell with internal resistance.</p>\n<p>The intensity of solar radiation incident on the photovoltaic cell at a particular time is at a maximum for the place where the cell is positioned.</p>\n<p>The following data are available for this particular time:</p>\n<p style=\"text-align: left; padding-left: 150px;\">                                          Operating current = 0.90 A<br/>Output potential difference to external circuit = 14.5 V<br/>                      Output emf of photovoltaic cell = 21.0 V<br/>                                                 Area of panel = 350mm×450mm</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why the output potential difference to the external circuit and the output emf of the photovoltaic cell are different.</p>\n<p> </p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the internal resistance of the photovoltaic cell for the maximum intensity condition using the model for the cell.</p>\n<p> </p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The maximum intensity of sunlight incident on the photovoltaic cell at the place on the Earths surface is 680Wm<sup>2</sup>.</p>\n<p>A measure of the efficiency of a photovoltaic cell is the ratio</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mtext>energy available every second to the external circuit</mtext><mtext>energy arriving every second at the photovoltaic cell surface</mtext></mfrac><mo>.</mo></math></p>\n<p>Determine the efficiency of this photovoltaic cell when the intensity incident upon it is at a maximum.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State <strong>two</strong> reasons why future energy demands will be increasingly reliant on sources such as photovoltaic cells.</p>\n<p><img src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>there is a potential difference across the internal resistance<br/><em><strong>OR</strong></em><br/>there is energy/power dissipated in the internal resistance <strong>✓</strong></p>\n<p>when there is current «in the cell»/as charge flows «through the cell»<strong> ✓</strong></p>\n<p><em><br/>Allow full credit for answer based on <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi><mo>=</mo><mi>ε</mi><mo>-</mo><mi>I</mi><mi>r</mi></math></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong>ALTERNATIVE 1</strong></em><br/>pd dropped across cell <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo></mo><mo>«</mo><mtext>V</mtext><mo>»</mo></math>✓</p>\n<p>internal resistance <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">=</mi><mfrac><mrow><mn>6</mn><mo>.</mo><mn>5</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>9</mn></mrow></mfrac></math> ✓</p>\n<p><strong><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>7</mn><mo>.</mo><mn>2</mn><mo> </mo><mo>«</mo><mtext>Ω</mtext><mo>»</mo></math>✓</strong></p>\n<p><em><strong><br/>ALTERNATIVE 2</strong></em></p>\n<p><em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ε</mi><mo>=</mo><mi>I</mi><mo>(</mo><mi>R</mi><mo>+</mo><mi>r</mi><mo>)</mo></math> so <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ε</mi><mo>=</mo><mi>V</mi><mo>+</mo><mi>I</mi><mi>r</mi></math> <strong>✓</strong></em></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>21</mn><mo>.</mo><mn>0</mn><mo>=</mo><mn>14</mn><mo>.</mo><mn>5</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>9</mn><mo>×</mo><mi>r</mi></math> <strong>✓</strong></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>7</mn><mo>.</mo><mn>2</mn><mo> </mo><mo>«</mo><mtext>Ω</mtext><mo>»</mo></math> <strong>✓</strong></p>\n<p><em><br/>Alternative solutions are possible</em></p>\n<p><em>Award <strong>[3]</strong> marks for a bald correct answer</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>power arriving at cell = 680 x 0.35 x 0.45 = «107 <strong>✓</strong></p>\n<p>power in external circuit = 14.5 x 0.9 = «13.1W» <strong>✓</strong></p>\n<p>efficiency = 0.12 <em><strong>OR</strong></em> 12% <strong>✓</strong></p>\n<p><em><br/>Award <strong>[3] marks</strong> for a bald correct answer</em></p>\n<p><em>Allow <strong>ECF</strong> for <strong>MP3</strong></em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«energy from Sun/photovoltaic cells» is renewable<br/><em><strong>OR</strong></em><br/>non-renewable are running out <strong>✓</strong></p>\n<p>non-polluting/clean <strong>✓</strong></p>\n<p>no greenhouse gases<br/><em><strong>OR</strong></em><br/>does not contribute to global warming/climate change <strong>✓</strong></p>\n<p><em><strong><br/>OWTTE </strong></em></p>\n<p><em>Do not allow economic aspects (e.g. free energy)</em></p>\n<div class=\"question_part_label\">d.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"a-3-work-energy-and-power",
"b-5-current-and-circuits"
]
},
{
"question_id": "21N.2.HL.TZ0.5",
"Question": "<div class=\"specification\">\n<p>A square loop of side 5.0cm enters a region of uniform magnetic field at <em>t</em> = 0. The loop exits the region of magnetic field at <em>t</em> = 3.5s. The magnetic field strength is 0.94T and is directed into the plane of the paper. The magnetic field extends over a length 65cm. The speed of the loop is constant.</p>\n<p><img src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the speed of the loop is 20cms<sup>1</sup>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Sketch, on the axes, a graph to show the variation with time of the magnetic flux linkage <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Φ</mi></math> in the loop.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Sketch, on the axes, a graph to show the variation with time of the magnitude of the emf induced in the loop.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>There are 85 turns of wire in the loop. Calculate the maximum induced emf in the loop.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The resistance of the loop is 2.4 Ω. Calculate the magnitude of the magnetic force on the loop as it enters the region of magnetic field.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the energy dissipated in the loop from <em>t</em>=0 to <em>t</em>=3.5s is 0.13J.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The mass of the wire is 18g. The specific heat capacity of copper is 385Jkg<sup>1</sup>K<sup>1</sup>. Estimate the increase in temperature of the wire.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.ii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>70</mn><mrow><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfrac></math> ✓</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p>shape as above ✓</p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p>shape as above ✓</p>\n<p> </p>\n<p><em>Vertical lines not necessary to score.</em></p>\n<p><em>Allow <strong>ECF</strong> from <strong>(b)(i)</strong>.</em></p>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong>ALTERNATIVE 1</strong></em></p>\n<p>maximum flux at «<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>5</mn><mo>.</mo><mn>0</mn><mo>×</mo><mn>5</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup><mo>×</mo><mn>85</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>94</mn></math>» <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>0</mn><mo>.</mo><mn>19975</mn><mo>≈</mo><mn>0</mn><mo>.</mo><mn>20</mn><mo></mo></math>«Wb» ✓</p>\n<p>emf = «<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>20</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>25</mn></mrow></mfrac><mo>=</mo></math>» <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>80</mn><mo></mo></math>«V» ✓</p>\n<p><em><strong><br/>ALTERNATIVE 2</strong></em></p>\n<p>emf induced in one turn = <em>BvL</em> = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>94</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>20</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>05</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>0094</mn><mo></mo></math>«V» ✓</p>\n<p>emf <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>85</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>0094</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>80</mn><mo></mo></math>«V» ✓</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>\n<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>I</mi><mo>=</mo><mo>«</mo><mfrac><mi>V</mi><mi>R</mi></mfrac><mo>=</mo><mo>»</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>8</mn></mrow><mrow><mn>2</mn><mo>.</mo><mn>4</mn></mrow></mfrac></math>  <em><strong>OR  </strong></em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>33</mn></math>«A» ✓</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo>=</mo><mo>«</mo><mi>N</mi><mi>B</mi><mi>I</mi><mi>L</mi><mo>=</mo><mn>85</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>94</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>33</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>05</mn><mo>=</mo><mo>»</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>3</mn></math>«N» ✓</p>\n<p> </p>\n<p><em>Allow <strong>ECF</strong> from <strong>(c)(i)</strong>.</em></p>\n<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>\n<div class=\"question_part_label\">c.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Energy is being dissipated for 0.50s ✓</p>\n<p><br/><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi><mo>=</mo><mi>F</mi><mi>v</mi><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>20</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>50</mn><mo>=</mo></math>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>13</mn></math>J»</p>\n<p><em><strong>OR</strong></em></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi><mo>=</mo><mi>V</mi><mi>l</mi><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>80</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>33</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>50</mn><mo>=</mo></math>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>.</mo><mn>13</mn></math> ✓</p>\n<p> </p>\n<p><em>Allow <strong>ECF</strong> from <strong>(b)</strong> and <strong>(c)</strong>. </em></p>\n<p><em>Watch for candidates who do not justify somehow the use of 0.5s and just divide by 2 their answer.</em></p>\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>∆</mo><mi>T</mi><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>13</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>018</mn><mo>×</mo><mn>385</mn></mrow></mfrac></math> ✓</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>∆</mo><mi>T</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>«K» ✓</p>\n<p> </p>\n<p><em>Allow <strong>[2]</strong> marks for a bald correct answer.</em></p>\n<p><em>Award <strong>[1]</strong> for a <strong>POT</strong> error in <strong>MP1</strong>.</em></p>\n<div class=\"question_part_label\">d.ii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.ii.</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"b-the-particulate-nature-of-matter",
"d-fields"
],
"subtopics": [
"a-3-work-energy-and-power",
"b-1-thermal-energy-transfers",
"b-5-current-and-circuits",
"d-3-motion-in-electromagnetic-fields",
"d-4-induction"
]
},
{
"question_id": "21N.2.HL.TZ0.7",
"Question": "<div class=\"specification\">\n<p>A conducting sphere has radius 48cm. The electric potential on the surface of the sphere is 3.4×10<sup>5</sup>V.</p>\n</div><div class=\"specification\">\n<p>The sphere is connected by a long conducting wire to a second conducting sphere of radius 24cm. The second sphere is initially uncharged.</p>\n<p style=\"text-align: center;\"> <img src=\"\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the charge on the surface of the sphere is +18μC.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Describe, in terms of electron flow, how the smaller sphere becomes charged.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Predict the charge on each sphere.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mi>V</mi><mi>R</mi></mrow><mi>k</mi></mfrac><mo>=</mo><mo>»</mo><mfrac><mrow><mn>3</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>48</mn></mrow><mrow><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfrac></math></p>\n<p><em><strong>OR</strong></em></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi><mo>=</mo><mn>18</mn><mo>.</mo><mn>2</mn></math>«μC» ✓</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>electrons leave the small sphere «making it positively charged» ✓</p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi><mfrac><msub><mi>q</mi><mn>1</mn></msub><mn>48</mn></mfrac><mo>=</mo><mi>k</mi><mfrac><msub><mi>q</mi><mn>2</mn></msub><mn>24</mn></mfrac><mo>⇒</mo><msub><mi>q</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn><msub><mi>q</mi><mn>2</mn></msub></math> ✓</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>q</mi><mn>1</mn></msub><mo>+</mo><msub><mi>q</mi><mn>2</mn></msub><mo>=</mo><mn>18</mn></math> ✓</p>\n<p>so <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>q</mi><mn>1</mn></msub><mo>=</mo><mn>12</mn></math>«μC», <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>q</mi><mn>2</mn></msub><mo>=</mo><mn>6</mn><mo>.</mo><mn>0</mn></math>«μC» ✓</p>\n<p> </p>\n<p><em>Award <strong>[3]</strong> marks for a bald correct answer.</em></p>\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"topics": [
"b-the-particulate-nature-of-matter",
"d-fields"
],
"subtopics": [
"b-5-current-and-circuits",
"d-2-electric-and-magnetic-fields"
]
},
{
"question_id": "21N.2.HL.TZ0.8",
"Question": "<div class=\"specification\">\n<p>The graph shows the variation with diffraction angle of the intensity of light after it has passed through four parallel slits.</p>\n<p><img src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\"/></p>\n<p>The number of slits is increased but their separation and width stay the same. All slits are illuminated.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State what is meant by the Doppler effect.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>A plate performs simple harmonic oscillations with a frequency of 39Hz and an amplitude of 8.0cm.</p>\n<p>Show that the maximum speed of the oscillating plate is about 20ms<sup>1</sup>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Sound of frequency 2400Hz is emitted from a stationary source towards the oscillating plate in (b). The speed of sound is 340ms<sup>1</sup>.</p>\n<p><img src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\"/></p>\n<p>Determine the maximum frequency of the sound that is received back at the source after reflection at the plate.</p>\n<p> </p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State what will happen to the angular position of the primary maxima.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State what will happen to the width of the primary maxima.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State what will happen to the intensity of the secondary maxima.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d.iii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>the change in the observed frequency ✓</p>\n<p>when there is relative motion between the source and the observer ✓</p>\n<p> </p>\n<p><em>Do not award<strong> MP1</strong> if they refer to wavelength.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>use of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi mathvariant=\"normal\">π</mi><mi>f</mi><mi>A</mi></math> ✓</p>\n<p>maximum speed is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi mathvariant=\"normal\">π</mi><mo>×</mo><mn>39</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>080</mn><mo>=</mo><mn>19</mn><mo>.</mo><mn>6</mn></math>«ms<sup>1</sup>» ✓</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>frequency at plate <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2400</mn><mo>×</mo><mfrac><mrow><mn>340</mn><mo>+</mo><mn>19</mn><mo>.</mo><mn>6</mn></mrow><mn>340</mn></mfrac></math>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>=</mo><mn>2538</mn><mo></mo></math>Hz»</p>\n<p>at source <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2538</mn><mo>×</mo><mfrac><mn>340</mn><mrow><mn>340</mn><mo>-</mo><mn>19</mn><mo>.</mo><mn>6</mn></mrow></mfrac><mo>=</mo><mn>2694</mn><mo>≈</mo><mn>2700</mn></math>«Hz» ✓</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>\n<p><em>Award <strong>[1]</strong> mark when the effect is only applied once.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>stays the same ✓</p>\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>decreases ✓</p>\n<div class=\"question_part_label\">d.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>decreases ✓</p>\n<div class=\"question_part_label\">d.iii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.iii.</div>\n</div>",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-1-simple-harmonic-motion",
"c-3-wave-phenomena",
"c-5-doppler-effect"
]
},
{
"question_id": "21N.2.SL.TZ0.3",
"Question": "<div class=\"specification\">\n<p>A longitudinal wave travels in a medium with speed 340ms<sup>1</sup>. The graph shows the variation with time <em>t</em> of the displacement <em>x</em> of a particle P in the medium. Positive displacements on the graph correspond to displacements to the right for particle P.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"specification\">\n<p>Another wave travels in the medium. The graph shows the variation with time <em>t</em> of the displacement of each wave at the position of P.</p>\n<p><img src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\"/></p>\n</div><div class=\"specification\">\n<p>A standing sound wave is established in a tube that is closed at one end and open at the other end. The period of the wave is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>. The diagram represents the standing wave at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>t</mi><mo>=</mo><mn>0</mn></math> and at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>t</mi><mo>=</mo><mfrac><mi>T</mi><mn>8</mn></mfrac></math>. The wavelength of the wave is 1.20m. Positive displacements mean displacements to the right.</p>\n<p style=\"text-align: left;\"><img src=\"\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the wavelength of the wave.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the phase difference between the two waves.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Identify a time at which the displacement of P is zero.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Estimate the amplitude of the resultant wave.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the length of the tube.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>A particle in the tube has its equilibrium position at the open end of the tube.<br/>State and explain the direction of the velocity of this particle at time <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>t</mi><mo>=</mo><mfrac><mi>T</mi><mn>8</mn></mfrac></math>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw on the diagram the standing wave at time <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>t</mi><mo>=</mo><mfrac><mi>T</mi><mn>4</mn></mfrac></math>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.iii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi><mo>=</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo></math>«s» or <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo>=</mo><mn>250</mn><mo></mo></math>«Hz» ✓</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi><mo>=</mo><mn>340</mn><mo>×</mo><mn>4</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>.</mo><mn>36</mn><mo>≈</mo><mn>1</mn><mo>.</mo><mn>4</mn><mo></mo></math>«m» ✓</p>\n<p> </p>\n<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.<br/>Award <strong>[2]</strong> for a bald correct answer.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«±» <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mi mathvariant=\"normal\">π</mi><mn>2</mn></mfrac><mo>/</mo><mn>90</mn><mo>°</mo></math>  <em><strong>OR</strong></em>  <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>3</mn><mi mathvariant=\"normal\">π</mi></mrow><mn>2</mn></mfrac><mo>/</mo><mn>270</mn><mo>°</mo></math> ✓</p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>1.5«ms» ✓</p>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>8.0 <em><strong>OR</strong> </em>8.5«μm» ✓</p>\n<p><em><br/>From the graph on the paper, value is 8.0. From the calculated correct trig functions, value is 8.49.</em></p>\n<div class=\"question_part_label\">b.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>L</em> = «<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle displaystyle=\"false\"><mfrac><mn>3</mn><mn>4</mn></mfrac><mi>λ</mi><mo>=</mo></mstyle></math>» 0.90«m» ✓</p>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>to the right ✓<br/><br/></p>\n<p>displacement is getting less negative</p>\n<p><em><strong>OR</strong></em></p>\n<p>change of displacement is positive ✓</p>\n<div class=\"question_part_label\">c.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>horizontal line drawn at the equilibrium position ✓</p>\n<div class=\"question_part_label\">c.iii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.iii.</div>\n</div>",
"topics": [
"c-wave-behaviour",
"d-fields"
],
"subtopics": [
"c-1-simple-harmonic-motion",
"d-2-electric-and-magnetic-fields"
]
},
{
"question_id": "21N.2.SL.TZ0.4",
"Question": "<div class=\"specification\">\n<p>A charged particle, P, of charge +68μC is fixed in space. A second particle, Q, of charge +0.25μC is held at a distance of 48cm from P and is then released.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"specification\">\n<p>The diagram shows two parallel wires X and Y that carry equal currents into the page.</p>\n<p><img src=\"\"/></p>\n<p>Point Q is equidistant from the two wires. The magnetic field at Q due to wire X <strong>alone </strong>is 15mT.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The work done to move a particle of charge 0.25μC from one point in an electric field to another is 4.5μJ. Calculate the magnitude of the potential difference between the two points.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the force on Q at the instant it is released.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Describe the motion of Q after release.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>On the diagram draw an arrow to show the direction of the magnetic field at Q due to wire X <strong>alone</strong>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the magnitude and direction of the resultant magnetic field at Q.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.ii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mo>.</mo><mn>5</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>25</mn></mrow></mfrac><mo>=</mo></math>»18«V» ✓</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo>=</mo><mfrac><mrow><mn>8</mn><mo>.</mo><mn>99</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup><mo>×</mo><mn>68</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>25</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>48</mn><mn>2</mn></msup></mrow></mfrac></math> ✓</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>66</mn></math>«N» ✓</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> marks for a bald correct answer. </em></p>\n<p><em>Allow symbolic k in substitutions for <strong>MP1</strong>. </em></p>\n<p><em>Do <strong>not</strong> allow <strong>ECF</strong> from incorrect or not squared distance.</em></p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Q moves to the right/away from P «along a straight line»</p>\n<p><em><strong>OR</strong></em></p>\n<p>Q is repelled from P ✓</p>\n<p><br/>with increasing speed/Q accelerates ✓</p>\n<p>acceleration decreases ✓</p>\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p> </p>\n<p><img src=\"\"/></p>\n<p>arrow of any length as shown ✓</p>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«using components or Pythagoras to get» <em>B</em> = 21«mT» ✓</p>\n<p>directed «horizontally» to the right ✓</p>\n<p> </p>\n<p><em>If no unit seen, assume</em> mT.</p>\n<div class=\"question_part_label\">c.ii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.ii.</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"b-the-particulate-nature-of-matter",
"d-fields"
],
"subtopics": [
"a-2-forces-and-momentum",
"b-5-current-and-circuits",
"d-2-electric-and-magnetic-fields",
"d-3-motion-in-electromagnetic-fields"
]
},
{
"question_id": "21N.2.SL.TZ0.5",
"Question": "<div class=\"specification\">\n<p>Plutonium-238 (Pu) decays by alpha (α) decay into uranium (U).</p>\n<p>The following data are available for binding energies per nucleon:</p>\n<p style=\"padding-left: 30px;\">plutonium          7.568MeV</p>\n<p style=\"padding-left: 30px;\">uranium             7.600MeV</p>\n<p style=\"padding-left: 30px;\">alpha particle     7.074MeV</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State what is meant by the binding energy of a nucleus.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw, on the axes, a graph to show the variation with nucleon number <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> of the binding energy per nucleon, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mtext>BE</mtext><mi>A</mi></mfrac></math>. Numbers are not required on the vertical axis.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Identify, with a cross, on the graph in (a)(ii), the region of greatest stability.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the energy released in this decay is about 6MeV.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The plutonium nucleus is at rest when it decays.</p>\n<p>Calculate the ratio <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mtext>kinetic energy of alpha particle</mtext><mtext>kinetic energy of uranium</mtext></mfrac></math>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>the energy needed to «completely» separate the nucleons of a nucleus</p>\n<p><em><strong>OR</strong></em></p>\n<p>the energy released when a nucleus is assembled from its constituent nucleons ✓</p>\n<p> </p>\n<p><em>Accept reference to protons <strong>AND</strong> neutrons.</em></p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>curve rising to a maximum between 50 and 100 ✓</p>\n<p>curve continued and decreasing ✓</p>\n<p> </p>\n<p><em>Ignore starting point.<br/></em></p>\n<p><em>Ignore maximum at alpha particle</em></p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>At a point on the peak of their graph ✓</p>\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>correct mass numbers for uranium (234) and alpha (4) ✓</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>234</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>600</mn><mo>+</mo><mn>4</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>074</mn><mo>-</mo><mn>238</mn><mo>×</mo><mn>7</mn><mo>.</mo><mn>568</mn></math>«MeV» ✓</p>\n<p>energy released 5.51«MeV» ✓</p>\n<p> </p>\n<p><em>Ignore any negative sign.</em></p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mi>K</mi><msub><mi>E</mi><mi>α</mi></msub></mrow><mrow><mi>K</mi><msub><mi>E</mi><mi>U</mi></msub></mrow></mfrac><mo>=</mo></math>»<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle displaystyle=\"false\"><mfrac><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>α</mi></msub></mrow></mfrac><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>2</mn><msub><mi>m</mi><mi>U</mi></msub></mrow></mfrac></mfrac></mstyle></math>  <em><strong>OR  </strong></em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><msub><mi>m</mi><mi>U</mi></msub><msub><mi>m</mi><mi>α</mi></msub></mfrac></math> ✓</p>\n<p>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>234</mn><mn>4</mn></mfrac><mo>=</mo></math>» <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>58</mn><mo>.</mo><mn>5</mn></math> ✓</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>\n<p><em>Accept <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>117</mn><mn>2</mn></mfrac></math> for <strong>MP2</strong>.</em></p>\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"topics": [
"a--space-time-and-motion",
"b-the-particulate-nature-of-matter",
"d-fields"
],
"subtopics": [
"a-3-work-energy-and-power",
"b-1-thermal-energy-transfers",
"b-5-current-and-circuits",
"d-3-motion-in-electromagnetic-fields"
]
},
{
"question_id": "21N.2.SL.TZ0.6",
"Question": "<div class=\"specification\">\n<p>Titan is a moon of Saturn. The Titan-Sun distance is 9.3 times greater than the Earth-Sun distance.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the intensity of the solar radiation at the location of Titan is 16Wm<sup>2</sup></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Titan has an atmosphere of nitrogen. The albedo of the atmosphere is 0.22. The surface of Titan may be assumed to be a black body. Explain why the <strong>average </strong>intensity of solar radiation <strong>absorbed</strong> by the whole surface of Titan is 3.1Wm<sup>2</sup></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the equilibrium surface temperature of Titan is about 90K.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The orbital radius of Titan around Saturn is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> and the period of revolution is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>.</p>\n<p>Show that <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>T</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant=\"normal\">π</mi><mn>2</mn></msup><msup><mi>R</mi><mrow><mo></mo><mn>3</mn></mrow></msup></mrow><mrow><mi>G</mi><mi>M</mi></mrow></mfrac></math> where <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math> is the mass of Saturn.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The orbital radius of Titan around Saturn is 1.2×10<sup>9</sup>m and the orbital period is 15.9 days. Estimate the mass of Saturn.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>incident intensity <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>1360</mn><mrow><mn>9</mn><mo>.</mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfrac></math> <em><strong>OR </strong></em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>15</mn><mo>.</mo><mn>7</mn><mo>≈</mo><mn>16</mn></math>«Wm<sup>2</sup>» ✓</p>\n<p> </p>\n<p><em>Allow the use of 1400 for the solar constant.</em></p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>exposed surface is ¼ of the total surface ✓</p>\n<p>absorbed intensity = (10.22) × incident intensity ✓</p>\n<p>0.78 × 0.25 × 15.7  <em><strong>OR </strong> </em>3.07«Wm<sup>2</sup>» ✓</p>\n<p> </p>\n<p><em>Allow 3.06 from rounding and 3.12 if they use 16</em>Wm<sup>2</sup>.</p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>σT</em><sup>4</sup> = 3.07</p>\n<p><em><strong>OR</strong></em></p>\n<p><em>T</em> = 86«K» ✓</p>\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>correct equating of gravitational force / acceleration to centripetal force / acceleration ✓</p>\n<p>correct rearrangement to reach the expression given ✓</p>\n<p> </p>\n<p><em>Allow use of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mfrac><mrow><mi>G</mi><mi>M</mi></mrow><mi>R</mi></mfrac></msqrt><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant=\"normal\">π</mi><mi>R</mi></mrow><mi>T</mi></mfrac></math> for <strong>MP1</strong>.</em></p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></math>«s» ✓</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant=\"normal\">π</mi><mn>2</mn></msup><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>9</mn></msup></mrow></mfenced><mn>3</mn></msup></mrow><mrow><mn>6</mn><mo>.</mo><mn>67</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo>×</mo><msup><mfenced><mrow><mn>15</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>24</mn><mo>×</mo><mn>3600</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>5</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>26</mn></msup><mo></mo></math>«kg» ✓</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> marks for a bald correct answer.</em></p>\n<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong>.</em></p>\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.iii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"topics": [
"b-the-particulate-nature-of-matter",
"d-fields"
],
"subtopics": [
"b-2-greenhouse-effect",
"d-1-gravitational-fields"
]
},
{
"question_id": "22M.2.HL.TZ1.3",
"Question": "<div class=\"specification\">\n<p>Two loudspeakers A and B are initially equidistant from a microphone M. The frequency and intensity emitted by A and B are the same. A and B emit sound in phase. A is fixed in position.</p>\n<p><img src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\"/></p>\n<p>B is moved slowly away from M along the line MP. The graph shows the variation with distance travelled by B of the received intensity at M.</p>\n<p><img src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why the received intensity varies between maximum and minimum values.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State and explain the wavelength of the sound measured at M.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>B is placed at the first minimum. The frequency is then changed until the received intensity is again at a maximum.</p>\n<p>Show that the lowest frequency at which the intensity maximum can occur is about 3kHz.</p>\n<p style=\"text-align:center;\">Speed of sound = 340ms<sup>1</sup></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Loudspeaker A is switched off. Loudspeaker B moves away from M at a speed of 1.5ms<sup>1</sup> while emitting a frequency of 3.0kHz.</p>\n<p>Determine the difference between the frequency detected at M and that emitted by B.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>movement of B means that path distance is different « between BM and AM »<br/><em><strong>OR</strong></em><br/>movement of B creates a path difference «between BM and AM» ✓</p>\n<p>interference<br/><em><strong>OR</strong></em><br/>superposition «of waves» ✓</p>\n<p>maximum when waves arrive in phase / path difference = n x lambda<br/><em><strong>OR</strong></em><br/>minimum when waves arrive «180° or <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math> » out of phase / path difference = (n+½) x lambda ✓</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>wavelength = 26cm ✓</p>\n<p><br/>peak to peak distance is the path difference which is one wavelength</p>\n<p><em><strong>OR</strong></em></p>\n<p>this is the distance B moves to be back in phase «with A» ✓</p>\n<p> </p>\n<p><em>Allow 2527 cm for <strong>MP1</strong>.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mi>λ</mi><mn>2</mn></mfrac></math>» = 13cm ✓</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo>=</mo></math>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mi>c</mi><mi>λ</mi></mfrac><mo>=</mo><mfrac><mn>340</mn><mrow><mn>0</mn><mo>.</mo><mn>13</mn></mrow></mfrac><mo>=</mo></math>» 2.6«kHz» ✓</p>\n<p> </p>\n<p><em>Allow ½ of wavelength from (b) or data from graph for <strong>MP1</strong>.</em></p>\n<p><em>Allow ECF from <strong>MP1</strong>.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong>ALTERNATIVE 1</strong></em><br/>use of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo>'</mo><mo>=</mo><mi>f</mi><mfrac><mi>v</mi><mrow><mi>v</mi><mo>+</mo><msub><mi>u</mi><mn>0</mn></msub></mrow></mfrac></math> (+ sign must be seen) <strong><em>OR</em> </strong><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo>'</mo></math>= 2987«Hz» ✓<br/>« <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Δ</mi><mi>f</mi></math>» = 13«Hz» ✓</p>\n<p> </p>\n<p><em><strong>ALTERNATIVE 2</strong></em><br/>Attempted use of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mi>Δ</mi><mi>f</mi></mrow><mi>f</mi></mfrac></math>≈ <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mi>v</mi><mi>c</mi></mfrac></math><br/><br/>« Δf » = 13«Hz» ✓</p>\n<div class=\"question_part_label\">d.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was an \"explain\" questions, so examiners were looking for a clear discussion of the movement of speaker B creating a changing path difference between B and the microphone and A and the microphone. This path difference would lead to interference, and the examiners were looking for a connection between specific phase differences or path differences for maxima or minima. Some candidates were able to discuss basic concepts of interference (e.g. \"there is constructive and destructive interference\"), but failed to make clear connections between the physical situation and the given graph. A very common mistake candidates made was to think the question was about intensity and to therefore describe the decrease in peak height of the maxima on the graph. Another common mistake was to approach this as a Doppler question and to attempt to answer it based on the frequency difference of B.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates recognized that the wavelength was 26 cm, but the explanations were lacking the details about what information the graph was actually providing. Examiners were looking for a connection back to path difference, and not simply a description of peak-to-peak distance on the graph. Some candidates did not state a wavelength at all, and instead simply discussed the concept of wavelength or suggested that the wavelength was constant.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was a \"show that\" question that had enough information for backwards working. Examiners were looking for evidence of using the wavelength from (b) or information from the graph to determine wavelength followed by a correct substitution and an answer to more significant digits than the given result.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates were successful in setting up a Doppler calculation and determining the new frequency, although some missed the second step of finding the difference in frequencies.</p>\n<div class=\"question_part_label\">d.</div>\n</div>",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-3-wave-phenomena",
"c-5-doppler-effect"
]
},
{
"question_id": "22M.2.SL.TZ1.1",
"Question": "<div class=\"specification\">\n<p>A student uses a load to pull a box up a ramp inclined at 30°. A string of constant length and negligible mass connects the box to the load that falls vertically. The string passes over a pulley that runs on a frictionless axle. Friction acts between the base of the box and the ramp. Air resistance is negligible.</p>\n<p><img src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\"/></p>\n<p>The load has a mass of 3.5kg and is initially 0.95m above the floor. The mass of the box is 1.5kg.</p>\n<p>The load is released and accelerates downwards.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline <strong>two</strong> differences between the momentum of the box and the momentum of the load at the same instant.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The vertical acceleration of the load downwards is 2.4ms<sup>2</sup>.</p>\n<p>Calculate the tension in the string.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Show that the speed of the load when it hits the floor is about 2.1ms<sup>1</sup>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The radius of the pulley is 2.5cm. Calculate the angular speed of rotation of the pulley as the load hits the floor. State your answer to an appropriate number of significant figures.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>After the load has hit the floor, the box travels a further 0.35m along the ramp before coming to rest. Determine the average frictional force between the box and the surface of the ramp.</p>\n<div class=\"marks\">[4]</div>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The student then makes the ramp horizontal and applies a constant horizontal force to the box. The force is just large enough to start the box moving. The force continues to be applied after the box begins to move.</p>\n<p><img src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\"/></p>\n<p>Explain, with reference to the frictional force acting, why the box accelerates once it has started to move. </p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">e.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>direction of motion is different / <em><strong>OWTTE</strong> </em>✓</p>\n<p><em>mv</em> / magnitude of momentum is different «even though <em>v</em> the same» ✓</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>use of <em>ma=mgT</em> «3.5x2.4=3.5<em>gT</em> »</p>\n<p><em><strong>OR</strong></em></p>\n<p><em>T</em>=3.5(<em>g</em>2.4) ✓</p>\n<p>26«N» ✓</p>\n<p> </p>\n<p><em>Accept 27N from g=10ms<sup>2</sup></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>proper use of kinematic equation ✓</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mfenced><mrow><mn>2</mn><mo>×</mo><mn>2</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>95</mn></mrow></mfenced></msqrt><mo>=</mo><mn>2</mn><mo>.</mo><mn>14</mn></math>«ms<sup>1</sup>» ✓</p>\n<p> </p>\n<p><em>Must see either the substituted values <strong>OR</strong> a value for v to at least three s.f. for <strong>MP2</strong>.</em></p>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>use of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ω</mi><mo>=</mo><mfrac><mi>v</mi><mi>r</mi></mfrac></math> to give 84«rads<sup>1</sup>»</p>\n<p><em><strong>OR</strong></em></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ω</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>/</mo><mn>0</mn><mo>.</mo><mn>025</mn></math> to give 84«rads<sup>1</sup>» ✓</p>\n<p> </p>\n<p>quoted to 2sf only✓</p>\n<p> </p>\n<div class=\"question_part_label\">c.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong>ALTERNATIVE 1</strong></em></p>\n<p>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>v</mi><mn>2</mn></msup><mo>=</mo><msup><mi>u</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>a</mi><mi>s</mi><mo>⇒</mo><mn>0</mn><mo>=</mo><mn>2</mn><mo>.</mo><msup><mn>1</mn><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mo>×</mo><mn>0</mn><mo>.</mo><mn>35</mn></math>» leading to <em>a </em>= 6.3«ms<sup>-2</sup>»</p>\n<p><em><strong>OR</strong></em></p>\n<p>« <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>x</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn><mfenced><mrow><mi>u</mi><mo>+</mo><mi>v</mi></mrow></mfenced><mi>t</mi></math> » leading to <em>t</em> = 0.33«s» ✓</p>\n<p><em><br/></em><em>F</em><sub>net</sub> = « <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>m</mi><mi>a</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>6</mn><mo>.</mo><mn>3</mn></math> = » 9.45 «N» ✓</p>\n<p>Weight down ramp = 1.5 x 9.8 x sin(30) = 7.4«N» ✓</p>\n<p>friction force = net force weight down ramp = 2.1«N» ✓</p>\n<p> </p>\n<p><em><strong>ALTERNATIVE 2</strong></em></p>\n<p>kinetic energy initial = work done to stop 0.5 x 1.5 x (2.1)<sup>2</sup> = <em>F</em><sub>NET</sub> x 0.35 ✓</p>\n<p><em>F</em><sub>net</sub> = 9.45«N» ✓</p>\n<p>Weight down ramp = 1.5 x 9.8 x sin(30) = 7.4«N» ✓</p>\n<p>friction force = net force weight down ramp = 2.1«N» ✓</p>\n<p> </p>\n<p><em>Accept 1.95N from g = 10</em>ms<sup>-2</sup><em>.</em><br/><em>Accept 2.42N from u = 2.14 </em>ms<sup>-1</sup><em>.</em></p>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>static coefficient of friction &gt; dynamic/kinetic coefficient of friction / μ<sub>s</sub> &gt; μ<sub>k</sub> ✓</p>\n<p>«therefore» force of dynamic/kinetic friction will be less than the force of static friction ✓</p>\n<p><br/>there will be a net / unbalanced forward force once in motion «which results in acceleration»</p>\n<p><em><strong>OR</strong></em></p>\n<p>reference to net F = ma ✓</p>\n<div class=\"question_part_label\">e.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many students recognized the vector nature of momentum implied in the question, although some focused on the forces acting on each object rather than discussing the momentum.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Some students simply calculated the net force acting on the load and did not recognize that this was not the tension force. Many set up a net force equation but had the direction of the forces backwards. This generally resulted from sloppy problem solving.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was a \"show that\" questions, so examiners were looking for a clear equation leading to a clear substitution of values leading to an answer that had more significant digits than the given answer. Most candidates successfully selected the correct equation and showed a proper substitution. Some candidates started with an energy approach that needed modification as it clearly led to an incorrect solution. These responses did not receive full marks.</p>\n<div class=\"question_part_label\">c.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This SL only question was generally well done. Despite some power of 10 errors, many candidates correctly reported final answer to 2 sf.</p>\n<div class=\"question_part_label\">c.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Candidates struggled with this question. Very few drew a clear free-body diagram and many simply calculated the acceleration of the box from the given information and used this to calculate the net force on the box, confusing this with the frictional force.</p>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was an \"explain\" question, so examiners were looking for a clear line of discussion starting with a comparison of the coefficients of friction, leading to a comparison of the relative magnitudes of the forces of friction and ultimately the rise of a net force leading to an acceleration. Many candidates recognized that this was a question about the comparison between static and kinetic/dynamic friction but did not clearly specify which they were referring to in their responses. Some candidates clearly did not read the stem carefully as they referred to the mass being on an incline.</p>\n<div class=\"question_part_label\">e.</div>\n</div>",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-1-kinematics",
"a-2-forces-and-momentum"
]
},
{
"question_id": "22M.2.SL.TZ1.2",
"Question": "<div class=\"specification\">\n<p>Cold milk enters a small sterilizing unit and flows over an electrical heating element.</p>\n<p><img src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\"/></p>\n<p>The temperature of the milk is raised from 11°C to 84°C. A mass of 55g of milk enters the sterilizing unit every second.</p>\n<p style=\"padding-left: 210px;\">Specific heat capacity of milk = 3.9kJkg<sup>1</sup>K<sup>1</sup></p>\n</div><div class=\"specification\">\n<p>The milk flows out through an insulated metal pipe. The pipe is at a temperature of 84°C. A small section of the insulation has been removed from around the pipe.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Estimate the power input to the heating element. State an appropriate unit for your answer.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline whether your answer to (a) is likely to overestimate or underestimate the power input.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Discuss, with reference to the molecules in the liquid, the difference between milk at 11°C and milk at 84°C.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State how energy is transferred from the inside of the metal pipe to the outside of the metal pipe.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The missing section of insulation is 0.56m long and the external radius of the pipe is 0.067m. The emissivity of the pipe surface is 0.40. Determine the energy lost every second from the pipe surface. Ignore any absorption of radiation by the pipe surface.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">d.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Describe <strong>one</strong> other method by which significant amounts of energy can be transferred from the pipe to the surroundings.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.iii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>energy required for milk entering in 1s = mass x specific heat x 73 ✓</p>\n<p>16kW <em><strong>OR</strong> </em>16000W ✓</p>\n<p> </p>\n<p><em><strong>MP1</strong> is for substitution into mcΔT regardless of power of ten.</em></p>\n<p><em>Allow any correct unit of power (such as </em>J s<sup>-1</sup><em> OR </em>kJ s<sup>-1</sup><em>) if paired with an answer to the correct power of 10 for <strong>MP2</strong>.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Underestimate / more energy or power required ✓</p>\n<p>because energy transferred as heat / thermal energy is lost «to surroundings or electrical components» ✓</p>\n<p> </p>\n<p><em>Do not allow general term “energy” or “power” for <strong>MP2</strong>.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>the temperature has increased so the internal energy / « average » KE «of the molecules» has increased <em><strong>OR</strong></em> temperature is proportional to average KE «of the molecules». ✓</p>\n<p>«therefore» the «average» speed of the molecules or particles is higher <em><strong>OR</strong> </em>more frequent collisions « between molecules » <em><strong>OR</strong> </em>spacing between molecules has increased <em><strong>OR</strong> </em>average force of collisions is higher <em><strong>OR</strong> </em>intermolecular forces are less <em><strong>OR</strong> </em>intermolecular bonds break and reform at a higher rate <em><strong>OR</strong> </em>molecules are vibrating faster. ✓</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>conduction/conducting/conductor «through metal» ✓</p>\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>use of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mo>=</mo><mi>e</mi><mi>σ</mi><mi>A</mi><msup><mi>T</mi><mn>4</mn></msup></math> where <em>T</em> = 357K ✓</p>\n<p>use of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi><mo>=</mo><mn>2</mn><mi>π</mi><mo></mo><mi>r</mi><mo></mo><mi>l</mi></math> « = 0.236m<sup>2</sup>» ✓</p>\n<p><em>P</em> = 87«W» ✓</p>\n<p> </p>\n<p><em>Allow 8589W for <strong>MP3</strong>.</em></p>\n<p><em>Allow ECF for <strong>MP3</strong>.</em></p>\n<div class=\"question_part_label\">d.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>convection «is likely to be a significant loss» ✓</p>\n<p><br/>«due to reduction in density of air near pipe surface» hot air rises «and is replaced by cooler air from elsewhere»</p>\n<p><em><strong>OR</strong></em></p>\n<p>«due to» conduction «of heat or thermal energy» from pipe to air ✓</p>\n<div class=\"question_part_label\">d.iii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates recognized that this was a specific heat question and set up a proper calculation, but many struggled to match their answer to an appropriate unit. A common mistake was to leave the answer in some form of an energy unit and others did not match the power of ten of the unit to their answer (e.g. 16 W).</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates recognized that this was an underestimate of the total energy but failed to provide an adequate reason. Many gave generic responses (such as \"some power will be lost\"/not 100% efficient) without discussing the specific form of energy lost (e.g. heat energy).</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was generally well answered. Most HL candidates linked the increase in temperature to the increase in the kinetic energy of the molecules and were able to come up with a consequence of this change (such as the molecules moving faster). SL candidates tended to focus more on consequences, often neglecting to mention the change in KE.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates recognized that heat transfer by conduction was the correct response. This was a \"state\" question, so candidates were not required to go beyond this.</p>\n<div class=\"question_part_label\">d.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Candidates at both levels were able to recognize that this was a blackbody radiation question. One common mistake candidates made was not calculating the area of a cylinder properly. It is important to remind candidates that they are expected to know how to calculate areas and volumes for basic geometric shapes. Other common errors included the use of T in Celsius and neglecting to raise T ^4. Examiners awarded a large number of ECF marks for candidates who clearly showed work but made these fundamental errors.</p>\n<div class=\"question_part_label\">d.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>A few candidates recognized that convection was the third source of heat loss, although few managed to describe the mechanism of convection properly for MP2. Some candidates did not read the question carefully and instead wrote about methods to increase the rate of heat loss (such as removing more insulation or decreasing the temperature of the environment).</p>\n<div class=\"question_part_label\">d.iii.</div>\n</div>",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-1-thermal-energy-transfers",
"b-2-greenhouse-effect"
]
},
{
"question_id": "22M.2.SL.TZ1.3",
"Question": "<div class=\"specification\">\n<p>Two loudspeakers A and B are initially equidistant from a microphone M. The frequency and intensity emitted by A and B are the same. A and B emit sound in phase. A is fixed in position.</p>\n<p><img src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\"/></p>\n<p>B is moved slowly away from M along the line MP. The graph shows the variation with distance travelled by B of the received intensity at M.</p>\n<p><img src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why the received intensity varies between maximum and minimum values.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State and explain the wavelength of the sound measured at M.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>B is placed at the first minimum. The frequency is then changed until the received intensity is again at a maximum.</p>\n<p>Show that the lowest frequency at which the intensity maximum can occur is about 3kHz.</p>\n<p style=\"text-align:center;\">Speed of sound=340ms<sup>1</sup></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>movement of B means that path distance is different « between BM and AM »<br/><em><strong>OR</strong></em><br/>movement of B creates a path difference «between BM and AM» ✓</p>\n<p>interference<br/><em><strong>OR</strong></em><br/>superposition «of waves» ✓</p>\n<p>maximum when waves arrive in phase / path difference = n x lambda<br/><em><strong>OR</strong></em><br/>minimum when waves arrive «180° or <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math> » out of phase / path difference = (n+½) x lambda ✓</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>wavelength = 26cm ✓</p>\n<p><br/>peak to peak distance is the path difference which is one wavelength</p>\n<p><em><strong>OR</strong></em></p>\n<p>this is the distance B moves to be back in phase «with A» ✓</p>\n<p> </p>\n<p><em>Allow 25 27 </em>cm<em> for <strong>MP1</strong>.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mi>λ</mi><mn>2</mn></mfrac></math>» = 13 cm ✓</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo>=</mo></math>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mi>c</mi><mi>λ</mi></mfrac><mo>=</mo><mfrac><mn>340</mn><mrow><mn>0</mn><mo>.</mo><mn>13</mn></mrow></mfrac><mo>=</mo></math>» 2.6«kHz» ✓</p>\n<p> </p>\n<p><em>Allow ½ of wavelength from <strong>(b)</strong> or data from graph.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was an \"explain\" questions, so examiners were looking for a clear discussion of the movement of speaker B creating a changing path difference between B and the microphone and A and the microphone. This path difference would lead to interference, and the examiners were looking for a connection between specific phase differences or path differences for maxima or minima. Some candidates were able to discuss basic concepts of interference (e.g. \"there is constructive and destructive interference\"), but failed to make clear connections between the physical situation and the given graph. A very common mistake candidates made was to think the question was about intensity and to therefore describe the decrease in peak height of the maxima on the graph. Another common mistake was to approach this as a Doppler question and to attempt to answer it based on the frequency difference of B.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates recognized that the wavelength was 26 cm, but the explanations were lacking the details about what information the graph was actually providing. Examiners were looking for a connection back to path difference, and not simply a description of peak-to-peak distance on the graph. Some candidates did not state a wavelength at all, and instead simply discussed the concept of wavelength or suggested that the wavelength was constant.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was a \"show that\" question that had enough information for backwards working. Examiners were looking for evidence of using the wavelength from (b) or information from the graph to determine wavelength followed by a correct substitution and an answer to more significant digits than the given result.</p>\n<div class=\"question_part_label\">c.</div>\n</div>",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-2-wave-model",
"c-3-wave-phenomena"
]
},
{
"question_id": "22M.2.SL.TZ1.6",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline\n <strong>\n two\n </strong>\n reasons why both models predict that the motion is simple harmonic when\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n a\n </mi>\n </math>\n is small.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the time period of the system when\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n a\n </mi>\n </math>\n is small.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline, without calculation, the change to the time period of the system for the model represented by graph B when\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n a\n </mi>\n </math>\n is large.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The graph shows for model A the variation with\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n of elastic potential energy\n <em>\n E\n </em>\n <sub>\n p\n </sub>\n stored in the spring.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n <p>\n Describe the graph for model B.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n For both models:\n </strong>\n </em>\n <br/>\n displacement is ∝ to acceleration/force «because graph is straight and through origin» ✓\n </p>\n <p>\n displacement and acceleration / force in opposite directions «because gradient is negative»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n acceleration/«restoring» force is always directed to equilibrium ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n attempted use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msup>\n <mi>\n ω\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <mfenced>\n <mo>\n -\n </mo>\n </mfenced>\n <mfrac>\n <mi>\n a\n </mi>\n <mi>\n x\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n suitable read-offs leading to gradient of line = 28«s\n <sup>\n -2\n </sup>\n » ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mi>\n π\n </mi>\n </mrow>\n <mi>\n ω\n </mi>\n </mfrac>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mi>\n π\n </mi>\n </mrow>\n <msqrt>\n <mn>\n 28\n </mn>\n </msqrt>\n </mfrac>\n </math>\n » ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 2\n </mn>\n </math>\n s ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n time period increases ✓\n </p>\n <p>\n </p>\n <p>\n because average ω «for whole cycle» is smaller\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n slope / acceleration / force at large x is smaller\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n area under graph B is smaller so average speed is smaller. ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n same curve\n <em>\n <strong>\n OR\n </strong>\n </em>\n shape for small amplitudes «to about 0.05m» ✓\n </p>\n <p>\n for large amplitudes «outside of 0.05 m»\n <em>\n E\n </em>\n <sub>\n p\n </sub>\n smaller for model B / values are lower than original / spread will be wider ✓\n <em>\n <strong>\n OWTTE\n </strong>\n </em>\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept answers drawn on graph e.g.\n </em>\n </p>\n <p>\n <em>\n <img src=\"\"/>\n </em>\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n This item was essentially encouraging candidates to connect concepts about simple harmonic motion to a physical situation described by a graph. The marks were awarded for discussing the physical motion (such as \"the acceleration is in the opposite direction of the displacement\") and not just for describing the graph itself (such as \"the slope of the graph is negative\"). Most candidates were successful in recognizing that the acceleration was proportional to displacement for the first marking point, but many simply described the graph for the second marking point.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n This question was well done by many candidates. A common mistake was to select an incorrect gradient, but candidates who showed their work clearly still earned the majority of the marks.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Many candidates recognized that the time period would increase for B, and some were able to give a valid reason based on the difference between the motion of B and the motion of A. It should be noted that the prompt specified \"without calculation\", so candidates who simply attempted to calculate the time period of B did not receive marks.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n Candidates were generally successful in describing one of the two aspects of the graph of B compared to A, but few were able to describe both. It should be noted that this is a two mark question, so candidates should have considered the fact that there are two distinct statements to be made about the graphs. Examiners did accept clearly drawn graphs as well for full marks.\n </p>\n</div>\n",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-1-simple-harmonic-motion"
]
},
{
"question_id": "22M.2.SL.TZ2.2",
"Question": "<div class=\"specification\">\n<p>A fixed mass of an ideal gas is contained in a cylinder closed with a frictionless piston. The volume of the gas is 2.5 × 10<sup>3</sup>m<sup>3</sup> when the temperature of the gas is 37°C and the pressure of the gas is 4.0 × 10<sup>5</sup>Pa.</p>\n</div><div class=\"specification\">\n<p>Energy is now supplied to the gas and the piston moves to allow the gas to expand. The temperature is held constant.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the number of gas particles in the cylinder.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Discuss, for this process, the changes that occur in the density of the gas.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Discuss, for this process, the changes that occur in the internal energy of the gas.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Correct conversion of T «T = 310 K» seen ✓</p>\n<p>« use of = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi><mo>=</mo><mfrac><mrow><mi>p</mi><mi>V</mi></mrow><mrow><mi>k</mi><mi>T</mi></mrow></mfrac></math> to get » 2.3 × 10<sup>23</sup> ✓</p>\n<p> </p>\n<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong> i.e., T in Celsius (Result is 2.7 x 10<sup>24</sup>)</em></p>\n<p><em>Allow use of n, R and N<sub>A</sub></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>density decreases ✓</p>\n<p>volume is increased <em><strong>AND</strong> </em>mass/number of particles remains constant ✓</p>\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>internal energy is constant ✓</p>\n<p><br/>internal energy depends on kinetic energy/temperature «only»</p>\n<p><em><strong>OR</strong></em></p>\n<p>since temperature/kinetic energy is constant ✓</p>\n<p> </p>\n<p><em>Do not award <strong>MP2</strong> for stating that “temperature is constant” unless linked to the correct conclusion, as that is mentioned in the stem.</em></p>\n<p><em>Award <strong>MP2</strong> for stating that kinetic energy remains constant.</em></p>\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>a) This was well answered with the majority converting to K. Quite a few found the number of moles but did not then convert to molecules.</p>\n<p>bi) Well answered. It was pleasing to see how many recognised the need to state that the mass/number of molecules stayed the same as well as stating that the volume increased. At SL this recognition was less common so only 1 mark was often awarded.</p>\n<p>bii) This was less successfully answered. A surprising number of candidates said that the internal energy of an ideal gas increases during an isothermal expansion. Many recognised that constant temp meant constant KE but then went on to state that the PE must increase and so the internal energy would increase.<br/><br/></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.ii.</div>\n</div>",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-3-gas-laws"
]
},
{
"question_id": "22M.2.SL.TZ2.3",
"Question": "<div class=\"specification\">\n<p>A loudspeaker emits sound waves of frequency<em> <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi></math></em> towards a metal plate that reflects the waves. A small microphone is moved along the line from the metal plate to the loudspeaker. The intensity of sound detected at the microphone as it moves varies regularly between maximum and minimum values.</p>\n<p><img src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\"/></p>\n<p>The speed of sound in air is 340ms<sup>1</sup>.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain the variation in intensity.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Adjacent minima are separated by a distance of 0.12m. Calculate <em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi></math></em>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The metal plate is replaced by a wooden plate that reflects a lower intensity sound wave than the metal plate.</p>\n<p>State and explain the differences between the sound intensities detected by the same microphone with the metal plate and the wooden plate.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>«incident and reflected» waves superpose/interfere/combine ✓</p>\n<p>«that leads to» standing waves formed <em><strong>OR</strong> </em>nodes and antinodes present ✓</p>\n<p>at antinodes / maxima there is maximum intensity / constructive interference / «displacement» addition / louder sound ✓</p>\n<p>at nodes / minima there is minimum intensity / destructive interference / «displacement» cancellation / quieter sound ✓</p>\n<p> </p>\n<p><strong><em>OWTTE</em></strong></p>\n<p><em>Allow a sketch of a standing wave for <strong>MP2</strong></em></p>\n<p><em>Allow a correct reference to path or phase differences to identify constructive / destructive interference</em></p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>wavelength = 0.24 «m» ✓</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi></math> = «<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>340</mn><mrow><mn>0</mn><mo>.</mo><mn>24</mn></mrow></mfrac></math>=» 1.4 «kHz» <em><strong>OR</strong> </em>1400 «Hz» ✓</p>\n<p> </p>\n<p><em>Allow <strong>ECF</strong> from <strong>MP1</strong></em></p>\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>relates intensity to amplitude ✓</p>\n<p>antinodes / maximum intensity will be decreased / quieter ✓</p>\n<p>nodes / minimum will be increased / louder ✓</p>\n<p>difference in intensities will be less ✓</p>\n<p>maxima and minima are at the same positions ✓</p>\n<p> </p>\n<p><em><strong>OWTTE</strong></em></p>\n<div class=\"question_part_label\">b.</div>\n</div>",
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>ai) On most occasions it looked like students knew more than they could successfully communicate. Lots of answers talked about interference between the 2 waves, or standing waves being produced but did not go on to add detail. Candidates should take note of how many marks the question part is worth and attempt a structure of the answer that accounts for that. At SL there were problems recognizing a standard question requiring the typical explanation of how a standing wave is established.</p>\n<p>3aii) By far the most common answer was 2800 Hz, not doubling the value given to get the correct wavelength. That might suggest that some students misinterpreted adjacent minima as two troughs, therefore missing to use the information to correctly determine the wavelength as 0.24 m.</p>\n<p>b) A question that turned out to be a good high level discriminator. Most candidates went for an answer that generally had everything at a lower intensity and didn't pick up on the relative amount of superposition. Those that did answer it very well, with very clear explanations, succeeded in recognizing that the nodes would be louder and the anti-nodes would be quieter than before.</p>\n<div class=\"question_part_label\">a.i.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.ii.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div>",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-4-standing-waves-and-resonance"
]
},
{
"question_id": "22N.2.HL.TZ0.6",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline, by reference to nuclear binding energy, why the mass of a nucleus is less than the sum of the masses of its constituent nucleons.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate, in MeV, the energy released in this decay.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The polonium nucleus was stationary before the decay.\n </p>\n <p>\n Show, by reference to the momentum of the particles, that the kinetic energy of the alpha particle is much greater than the kinetic energy of the lead nucleus.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n In the decay of polonium210, alpha emissions can be accompanied by the emissions of gamma photons, all of the same wavelength of 1.54 × 10\n <sup>\n 12\n </sup>\n m.\n </p>\n <p>\n Discuss how this observation provides evidence for discrete nuclear energy levels.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n A sample contains 5.0g of pure polonium-210. The decay constant of polonium-210 is 5.8×10\n <sup>\n 8\n </sup>\n s\n <sup>\n 1\n </sup>\n . Lead-206 is stable.\n </p>\n <p>\n Calculate the mass of lead-206 present in the sample after one year.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n according to Δ\n <em>\n E\n </em>\n = Δ\n <em>\n mc\n </em>\n <sup>\n 2\n </sup>\n / identifies mass energy equivalence ✓\n </p>\n <p>\n </p>\n <p>\n energy is released when nucleons come together / a nucleus is formed «so nucleus has less mass than individual nucleons»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n energy is required to «completely» separate the nucleons / break apart a nucleus «so individual nucleons have more mass than nucleus» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept protons and neutrons.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n according to Δ\n <em>\n E\n </em>\n = Δ\n <em>\n mc\n </em>\n <sup>\n 2\n </sup>\n / identifies mass energy equivalence ✓\n </p>\n <p>\n </p>\n <p>\n energy is released when nucleons come together / a nucleus is formed «so nucleus has less mass than individual nucleons»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n energy is required to «completely» separate the nucleons / break apart a nucleus «so individual nucleons have more mass than nucleus» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept protons and neutrons.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n (\n <em>\n m\n </em>\n <sub>\n polonium\n </sub>\n \n <em>\n m\n </em>\n <sub>\n lead\n </sub>\n \n <em>\n m\n <sub>\n α\n </sub>\n </em>\n )\n <em>\n c\n </em>\n <sup>\n 2\n </sup>\n <em>\n <strong>\n OR\n </strong>\n </em>\n (209.93676  205.92945  4.00151)\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n mass difference = 5.8×10\n <sup>\n 3\n </sup>\n ✓\n </p>\n <p>\n </p>\n <p>\n conversion to MeV using 931.5 to give 5.4«MeV» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for a\n <strong>\n BCA\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n [1]\n </strong>\n for 8.6 x 10\n <sup>\n 13\n </sup>\n J.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n energy ratio expressed in terms of momentum, e.g.\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msub>\n <mi>\n E\n </mi>\n <mi>\n α\n </mi>\n </msub>\n <msub>\n <mi>\n E\n </mi>\n <mtext>\n lead\n </mtext>\n </msub>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <msubsup>\n <mi>\n p\n </mi>\n <mi>\n α\n </mi>\n <mn>\n 2\n </mn>\n </msubsup>\n <mo>\n /\n </mo>\n <mn>\n 2\n </mn>\n <msub>\n <mi>\n m\n </mi>\n <mi>\n α\n </mi>\n </msub>\n </mrow>\n <mrow>\n <msubsup>\n <mi>\n p\n </mi>\n <mtext>\n lead\n </mtext>\n <mn>\n 2\n </mn>\n </msubsup>\n <mo>\n /\n </mo>\n <mn>\n 2\n </mn>\n <msub>\n <mi>\n m\n </mi>\n <mtext>\n lead\n </mtext>\n </msub>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n p\n </mi>\n <mi>\n α\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <msub>\n <mi>\n p\n </mi>\n <mtext>\n lead\n </mtext>\n </msub>\n </math>\n hence\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msub>\n <mi>\n E\n </mi>\n <mi>\n α\n </mi>\n </msub>\n <msub>\n <mi>\n E\n </mi>\n <mtext>\n lead\n </mtext>\n </msub>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <msub>\n <mi>\n m\n </mi>\n <mtext>\n lead\n </mtext>\n </msub>\n <msub>\n <mi>\n m\n </mi>\n <mi>\n α\n </mi>\n </msub>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msub>\n <mi>\n m\n </mi>\n <mtext>\n lead\n </mtext>\n </msub>\n <msub>\n <mi>\n m\n </mi>\n <mi>\n α\n </mi>\n </msub>\n </mfrac>\n <mo>\n ≃\n </mo>\n <mfrac>\n <mn>\n 206\n </mn>\n <mn>\n 4\n </mn>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 51\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n ⇒\n </mo>\n <msub>\n <mi>\n E\n </mi>\n <mi>\n α\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mn>\n 51\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <msub>\n <mi>\n E\n </mi>\n <mtext>\n lead\n </mtext>\n </msub>\n </math>\n «so\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n α\n </mtext>\n </math>\n has a much greater KE»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mtext>\n m\n </mtext>\n <mtext>\n lead\n </mtext>\n </msub>\n </math>\n «much» greater than\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mtext>\n m\n </mtext>\n <mtext>\n alpha\n </mtext>\n </msub>\n </math>\n «so\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n α\n </mtext>\n </math>\n has a much greater KE» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n alpha particle and lead particle have equal and opposite momenta ✓\n </p>\n <p>\n so their velocities are inversely proportional to mass ✓\n </p>\n <p>\n but KE ∝\n <em>\n v\n </em>\n <sup>\n 2\n </sup>\n «so\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n α\n </mtext>\n </math>\n has a much greater KE» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.iii)\n </div><div class=\"card-body\">\n <p>\n photon energy is determined by its wavelength ✓\n </p>\n <p>\n <br/>\n photons are emitted when nucleus undergoes transitions between its «nuclear» energy levels\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n photon energy equals the difference between «nuclear» energy levels ✓\n </p>\n <p>\n <br/>\n photons have the same energy / a fixed value\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n energy is quantized / discrete ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n undecayed mass\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mi>\n e\n </mi>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 8\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 365\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 24\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 60\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 60\n </mn>\n </mrow>\n </msup>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 8\n </mn>\n </math>\n g» ✓\n </p>\n <p>\n mass of decayed polonium «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n -\n </mo>\n </math>\n undecayed mass»\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 2\n </mn>\n </math>\n «g» ✓\n </p>\n <p>\n mass of lead «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 206\n </mn>\n <mn>\n 210\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 2\n </mn>\n </math>\n »\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 1\n </mn>\n </math>\n «g» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n [2] max\n </strong>\n for answers that ignore mass difference between Pb and Po (4.2g).\n </em>\n </p>\n <p>\n <em>\n Allow calculations in number of particles or moles for\n <strong>\n MP1\n </strong>\n and\n <strong>\n MP2\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n and\n <strong>\n MP2\n </strong>\n .\n </em>\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Still several answers that thought that the nucleus needed to gain energy to bind it together. Most candidates scored at least one for recognising some form of mass/energy equivalence, although few candidates managed to consistently express their ideas here.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Still several answers that thought that the nucleus needed to gain energy to bind it together. Most candidates scored at least one for recognising some form of mass/energy equivalence, although few candidates managed to consistently express their ideas here.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n Generally, well answered. There were quite a few who fell into the trap of multiplying by an unnecessary c\n <sup>\n 2\n </sup>\n as they were not sure of the significance of the unit of u.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n Those who answered using the mass often did not get MP3 whereas those who converted to the number of particles or moles before the first calculation did, although that could be considered an unnecessary complication.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.iii)\n </div><div class=\"card-body\">\n <p>\n Many identified conservation of momentum and consequently the relative velocities but it was common to miss MP3 for correctly relating this to KE.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Several answers referred incorrectly to electron energy levels. Successful candidates managed to score full marks, although it was also common to miss the relationship between energy and wavelength.\n </p>\n</div>\n",
"topics": [
"a--space-time-and-motion",
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"a-2-forces-and-momentum",
"e-3-radioactive-decay"
]
},
{
"question_id": "22N.2.HL.TZ0.7",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The intensity of light at point O is\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n I\n </mi>\n <mn>\n 0\n </mn>\n </msub>\n </math>\n . The distance OP is\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n .\n </p>\n <p>\n Sketch, on the axes, a graph to show the variation of the intensity of light with distance from point O on the screen. Your graph should cover the distance range from 0 to 2\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n .\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n smooth curve decreasing from\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n I\n </mi>\n <mn>\n 0\n </mn>\n </msub>\n </math>\n to 0 between 0 and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n ✓\n </p>\n <p>\n secondary maximum correctly placed\n <em>\n <strong>\n AND\n </strong>\n </em>\n of intensity less than 0.3\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n I\n </mi>\n <mn>\n 0\n </mn>\n </msub>\n </math>\n ✓\n </p>\n <p>\n <em>\n E.g.\n </em>\n <img src=\"\"/>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n smooth curve decreasing from\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n I\n </mi>\n <mn>\n 0\n </mn>\n </msub>\n </math>\n to 0 between 0 and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n ✓\n </p>\n <p>\n secondary maximum correctly placed\n <em>\n <strong>\n AND\n </strong>\n </em>\n of intensity less than 0.3\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n I\n </mi>\n <mn>\n 0\n </mn>\n </msub>\n </math>\n ✓\n </p>\n <p>\n <em>\n E.g.\n </em>\n <img src=\"\"/>\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n Most scored MP1. Many candidates scored full marks but it was common to see a maximum at 2x or a secondary maxima too high.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n Most scored MP1. Many candidates scored full marks but it was common to see a maximum at 2x or a secondary maxima too high.\n </p>\n</div>\n",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-3-wave-phenomena"
]
},
{
"question_id": "22N.2.HL.TZ0.8",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The diagram shows field lines for an electrostatic field. X and Y are two points on the same field line.\n </p>\n <p>\n <img src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\"/>\n </p>\n <p>\n Outline which of the two points has the larger electric potential.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the kinetic energy of the satellite in orbit is about 2×10\n <sup>\n 10\n </sup>\n J.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the minimum energy required to launch the satellite. Ignore the original kinetic energy of the satellite due to Earths rotation.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n potential greater at Y ✓\n </p>\n <p>\n </p>\n <p>\n «from\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n E\n </mi>\n <mo>\n =\n </mo>\n <mo>\n -\n </mo>\n <mfrac>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <msub>\n <mi>\n V\n </mi>\n <mi>\n e\n </mi>\n </msub>\n </mrow>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n r\n </mi>\n </mrow>\n </mfrac>\n </math>\n » the potential increases in the direction opposite to field strength «so from X to Y»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n opposite to the direction of the field lines, «so from X to Y»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n «from\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n W\n </mi>\n <mo>\n =\n </mo>\n <mi>\n q\n </mi>\n <mo>\n ∆\n </mo>\n <msub>\n <mi>\n V\n </mi>\n <mi>\n e\n </mi>\n </msub>\n </math>\n » work done to move a positive charge from X to Y is positive «so the potential increases from X to Y» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n potential greater at Y ✓\n </p>\n <p>\n </p>\n <p>\n «from\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n E\n </mi>\n <mo>\n =\n </mo>\n <mo>\n -\n </mo>\n <mfrac>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <msub>\n <mi>\n V\n </mi>\n <mi>\n e\n </mi>\n </msub>\n </mrow>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n r\n </mi>\n </mrow>\n </mfrac>\n </math>\n » the potential increases in the direction opposite to field strength «so from X to Y»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n opposite to the direction of the field lines, «so from X to Y»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n «from\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n W\n </mi>\n <mo>\n =\n </mo>\n <mi>\n q\n </mi>\n <mo>\n ∆\n </mo>\n <msub>\n <mi>\n V\n </mi>\n <mi>\n e\n </mi>\n </msub>\n </math>\n » work done to move a positive charge from X to Y is positive «so the potential increases from X to Y» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n orbital radius\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n <mo>\n +\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n </math>\n m» ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n KE\n </mtext>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 67\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 11\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 24\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 10\n </mn>\n </msup>\n </math>\n «J» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Award\n <strong>\n [1] max\n </strong>\n for answers ignoring orbital height (KE = 2.5×10\n </em>\n <sup>\n <em>\n 10\n </em>\n </sup>\n J\n <em>\n ).\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n change in PE\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 67\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 11\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 24\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n <mfenced>\n <mrow>\n <mfrac>\n <mn>\n 1\n </mn>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n </mrow>\n </mfrac>\n <mo>\n -\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </mrow>\n </mfenced>\n <mo>\n =\n </mo>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 3\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 9\n </mn>\n </msup>\n </math>\n J» ✓\n </p>\n <p>\n energy needed = KE + ΔPE =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 10\n </mn>\n </msup>\n </math>\n «J» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from 8(b)(i).\n </em>\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n A significant majority guessed at X, probably because the field lines are closer together. Those that identified Y were generally successful in their explanation.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n A significant majority guessed at X, probably because the field lines are closer together. Those that identified Y were generally successful in their explanation.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n This question was well done, with only a few missing the height of the satellite.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n Generally, this question was not well done. Most carried out a calculation based on the formula for escape velocity. An opportunity to remind candidates of reading back the stem for the sub-question when answering a second or any subsequent part of it.\n </p>\n</div>\n",
"topics": [
"d-fields"
],
"subtopics": [
"d-1-gravitational-fields",
"d-2-electric-and-magnetic-fields"
]
},
{
"question_id": "22N.2.SL.TZ0.1",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the initial acceleration of the raindrop.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain, by reference to the vertical forces, how the raindrop reaches a constant speed.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the energy transferred to the air during the first 3.0s of motion. State your answer to an appropriate number of significant figures.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Describe the energy change that takes place for\n <em>\n t\n </em>\n &gt;3.0s.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <em>\n g\n </em>\n <em>\n <strong>\n OR\n </strong>\n </em>\n 9.81«ms\n <sup>\n 2\n </sup>\n »\n <em>\n <strong>\n OR\n </strong>\n </em>\n acceleration of gravity/due to free fall ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept 10 «\n </em>\n ms\n <sup>\n 2\n </sup>\n <em>\n ».\n </em>\n </p>\n <p>\n <em>\n Ignore sign.\n </em>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept bald “gravity”.\n </em>\n </p>\n <p>\n <em>\n Accept answer that indicates tangent of the graph at time t=0.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <em>\n g\n </em>\n <em>\n <strong>\n OR\n </strong>\n </em>\n 9.81«ms\n <sup>\n 2\n </sup>\n »\n <em>\n <strong>\n OR\n </strong>\n </em>\n acceleration of gravity/due to free fall ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept 10 «\n </em>\n ms\n <sup>\n 2\n </sup>\n <em>\n ».\n </em>\n </p>\n <p>\n <em>\n Ignore sign.\n </em>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept bald “gravity”.\n </em>\n </p>\n <p>\n <em>\n Accept answer that indicates tangent of the graph at time t=0.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Identification of air resistance/drag force «acting upwards» ✓\n </p>\n <p>\n «that» increases with speed ✓\n </p>\n <p>\n <br/>\n «until» weight and air resistance cancel out\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n net force/acceleration becomes zero ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n A statement as “air resistance increases with speed” scores\n <strong>\n MP1\n </strong>\n and\n <strong>\n MP2\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.i)\n </div><div class=\"card-body\">\n <p>\n «loss in» GPE = 3.4×10\n <sup>\n 5\n </sup>\n × 9.81 × 21 «= 7.0×10\n <sup>\n 3\n </sup>\n »«J»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n «gain in» KE = 0.5 × 3.4×10\n <sup>\n 5\n </sup>\n × 9.0\n <sup>\n 2\n </sup>\n «= 1.4×10\n <sup>\n 3\n </sup>\n »«J» ✓\n </p>\n <p>\n <br/>\n energy transferred to air «=7.0×10\n <sup>\n 3\n </sup>\n 1.4×10\n <sup>\n 3\n </sup>\n » = 5.6×10\n <sup>\n 3\n </sup>\n »«J» ✓\n </p>\n <p>\n </p>\n <p>\n any calculated answer to 2 sf ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n [1]\n </strong>\n through the use of kinematics assuming constant acceleration.\n </em>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.ii)\n </div><div class=\"card-body\">\n <p>\n «gravitational» potential energy «of the raindrop» into thermal/internal energy «of the air» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept heat for thermal energy.\n </em>\n </p>\n <p>\n <em>\n Accept into kinetic energy of air particles.\n </em>\n </p>\n <p>\n <em>\n Ignore sound energy.\n </em>\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n A nice introductory question answered correctly by most candidates. Most answers quoted the data booklet value, with a few 10's or 9.8's, or the answer in words. Very few lost the mark by just stating gravity, or zero.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n A nice introductory question answered correctly by most candidates. Most answers quoted the data booklet value, with a few 10's or 9.8's, or the answer in words. Very few lost the mark by just stating gravity, or zero.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n This was very well answered with most candidates scoring 3. The MP usually missed in candidates scoring 2 marks was MP2, to justify the variation of the magnitude of air resistance, although that rarely happened.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.i)\n </div><div class=\"card-body\">\n <p>\n Generally well answered, although several candidates lost a mark, usually as POT (power of ten) by quoting the value in kg leading to an answer of 5.3J. Most candidates were able to score MP3 by rounding their calculation to two significant figures.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.ii)\n </div><div class=\"card-body\">\n <p>\n Of the wrong answers, the most common ones were gravitational potential to kinetic or the idea that because there was no change in velocity there was no energy transfer. A significant number, though, scored by identifying the change into thermal (most of them), kinetic of air particles (a few answers) or internal (very few).\n </p>\n</div>\n",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-1-kinematics",
"a-2-forces-and-momentum",
"a-3-work-energy-and-power"
]
},
{
"question_id": "22N.2.SL.TZ0.2",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the minimum area of the solar heating panel required to increase the temperature of all the water in the tank to 30°C during a time of 1.0 hour.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Estimate, in °C, the temperature of the roof tiles.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State\n <strong>\n one\n </strong>\n way in which a real gas differs from an ideal gas.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The water is heated. Explain why the quantity of air in the storage tank decreases.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n energy required = 250 × 4200 × (30  15) ✓\n </p>\n <p>\n energy available = 0.30 × 680 ×\n <em>\n t\n </em>\n ×\n <em>\n A\n </em>\n ✓\n </p>\n <p>\n <em>\n A\n </em>\n = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 250\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 4200\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 15\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 30\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 680\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 60\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 60\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n </math>\n » 21«m\n <sup>\n 2\n </sup>\n »\n <em>\n <strong>\n OR\n </strong>\n </em>\n 22«m\n <sup>\n 2\n </sup>\n » ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n and\n <strong>\n MP2\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n Accept the correct use of 0.30 in either\n <strong>\n MP1\n </strong>\n or\n <strong>\n MP2\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a.ii)\n </div><div class=\"card-body\">\n <p>\n absorbed intensity = (1 0.2) × 680 «= 544»«Wm\n <sup>\n 2\n </sup>\n »\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n emitted intensity = 0.97 × 5.67×10\n <sup>\n 8\n </sup>\n × T\n <sup>\n 4\n </sup>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n T\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mroot>\n <mfrac>\n <mn>\n 544\n </mn>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 97\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 67\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 8\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n <mn>\n 4\n </mn>\n </mroot>\n <mo>\n =\n </mo>\n <mn>\n 315\n </mn>\n </math>\n «K» ✓\n </p>\n <p>\n 42«°C» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n and\n <strong>\n MP2\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n Allow\n <strong>\n MP1\n </strong>\n if absorbed or emitted intensity is multiplied by area.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n can be liquefied ✓\n </p>\n <p>\n has intermolecular forces / potential energy ✓\n </p>\n <p>\n has atoms/molecules that are not point objects / take up volume ✓\n </p>\n <p>\n does not follow the ideal gas law «for all\n <em>\n T\n </em>\n and\n <em>\n p\n </em>\n » ✓\n </p>\n <p>\n collisions between particles are non-elastic ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept the converse argument.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n «constant\n <em>\n p\n </em>\n and\n <em>\n V\n </em>\n imply»\n <em>\n nT\n </em>\n = const ✓\n </p>\n <p>\n <em>\n T\n </em>\n increases hence\n <em>\n n\n </em>\n decreases ✓\n </p>\n <p>\n <br/>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n «constant\n <em>\n p\n </em>\n and\n <em>\n n\n </em>\n imply»\n <em>\n V\n </em>\n is proportional to\n <em>\n T\n </em>\n / air expands as it is heated ✓\n </p>\n <p>\n «original» air occupies a greater volume\n <strong>\n OR\n </strong>\n some air leaves through opening ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n MP2\n </strong>\n in\n <strong>\n ALT 2\n </strong>\n must come from expansion of air, not from expansion of water.\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n [0]\n </strong>\n for an answer based on expansion of water.\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n [1]\n </strong>\n <strong>\n max\n </strong>\n for an answer based on convection currents.\n </em>\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n Most candidates had a good attempt at this but there were often slight slips. Some missed the efficiency of the process. Some included the albedo of the roof tiles. Some thought that the temperature rise needed to have 273 added to convert to kelvin. However, sometimes scoring through ECF (error carried forward), the average mark was around 2 marks.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a.ii)\n </div><div class=\"card-body\">\n <p>\n This was a bit more hit and miss than the previous question part. One common mistake was not understanding what albedo meant. Some took it as the amount of energy absorbed rather than reflected. Emissivity was often missed. Several candidates, successfully answering the question or not, were able to score MP3 converting the final temperature into Celsius degrees.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n This was very well answered. Candidates showed an understanding of the differences between ideal and real gases.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n It was surprising to see a large number of answers based on the expansion of water, as the stem of the question clearly states that the level of water remains constant. Most successful candidates scored by quoting\n <em>\n pV\n </em>\n constant so concluding with the inverse relationship of n and\n <em>\n T\n </em>\n , others also managed to score by explaining that the volume of air increases and therefore must go out through the opening. Answers based on convection currents were given partial credit.\n </p>\n</div>\n",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-1-thermal-energy-transfers",
"b-2-greenhouse-effect",
"b-3-gas-laws"
]
},
{
"question_id": "22N.2.SL.TZ0.3",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw, on the axes, a graph to show the variation with\n <em>\n t\n </em>\n of the displacement of particle Q.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the speed of waves on the string.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the fundamental SI unit for\n <em>\n a\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The tension force on the string is doubled. Describe the effect, if any, of this change on the frequency of the standing wave.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The standing wave on the string creates a travelling sound wave in the surrounding air.\n </p>\n <p>\n Outline\n <strong>\n two\n </strong>\n differences between a standing wave and a travelling wave.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline\n <strong>\n one\n </strong>\n difference between a standing wave and a travelling wave.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The speed of sound in air is 340ms\n <sup>\n 1\n </sup>\n and in water it is 1500ms\n <sup>\n 1\n </sup>\n .\n </p>\n <p>\n Discuss whether the sound wave can enter the water.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n oscillation in antiphase ✓\n </p>\n <p>\n smaller amplitude than P ✓\n </p>\n <p>\n <br/>\n <img src=\"\"/>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n oscillation in antiphase ✓\n </p>\n <p>\n smaller amplitude than P ✓\n </p>\n <p>\n <br/>\n <img src=\"\"/>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a.ii)\n </div><div class=\"card-body\">\n <p>\n wavelength\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 2\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 80\n </mn>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 53\n </mn>\n </math>\n «m» ✓\n </p>\n <p>\n speed\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 53\n </mn>\n </mrow>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 190\n </mn>\n </math>\n «ms\n <sup>\n 1\n </sup>\n » ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from incorrect wavelength.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n kgms\n <sup>\n 2\n </sup>\n <em>\n <strong>\n OR\n </strong>\n </em>\n m\n <sup>\n 2\n </sup>\n s\n <sup>\n 2\n </sup>\n seen ✓\n </p>\n <p>\n kgm\n <sup>\n 1\n </sup>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for a\n <strong>\n BCA\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n speed increases hence frequency increases ✓\n </p>\n <p>\n by factor\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msqrt>\n <mn>\n 2\n </mn>\n </msqrt>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n travelling waves transfer energy\n <em>\n <strong>\n OR\n </strong>\n </em>\n standing waves dont ✓\n </p>\n <p>\n amplitude of oscillation varies along a standing wave\n <em>\n <strong>\n OR\n </strong>\n </em>\n is constant along a travelling wave ✓\n </p>\n <p>\n standing waves have nodes and antinodes\n <em>\n <strong>\n OR\n </strong>\n </em>\n travelling waves dont ✓\n </p>\n <p>\n points in an internodal region have same phase in standing waves\n <em>\n <strong>\n OR\n </strong>\n </em>\n different phase in travelling waves ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.i)\n </div><div class=\"card-body\">\n <p>\n travelling waves transfer energy\n <em>\n <strong>\n OR\n </strong>\n </em>\n standing waves dont ✓\n </p>\n <p>\n amplitude of oscillation varies along a standing wave\n <em>\n <strong>\n OR\n </strong>\n </em>\n is constant along a travelling wave ✓\n </p>\n <p>\n standing waves have nodes / antinodes\n <em>\n <strong>\n OR\n </strong>\n </em>\n travelling waves dont ✓\n </p>\n <p>\n points in an internodal region have same phase in standing waves\n <em>\n <strong>\n OR\n </strong>\n </em>\n different phase in travelling waves ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n critical angle\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 13\n </mn>\n <mo>\n °\n </mo>\n </math>\n «from\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n sin\n </mi>\n <mo>\n </mo>\n <msub>\n <mi>\n θ\n </mi>\n <mi>\n c\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 340\n </mn>\n <mn>\n 1500\n </mn>\n </mfrac>\n </math>\n » ✓\n </p>\n <p>\n the angle of incidence is greater than\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n θ\n </mi>\n <mi>\n c\n </mi>\n </msub>\n </math>\n hence the sound cant enter water ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n sin\n </mi>\n <mo>\n </mo>\n <msub>\n <mi>\n θ\n </mi>\n <mi>\n r\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1500\n </mn>\n <mn>\n 340\n </mn>\n </mfrac>\n <mi>\n sin\n </mi>\n <mo>\n </mo>\n <mn>\n 30\n </mn>\n <mo>\n °\n </mo>\n </math>\n ✓\n </p>\n <p>\n sine value greater than one hence the sound cant enter water ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Conclusion must be justified, award\n <strong>\n [0]\n </strong>\n for\n <strong>\n BCA\n </strong>\n .\n </em>\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n Although there were good answers which scored full marks, there were a significant number of wrong answers where the amplitude was the same or not consistent throughout, or the wave drawn was not in antiphase of the original sketch.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n Although there were good answers which scored full marks, there were a significant number of wrong answers where the amplitude was the same or not consistent throughout, or the wave drawn was not in antiphase of the original sketch.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a.ii)\n </div><div class=\"card-body\">\n <p>\n This was well answered, particularly MP1 to determine the wavelength, although several candidates misinterpreted the unit of time and obtained a very small value for the velocity of the wave.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n Students seem to be well prepared for this sort of question, as it was high-scoring.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n This question was answered well, although the numerical aspect was often missing. It is worth highlighting that if there is a term like\n <em>\n '\n </em>\n doubled\n <em>\n '\n </em>\n in the question, it makes sense to expect a numerical answer.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n This question was answered well. Students showed to be familiar with the differences between standing and travelling waves. In SL they had to identify two differences, so that proved to be more challenging.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.i)\n </div><div class=\"card-body\">\n <p>\n This question was answered well. Students showed to be familiar with the differences between standing and travelling waves.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.ii)\n </div><div class=\"card-body\">\n <p>\n Surprisingly well answered as it was sound from air to water, rather than light from air to glass. A mixture of approaches but probably the most common was to calculate a sine value of over 1. Some went about calculating the critical angle but nowhere near as many.\n </p>\n</div>\n",
"topics": [
"c-wave-behaviour",
"tools"
],
"subtopics": [
"c-2-wave-model",
"c-3-wave-phenomena",
"c-4-standing-waves-and-resonance",
"tool-3-mathematics"
]
},
{
"question_id": "22N.2.SL.TZ0.4",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The scale diagram shows the weight\n <em>\n W\n </em>\n of the mass at an instant when the rod is horizontal.\n </p>\n <p>\n Draw, on the scale diagram, an arrow to represent the force exerted on the mass by the rod.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why the magnitude of the force exerted on the mass by the rod is not constant.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n horizontal component of any length to the left ✓\n </p>\n <p>\n vertical component two squares long upwards ✓\n </p>\n <p>\n E.g.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n <p>\n </p>\n <p>\n <em>\n Ignore point of application.\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n [1]\n </strong>\n <strong>\n max\n </strong>\n if arrowhead not present.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n horizontal component of any length to the left ✓\n </p>\n <p>\n vertical component two squares long upwards ✓\n </p>\n <p>\n E.g.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n <p>\n </p>\n <p>\n <em>\n Ignore point of application.\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n [1]\n </strong>\n <strong>\n max\n </strong>\n if arrowhead not present.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n the net/centripetal force has constant magnitude ✓\n </p>\n <p>\n the direction of the net/centripetal force constantly changes ✓\n </p>\n <p>\n this is achieved by vector-adding weight and the force from the rod\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n the force from the rod is vector difference of the centripetal force and weight ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n at the top F\n <sub>\n rod\n </sub>\n = F\n <sub>\n c\n </sub>\n W ✓\n </p>\n <p>\n at the bottom, F\n <sub>\n rod\n </sub>\n = F\n <sub>\n c\n </sub>\n + W ✓\n </p>\n <p>\n net F/F\n <sub>\n c\n </sub>\n is constant so the force from the rod is different «hence is changing» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept reference to centripetal or net force indistinctly.\n </em>\n </p>\n <p>\n <em>\n Allow reference to centripetal acceleration.\n </em>\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Most just added the horizontal component. Not many centrifugal forces, but still a few. Very few were able to score both marks, so this question proved to be challenging for the candidates.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Most just added the horizontal component. Not many centrifugal forces, but still a few. Very few were able to score both marks, so this question proved to be challenging for the candidates.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Many got into a bit of a mess with this one and it was quite difficult to interpret some of the answers. If they started out with the net/centripetal force being constant, then it was often easy to follow the reasoning. Starting with force on the rod varying often led to confusion. Quite a few did not pick up on the constant speed vertical circle so there were complicated energy/speed arguments to pick through.\n </p>\n</div>\n",
"topics": [
"a--space-time-and-motion",
"tools"
],
"subtopics": [
"a-2-forces-and-momentum",
"tool-3-mathematics"
]
},
{
"question_id": "22N.2.SL.TZ0.5",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State what is meant by an ideal voltmeter.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the internal resistance of the cell is about 0.7 Ω.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the internal resistance of the cell is about 0.7 Ω.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the emf of the cell.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain, by reference to charge carriers in the wire, how the magnetic force on the wire arises.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Identify the direction of the magnetic force on the wire.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n infinite resistance\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n no current is flowing through it ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n current\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 47\n </mn>\n </mrow>\n <mrow>\n <mn>\n 50\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 94\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </msup>\n </math>\n «A» ✓\n </p>\n <p>\n <em>\n r\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 49\n </mn>\n </mrow>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 94\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n <mo>\n -\n </mo>\n <mn>\n 50\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 68\n </mn>\n </math>\n «Ω» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n For\n <strong>\n MP2\n </strong>\n , allow any other correctly substituted expression for r.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n 29.4(50.0 +\n <em>\n r\n </em>\n ) = 139(10.0 +\n <em>\n r\n </em>\n ) ✓\n </p>\n <p>\n <br/>\n attempt to solve for\n <em>\n r\n </em>\n , e.g. 29.4 × 50.0  139 × 10.0 =\n <em>\n r\n </em>\n (139  29.4)\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n 0.73 «Ω» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n allow working backwards from 0.7 Ω.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.iii)\n </div><div class=\"card-body\">\n <p>\n 139×10\n <sup>\n 3\n </sup>\n (10.0 + 0.73)\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n 29.4×10\n <sup>\n 3\n </sup>\n (50.0 + 0.73)  ✓\n </p>\n <p>\n <br/>\n 1.49«V» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Watch for\n <strong>\n ECF\n </strong>\n from 5(b)(i).\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.i)\n </div><div class=\"card-body\">\n <p>\n charge/carriers are moving in a magnetic field ✓\n </p>\n <p>\n </p>\n <p>\n there is a magnetic force on them / quote\n <em>\n F = qvB\n </em>\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n this creates a magnetic field that interacts with the external magnetic field ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept electrons.\n </em>\n </p>\n <p>\n <em>\n For\n <strong>\n MP2\n </strong>\n , the force must be identified as acting on charge / carriers.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.ii)\n </div><div class=\"card-body\">\n <p>\n into the plane «of the paper» ✓\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n A majority of candidates scored a mark by simply stating infinite resistance. Several answers went the other way round, stating a resistance of zero.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n Many answers here produced a number that did not round to 0.7 but students claimed it did. The simultaneous equation approach was seen in the best candidates, getting the right answer. It is worthy of reminding about the need of showing one more decimal place when calculating a show that value type of question.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n Many answers here produced a number that did not round to 0.7 but students claimed it did. The simultaneous equation approach was seen in the best candidates, getting the right answer. It is worthy of reminding about the need of showing one more decimal place when calculating a show that value type of question.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.iii)\n </div><div class=\"card-body\">\n <p>\n Usually well answered, regardless of b(ii), by utilising the show that value given.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.i)\n </div><div class=\"card-body\">\n <p>\n Many scored MP1 here but did not get MP2 as they jumped straight to the wire rather than continuing with the explanation of what was going on with the charge carriers.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c.ii)\n </div><div class=\"card-body\">\n <p>\n Generally, a well answered question although there was some confusion on how to communicate it, with some contradictory answers indicating into or out, and also North or South at the same time.\n </p>\n</div>\n",
"topics": [
"b-the-particulate-nature-of-matter",
"d-fields"
],
"subtopics": [
"b-5-current-and-circuits",
"d-3-motion-in-electromagnetic-fields"
]
},
{
"question_id": "22N.2.SL.TZ0.6",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline, by reference to nuclear binding energy, why the mass of a nucleus is less than the sum of the masses of its constituent nucleons.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate, in MeV, the energy released in this decay.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The polonium nucleus was stationary before the decay.\n </p>\n <p>\n Show, by reference to the momentum of the particles, that the kinetic energy of the alpha particle is much greater than the kinetic energy of the lead nucleus.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b.iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n In the decay of polonium-210, alpha emission can be followed by the emission of a gamma photon.\n </p>\n <p>\n State and explain whether the alpha particle or gamma photon will cause greater ionization in the surrounding material.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n according to Δ\n <em>\n E\n </em>\n = Δ\n <em>\n mc\n </em>\n <sup>\n 2\n </sup>\n / identifies mass energy equivalence ✓\n </p>\n <p>\n </p>\n <p>\n energy is released when nucleons come together / a nucleus is formed «so nucleus has less mass than individual nucleons»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n energy is required to «completely» separate the nucleons / break apart a nucleus «so individual nucleons have more mass than nucleus» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept protons and neutrons.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n according to Δ\n <em>\n E\n </em>\n = Δ\n <em>\n mc\n </em>\n <sup>\n 2\n </sup>\n / identifies mass energy equivalence ✓\n </p>\n <p>\n </p>\n <p>\n energy is released when nucleons come together / a nucleus is formed «so nucleus has less mass than individual nucleons»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n energy is required to «completely» separate the nucleons / break apart a nucleus «so individual nucleons have more mass than nucleus» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept protons and neutrons.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n (\n <em>\n m\n </em>\n <sub>\n polonium\n </sub>\n \n <em>\n m\n </em>\n <sub>\n lead\n </sub>\n \n <em>\n m\n <sub>\n α\n </sub>\n </em>\n )\n <em>\n c\n </em>\n <sup>\n 2\n </sup>\n <em>\n <strong>\n OR\n </strong>\n </em>\n (209.93676  205.92945  4.00151)\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n mass difference = 5.8×10\n <sup>\n 3\n </sup>\n ✓\n </p>\n <p>\n </p>\n <p>\n conversion to MeV using 931.5 to give 5.4«MeV» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for a\n <strong>\n BCA\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n [1]\n </strong>\n for 8.6 x 10\n <sup>\n 13\n </sup>\n J.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n energy ratio expressed in terms of momentum, e.g.\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msub>\n <mi>\n E\n </mi>\n <mi>\n α\n </mi>\n </msub>\n <msub>\n <mi>\n E\n </mi>\n <mtext>\n lead\n </mtext>\n </msub>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <msubsup>\n <mi>\n p\n </mi>\n <mi>\n α\n </mi>\n <mn>\n 2\n </mn>\n </msubsup>\n <mo>\n /\n </mo>\n <mn>\n 2\n </mn>\n <msub>\n <mi>\n m\n </mi>\n <mi>\n α\n </mi>\n </msub>\n </mrow>\n <mrow>\n <msubsup>\n <mi>\n p\n </mi>\n <mtext>\n lead\n </mtext>\n <mn>\n 2\n </mn>\n </msubsup>\n <mo>\n /\n </mo>\n <mn>\n 2\n </mn>\n <msub>\n <mi>\n m\n </mi>\n <mtext>\n lead\n </mtext>\n </msub>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n p\n </mi>\n <mi>\n α\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <msub>\n <mi>\n p\n </mi>\n <mtext>\n lead\n </mtext>\n </msub>\n </math>\n hence\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msub>\n <mi>\n E\n </mi>\n <mi>\n α\n </mi>\n </msub>\n <msub>\n <mi>\n E\n </mi>\n <mtext>\n lead\n </mtext>\n </msub>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <msub>\n <mi>\n m\n </mi>\n <mtext>\n lead\n </mtext>\n </msub>\n <msub>\n <mi>\n m\n </mi>\n <mi>\n α\n </mi>\n </msub>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msub>\n <mi>\n m\n </mi>\n <mtext>\n lead\n </mtext>\n </msub>\n <msub>\n <mi>\n m\n </mi>\n <mi>\n α\n </mi>\n </msub>\n </mfrac>\n <mo>\n ≃\n </mo>\n <mfrac>\n <mn>\n 206\n </mn>\n <mn>\n 4\n </mn>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 51\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n ⇒\n </mo>\n <msub>\n <mi>\n E\n </mi>\n <mi>\n α\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mn>\n 51\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <msub>\n <mi>\n E\n </mi>\n <mtext>\n lead\n </mtext>\n </msub>\n </math>\n «so\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n α\n </mtext>\n </math>\n has a much greater KE»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mtext>\n m\n </mtext>\n <mtext>\n lead\n </mtext>\n </msub>\n </math>\n «much» greater than\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mtext>\n m\n </mtext>\n <mtext>\n alpha\n </mtext>\n </msub>\n </math>\n «so\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n α\n </mtext>\n </math>\n has a much greater KE» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n alpha particle and lead particle have equal and opposite momenta ✓\n </p>\n <p>\n so their velocities are inversely proportional to mass ✓\n </p>\n <p>\n but KE ∝\n <em>\n v\n </em>\n <sup>\n 2\n </sup>\n «so\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n α\n </mtext>\n </math>\n has a much greater KE» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.iii)\n </div><div class=\"card-body\">\n <p>\n alpha particle ✓\n </p>\n <p>\n is electrically charged hence more likely to interact with electrons «in the surrounding material» ✓\n </p>\n</div>\n",
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Still several answers that thought that the nucleus needed to gain energy to bind it together. Most candidates scored at least one for recognising some form of mass/energy equivalence, although few candidates managed to consistently express their ideas here.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Still several answers that thought that the nucleus needed to gain energy to bind it together. Most candidates scored at least one for recognising some form of mass/energy equivalence, although few candidates managed to consistently express their ideas here.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.i)\n </div><div class=\"card-body\">\n <p>\n Generally, well answered. There were quite a few who fell into the trap of multiplying by an unnecessary c\n <sup>\n 2\n </sup>\n as they were not sure of the significance of the unit of u.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.ii)\n </div><div class=\"card-body\">\n <p>\n Those who answered using the mass often did not get MP3 whereas those who converted to the number of particles or moles before the first calculation did, although that could be considered an unnecessary complication.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b.iii)\n </div><div class=\"card-body\">\n <p>\n Many did not interpret the stem correctly and failed to compare the ionisation of alpha particles versus gamma rays.\n </p>\n</div>\n",
"topics": [
"a--space-time-and-motion",
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"a-2-forces-and-momentum",
"a-3-work-energy-and-power",
"e-3-radioactive-decay"
]
},
{
"question_id": "23M.2.HL.TZ1.3",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n A transverse water wave travels to the right. The diagram shows the shape of the surface of the water at time\n <em>\n t\n </em>\n = 0. P and Q show two corks floating on the surface.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State what is meant by a transverse wave.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The frequency of the wave is 0.50Hz. Calculate the speed of the wave.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Sketch on the diagram the position of P at time\n <em>\n t\n </em>\n = 0.50s.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iv)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the phase difference between the oscillations of the two corks is\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n π\n </mi>\n </math>\n radians.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Monochromatic light is incident on two very narrow slits. The light that passes through the slits is observed on a screen. M is directly opposite the midpoint of the slits.\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n represents the displacement from M in the direction shown.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n <p style=\"text-align:left;\">\n A student argues that what will be observed on the screen will be a total of two bright spots opposite the slits. Explain why the students argument is incorrect.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The graph shows the actual variation with displacement\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n from M of the intensity of the light on the screen.\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n I\n </mi>\n <mn>\n 0\n </mn>\n </msub>\n </math>\n is the intensity of light at the screen from one slit only.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why the intensity of light at\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n = 0 is 4\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n I\n </mi>\n <mn>\n 0\n </mn>\n </msub>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The slits are separated by a distance of 0.18mm and the distance to the screen is 2.2m. Determine, in m, the wavelength of light.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The two slits are replaced by many slits of the same separation. State\n <strong>\n one\n </strong>\n feature of the intensity pattern that will remain the same and\n <strong>\n one\n </strong>\n that will change.\n </p>\n <p>\n Stays the same:\n </p>\n <p>\n </p>\n <p>\n Changes:\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n «A wave where the» displacement of particles/oscillations of particles/movement of particles/vibrations of particles is perpendicular/normal to the direction of energy transfer/wave travel/wave velocity/wave movement/wave propagation ✓\n </p>\n <p>\n <em>\n Allow medium, material, water, molecules, or atoms for particles.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n «A wave where the» displacement of particles/oscillations of particles/movement of particles/vibrations of particles is perpendicular/normal to the direction of energy transfer/wave travel/wave velocity/wave movement/wave propagation ✓\n </p>\n <p>\n <em>\n Allow medium, material, water, molecules, or atoms for particles.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n v\n </em>\n = «0.50 × 16 =» 8.0 «ms\n <sup>\n 1\n </sup>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n P at (8,1.2) ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iv)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n <br/>\n Phase difference is\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mi>\n π\n </mi>\n </mrow>\n <mi>\n λ\n </mi>\n </mfrac>\n </math>\n ×\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mi>\n λ\n </mi>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n ✓\n <br/>\n «=\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n π\n </mi>\n </math>\n » ✓\n </p>\n <p>\n <strong>\n ALTERNATIVE 2\n </strong>\n </p>\n <p>\n One wavelength/period represents «phase difference» of 2\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n π\n </mi>\n </math>\n and «corks» are ½ wavelength/period apart so phase difference is\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n π\n </mi>\n </math>\n /\n <em>\n <strong>\n OWTTE\n </strong>\n </em>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n light acts as a wave «and not a particle in this situation» ✓\n </p>\n <p>\n light at slits will diffract / create a diffraction pattern ✓\n </p>\n <p>\n light passing through slits will interfere / create an interference pattern «creating bright and dark spots» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n The amplitude «at\n <em>\n x\n </em>\n = 0» will be doubled ✓\n </p>\n <p>\n intensity is proportional to amplitude squared /\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n </math>\n ∝\n <em>\n A\n </em>\n <sup>\n 2\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n The amplitude «at\n <em>\n x\n </em>\n = 0» will be doubled ✓\n </p>\n <p>\n intensity is proportional to amplitude squared /\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n </math>\n ∝\n <em>\n A\n </em>\n <sup>\n 2\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Use of\n <em>\n s\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n λ\n </mi>\n <mi>\n D\n </mi>\n </mrow>\n <mi>\n d\n </mi>\n </mfrac>\n <mo>\n ⇒\n </mo>\n <mi>\n λ\n </mi>\n </math>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n s\n </mi>\n <mi>\n d\n </mi>\n </mrow>\n <mi>\n D\n </mi>\n </mfrac>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <em>\n s\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n n\n </mi>\n <mi>\n λ\n </mi>\n <mi>\n D\n </mi>\n </mrow>\n <mi>\n d\n </mi>\n </mfrac>\n <mo>\n ⇒\n </mo>\n <mi>\n λ\n </mi>\n </math>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n s\n </mi>\n <mi>\n d\n </mi>\n </mrow>\n <mrow>\n <mi>\n n\n </mi>\n <mi>\n D\n </mi>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n </math>\n = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 567\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 18\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </mfrac>\n </math>\n =» 4.6 × 10\n <sup>\n 7\n </sup>\n «m» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n Stays the same: Position/location of maxima/distance/separation between maxima «will be the same» /\n <em>\n <strong>\n OWTTE\n </strong>\n </em>\n ✓\n </p>\n <p>\n Changes: Intensity/brightness/width/sharpness «of maxima will change»/\n <em>\n <strong>\n OWTTE\n </strong>\n </em>\n ✓\n </p>\n <p>\n <em>\n Allow other phrasing for maxima (fringes, spots, etc).\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-1-simple-harmonic-motion",
"c-2-wave-model",
"c-3-wave-phenomena"
]
},
{
"question_id": "23M.2.HL.TZ1.5",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Identify with ticks [✓] in the table, the forces that can act on electrons and the forces that can act on quarks.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the energy released is about 18MeV.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <strong>\n two\n </strong>\n difficulties of energy production by nuclear fusion.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <strong>\n one\n </strong>\n advantage of energy production by nuclear fusion compared to nuclear fission.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the nucleon number of the He isotope that\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mi mathvariant=\"normal\">\n H\n </mi>\n <mprescripts>\n </mprescripts>\n <mn>\n 1\n </mn>\n <mn>\n 3\n </mn>\n </mmultiscripts>\n </math>\n decays into.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Estimate the fraction of tritium remaining after one year.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Weak nuclear: 2 ticks ✓\n <br/>\n Strong nuclear: quarks only ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n «𝜇» = 2.0141 + 3.0160  (4.0026 + 1.008665) «= 0.0188u»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <em>\n In\n </em>\n MeV: 1876.13415 + 2809.404  (3728.4219 + 939.5714475) ✓\n </p>\n <p>\n = 0.0188 × 931.5\n <em>\n <strong>\n OR\n </strong>\n </em>\n = 17.512 «MeV» ✓\n </p>\n <p>\n <em>\n Must see either clear substitutions or answer to at least 3 s.f. for\n <strong>\n MP2\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Requires high temp/pressure ✓\n <br/>\n Must overcome Coulomb/intermolecular repulsion ✓\n <br/>\n Difficult to contain / control «at high temp/pressure» ✓\n <br/>\n Difficult to produce excess energy/often energy input greater than output /\n <em>\n <strong>\n OWTTE\n </strong>\n </em>\n ✓\n <br/>\n Difficult to capture energy from fusion reactions ✓\n <br/>\n Difficult to maintain/sustain a constant reaction rate ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Plentiful fuel supplies\n <em>\n <strong>\n OR\n </strong>\n </em>\n larger specific energy\n <em>\n <strong>\n OR\n </strong>\n </em>\n larger energy density\n <em>\n <strong>\n OR\n </strong>\n </em>\n little or no «major radioactive» waste products ✓\n </p>\n <p>\n <em>\n Allow descriptions such as “more energy per unit mass” or “more energy per unit volume”\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n 3 ✓\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mi>\n H\n </mi>\n <mprescripts>\n </mprescripts>\n <mn mathvariant=\"italic\">\n 2\n </mn>\n <mn mathvariant=\"italic\">\n 3\n </mn>\n </mmultiscripts>\n <mi>\n e\n </mi>\n </math>\n by itself.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n </math>\n = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n ln\n </mi>\n <mo>\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n <mrow>\n <mn>\n 12\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </mfrac>\n </math>\n »0.056«y\n <sup>\n 1\n </sup>\n »\n <em>\n <strong>\n OR\n </strong>\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 5\n </mn>\n <mstyle displaystyle=\"false\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mrow>\n <mn>\n 12\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </mfrac>\n </mstyle>\n </msup>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msup>\n <mi>\n e\n </mi>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n ×\n </mo>\n <mfrac>\n <mrow>\n <mi>\n ln\n </mi>\n <mo>\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n <mrow>\n <mn>\n 12\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n </math>\n </p>\n <p>\n 0.945\n <em>\n <strong>\n OR\n </strong>\n </em>\n 94.5% ✓\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-3-radioactive-decay",
"e-4-fission",
"e-5-fusion-and-stars"
]
},
{
"question_id": "23M.2.HL.TZ1.6",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The centres of two identical fixed conducting spheres each of charge +\n <em>\n Q\n </em>\n are separated by a distance\n <em>\n D\n </em>\n . C is the midpoint of the line joining the centres of the spheres.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Sketch, on the axes, how the electric potential V due to the two charges varies with the distance r from the centre of the left charge. No numbers are required. Your graph should extend from r = 0 to r = D.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the work done to bring a small charge\n <em>\n q\n </em>\n from infinity to point C.\n </p>\n <p>\n Data given:\n </p>\n <p>\n <em>\n Q\n </em>\n = 2.0 × 10\n <sup>\n 3\n </sup>\n C,\n </p>\n <p>\n <em>\n q\n </em>\n = 4.0 × 10\n <sup>\n 9\n </sup>\n C\n </p>\n <p>\n <em>\n D\n </em>\n = 1.2m\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The magnitude of the net force on\n <em>\n q\n </em>\n is given by\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 32\n </mn>\n <mi>\n k\n </mi>\n <mi>\n Q\n </mi>\n <mi>\n q\n </mi>\n </mrow>\n <msup>\n <mi>\n D\n </mi>\n <mn>\n 3\n </mn>\n </msup>\n </mfrac>\n <mi>\n x\n </mi>\n </math>\n . Explain why the charge\n <em>\n q\n </em>\n will execute simple harmonic oscillations about C.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The mass of the charge\n <em>\n q\n </em>\n is 0.025kg.\n </p>\n <p>\n Calculate the angular frequency of the oscillations using the data in (a)(ii) and the expression in (b)(i).\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The charges\n <em>\n Q\n </em>\n are replaced by neutral masses\n <em>\n M\n </em>\n and the charge\n <em>\n q\n </em>\n by a neutral mass\n <em>\n m\n </em>\n . The mass\n <em>\n m\n </em>\n is displaced away from C by a small distance\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n and released. Discuss whether the motion of\n <em>\n m\n </em>\n will be the same as that of\n <em>\n q\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Constant, non-zero within spheres ✓\n </p>\n <p>\n A clear, non-zero positive minimum at C ✓\n </p>\n <p>\n Symmetric bowl shaped up curved shape in between ✓\n </p>\n <p>\n </p>\n <p>\n <img src=\"\"/>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n allow a bowl shaped down curve for\n <strong>\n MP3\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Constant, non-zero within spheres ✓\n </p>\n <p>\n A clear, non-zero positive minimum at C ✓\n </p>\n <p>\n Symmetric bowl shaped up curved shape in between ✓\n </p>\n <p>\n </p>\n <p>\n <img src=\"\"/>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n allow a bowl shaped down curve for\n <strong>\n MP3\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n V\n </em>\n «= 2 ×\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 99\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 9\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 60\n </mn>\n </mrow>\n </mfrac>\n </math>\n » = 6.0 × 10\n <sup>\n 7\n </sup>\n «V» ✓\n </p>\n <p>\n <em>\n W\n </em>\n = «qV = 6.0 × 10\n <sup>\n 7\n </sup>\n × 4.0 × 10\n <sup>\n 9\n </sup>\n =» 0.24 «J» ✓\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n The restoring force/acceleration is opposite to the displacement/towards equilibrium /\n <em>\n <strong>\n OWTTE\n </strong>\n </em>\n ✓\n </p>\n <p>\n and proportional to displacement from equilibrium /\n <em>\n <strong>\n OWTTE✓\n </strong>\n </em>\n </p>\n <p>\n <em>\n Allow discussions based on the diagram (such as towards C for towards equilibrium).\n </em>\n </p>\n <p>\n <em>\n Accept F ∝ x\n <strong>\n OR\n </strong>\n a ∝ x for\n <strong>\n MP2\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n ω\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msqrt>\n <mfrac>\n <mrow>\n <mn>\n 32\n </mn>\n <mi>\n k\n </mi>\n <mi>\n Q\n </mi>\n <mi>\n q\n </mi>\n </mrow>\n <mrow>\n <mi>\n m\n </mi>\n <msup>\n <mi>\n D\n </mi>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </msqrt>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n use of\n <em>\n F\n </em>\n =\n <em>\n mω\n </em>\n <sup>\n 2\n </sup>\n <em>\n r\n <strong>\n OR\n </strong>\n F\n </em>\n = 1.33\n <em>\n x\n </em>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <em>\n a\n </em>\n = 53.3\n <em>\n x\n </em>\n ✓\n </p>\n <p>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msqrt>\n <mfrac>\n <mrow>\n <mn>\n 32\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 99\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 9\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 9\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 025\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 2\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </msqrt>\n </math>\n » = 7.299 «s\n <sup>\n 1\n </sup>\n »\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n the net force will no longer be a restoring force/directed towards equilibrium\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n the gravitational force is attractive/neutral mass would be pulled towards larger masses/\n <em>\n <strong>\n OWTTE\n </strong>\n </em>\n ✓\n </p>\n <p>\n «and so» no, motion will not be the same/no longer be SHM /\n <em>\n <strong>\n OWTTE\n </strong>\n </em>\n ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"c-wave-behaviour",
"d-fields"
],
"subtopics": [
"a-2-forces-and-momentum",
"c-1-simple-harmonic-motion",
"d-1-gravitational-fields",
"d-2-electric-and-magnetic-fields"
]
},
{
"question_id": "23M.2.HL.TZ1.7",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain, by reference to Faradays law of electromagnetic induction, why there is an electromotive force (emf) induced in the loop as it leaves the region of magnetic field.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Just before the loop is about to completely exit the region of magnetic field, the loop moves with constant terminal speed\n <em>\n v\n </em>\n .\n </p>\n <p>\n The following data is available:\n </p>\n <table border=\"1\" cellpadding=\"4\" cellspacing=\"0\" style=\"height:114px;border-color:#000000;width:273px;\">\n <tbody>\n <tr>\n <td style=\"width:153.533px;\">\n Mass of loop\n </td>\n <td style=\"width:95.4667px;text-align:center;\">\n <em>\n m\n </em>\n = 4.0g\n </td>\n </tr>\n <tr>\n <td style=\"width:153.533px;\">\n Resistance of loop\n </td>\n <td style=\"width:95.4667px;text-align:center;\">\n <em>\n R\n </em>\n = 25mΩ\n </td>\n </tr>\n <tr>\n <td style=\"width:153.533px;\">\n Width of loop\n </td>\n <td style=\"width:95.4667px;text-align:center;\">\n <em>\n L\n </em>\n = 15cm\n </td>\n </tr>\n <tr>\n <td style=\"width:153.533px;\">\n Magnetic flux density\n </td>\n <td style=\"width:95.4667px;text-align:center;\">\n <em>\n B\n </em>\n = 0.80T\n </td>\n </tr>\n </tbody>\n </table>\n <p>\n Determine, in ms\n <sup>\n 1\n </sup>\n the terminal speed\n <em>\n v\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n The induced emf is equal/proportional/related to the «rate of» change of «magnetic» flux/flux linkage ✓\n </p>\n <p>\n Flux is changing because the area pierced/enclosed by magnetic field lines changes «decreases»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n Flux is changing because the loop is leaving/moving out of the «magnetic» field. ✓\n </p>\n <p>\n <em>\n Need to see a connection between the EMF and change in flux for\n <strong>\n MP1\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n Need to see a connection between the area changing or leaving the field and the change in flux for\n <strong>\n MP2\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n The induced emf is equal/proportional/related to the «rate of» change of «magnetic» flux/flux linkage ✓\n </p>\n <p>\n Flux is changing because the area pierced/enclosed by magnetic field lines changes «decreases»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n Flux is changing because the loop is leaving/moving out of the «magnetic» field. ✓\n </p>\n <p>\n <em>\n Need to see a connection between the EMF and change in flux for\n <strong>\n MP1\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n Need to see a connection between the area changing or leaving the field and the change in flux for\n <strong>\n MP2\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <em>\n mg\n </em>\n =\n <em>\n BIL\n </em>\n <em>\n <strong>\n OR\n </strong>\n </em>\n I = 0.33 «A» ✓\n </p>\n <p>\n <em>\n BvL\n </em>\n =\n <em>\n IR\n <strong>\n OR\n </strong>\n </em>\n = 8.25 × 10\n <sup>\n 3\n </sup>\n «V»\n <em>\n <strong>\n OR\n </strong>\n </em>\n = 0.12\n <em>\n v\n </em>\n ✓\n </p>\n <p>\n Combining results to get v =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n m\n </mi>\n <mi>\n g\n </mi>\n <mi>\n R\n </mi>\n </mrow>\n <mrow>\n <msup>\n <mi>\n B\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n <msup>\n <mi>\n L\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <em>\n v\n </em>\n = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 040\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 81\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 025\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 80\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 15\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </math>\n =» 0.068 «ms\n <sup>\n 1\n </sup>\n »\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n between steps if clear work is shown.\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter",
"d-fields"
],
"subtopics": [
"b-5-current-and-circuits",
"d-3-motion-in-electromagnetic-fields",
"d-4-induction"
]
},
{
"question_id": "23M.2.HL.TZ1.8",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Photons of wavelength 468 nm are incident on a metallic surface. The maximum kinetic energy of the emitted electrons is 1.8eV.\n </p>\n <p>\n Calculate\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the work function of the surface, in eV.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the longest wavelength of a photon that will eject an electron from this surface.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n In an experiment, alpha particles of initial kinetic energy 5.9MeV are directed at stationary nuclei of lead (\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mi>\n Pb\n </mi>\n <mprescripts>\n </mprescripts>\n <mn>\n 82\n </mn>\n <mn>\n 207\n </mn>\n </mmultiscripts>\n </math>\n ). Show that the distance of closest approach is about 4 × 10\n <sup>\n 14\n </sup>\n m.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The radius of a nucleus of\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mi>\n Pb\n </mi>\n <mprescripts>\n </mprescripts>\n <mn>\n 82\n </mn>\n <mn>\n 207\n </mn>\n </mmultiscripts>\n </math>\n is 7.1 × 10\n <sup>\n 15\n </sup>\n m. Explain why there will be no deviations from Rutherford scattering in the experiment in (b)(i).\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Use of\n <em>\n E\n </em>\n <sub>\n max\n </sub>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n h\n </mi>\n <mi>\n c\n </mi>\n </mrow>\n <mi>\n λ\n </mi>\n </mfrac>\n <mo>\n -\n </mo>\n <mi>\n ϕ\n </mi>\n <mo>\n ⇒\n </mo>\n <mi>\n ϕ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n h\n </mi>\n <mi>\n c\n </mi>\n </mrow>\n <mi>\n λ\n </mi>\n </mfrac>\n <mo>\n -\n </mo>\n </math>\n <em>\n E\n </em>\n <sub>\n max\n </sub>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n ϕ\n </mi>\n <mo>\n =\n </mo>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n h\n </mi>\n <mi>\n c\n </mi>\n </mrow>\n <mi>\n λ\n </mi>\n </mfrac>\n </math>\n \n <em>\n E\n </em>\n <sub>\n max\n </sub>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mfenced>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 63\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 34\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n <mfenced>\n <mrow>\n <mn>\n 3\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 8\n </mn>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mfenced>\n <mrow>\n <mn>\n 468\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 9\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n <mfenced>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 19\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n </mfrac>\n </math>\n 1.81» = 0.85625\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ≈\n </mo>\n </math>\n 0.86 «eV» ✓\n </p>\n <p>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Use of\n <em>\n E\n </em>\n <sub>\n max\n </sub>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n h\n </mi>\n <mi>\n c\n </mi>\n </mrow>\n <mi>\n λ\n </mi>\n </mfrac>\n <mo>\n -\n </mo>\n <mi>\n ϕ\n </mi>\n <mo>\n ⇒\n </mo>\n <mi>\n ϕ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n h\n </mi>\n <mi>\n c\n </mi>\n </mrow>\n <mi>\n λ\n </mi>\n </mfrac>\n <mo>\n -\n </mo>\n </math>\n <em>\n E\n </em>\n <sub>\n max\n </sub>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n ϕ\n </mi>\n <mo>\n =\n </mo>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n h\n </mi>\n <mi>\n c\n </mi>\n </mrow>\n <mi>\n λ\n </mi>\n </mfrac>\n </math>\n \n <em>\n E\n </em>\n <sub>\n max\n </sub>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mfenced>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 63\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 34\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n <mfenced>\n <mrow>\n <mn>\n 3\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 8\n </mn>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mfenced>\n <mrow>\n <mn>\n 468\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 9\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n <mfenced>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 19\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n </mfrac>\n </math>\n 1.81» = 0.85625\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ≈\n </mo>\n </math>\n 0.86 «eV» ✓\n </p>\n <p>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n h\n </mi>\n <mi>\n c\n </mi>\n </mrow>\n <mi>\n λ\n </mi>\n </mfrac>\n <mo>\n =\n </mo>\n <mi>\n ϕ\n </mi>\n <mo>\n ⇒\n </mo>\n <mi>\n λ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n h\n </mi>\n <mi>\n c\n </mi>\n </mrow>\n <mi>\n ϕ\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n <mo>\n =\n </mo>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mfenced>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 63\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 34\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n <mfenced>\n <mrow>\n <mn>\n 3\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 8\n </mn>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mfenced>\n <mrow>\n <mn>\n 468\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 9\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n <mfenced>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 19\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n </mfrac>\n </math>\n =» 1.45 × 10\n <sup>\n 6\n </sup>\n «m»✓\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n a(i)\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n 2e\n <em>\n <strong>\n AND\n </strong>\n </em>\n 82e seen\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n 3.2 × 10\n <sup>\n 19\n </sup>\n «C»\n <em>\n <strong>\n AND\n </strong>\n </em>\n 1.312 × 10\n <sup>\n 17\n </sup>\n «C» seen ✓\n </p>\n <p>\n <em>\n d\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 99\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 9\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mo>\n (\n </mo>\n <mn>\n 2\n </mn>\n <mi>\n e\n </mi>\n <mo>\n )\n </mo>\n <mo>\n (\n </mo>\n <mn>\n 82\n </mn>\n <mi>\n e\n </mi>\n <mo>\n )\n </mo>\n </mrow>\n <mrow>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mi>\n e\n </mi>\n </mrow>\n </mfrac>\n </math>\n = 3.998 × 10\n <sup>\n 14\n </sup>\n ≈ 4 × 10\n <sup>\n 14\n </sup>\n «m» ✓\n </p>\n <p>\n <em>\n Must see either clear substitutions or answer to at least 4 s.f. for\n <strong>\n MP2\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n The closest approach is «significantly» larger than the radius of the nucleus / far away from the nucleus/\n <em>\n <strong>\n OWTTE\n </strong>\n </em>\n . ✓\n </p>\n <p>\n «Therefore» the strong nuclear force will not act on the alpha particle.✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-1-structure-of-the-atom",
"e-2-quantum-physics"
]
},
{
"question_id": "23M.2.HL.TZ2.4",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the value of the maximum distance between the stars that can be measured in any reference frame.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the speed of shuttle S relative to observer P using Galilean relativity.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the distance between star A and star B relative to observer P.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the speed of shuttle S relative to observer P is approximately 0.6\n <em>\n c\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (e)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the time, according to observer P, that the shuttle S takes to travel from star A to star B.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (f)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State and explain the reference frame in which the proper time for shuttle S to journey from star A to star B can be measured.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 4.8 «light years» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n «−» 0.48\n <em>\n c\n </em>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Ignore sign\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n y\n </mi>\n </math>\n = 1.6 ✓\n </p>\n <p>\n <em>\n D\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 8\n </mn>\n </mrow>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </mfrac>\n </math>\n = 3 «ly» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mo>\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n <mi>\n c\n </mi>\n <mo>\n -\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 78\n </mn>\n <mi>\n c\n </mi>\n </mrow>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n -\n </mo>\n <mstyle displaystyle=\"true\">\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 78\n </mn>\n <mi>\n c\n </mi>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n <mi>\n c\n </mi>\n </mrow>\n <msup>\n <mi>\n c\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mfrac>\n </mstyle>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n «−» 0.63\n <em>\n c\n </em>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [2]\n </strong>\n if\n <strong>\n MP1\n </strong>\n correct and correct answer given to 1 significant figure.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi mathvariant=\"normal\">\n Δ\n </mi>\n <msub>\n <mi>\n t\n </mi>\n <mi mathvariant=\"normal\">\n p\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 3\n </mn>\n <mo>\n </mo>\n <mi>\n ly\n </mi>\n </mrow>\n <mrow>\n <mo>\n (\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 78\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 627\n </mn>\n <mo>\n )\n </mo>\n <mi>\n c\n </mi>\n </mrow>\n </mfrac>\n </math>\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi mathvariant=\"normal\">\n Δ\n </mi>\n <msub>\n <mi>\n t\n </mi>\n <mi mathvariant=\"normal\">\n p\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mfenced>\n <mrow>\n <mfrac>\n <mrow>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n </mo>\n <mi>\n ly\n </mi>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n <mi>\n c\n </mi>\n </mrow>\n </mfrac>\n <mo>\n -\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 78\n </mn>\n <mi>\n c\n </mi>\n <mo>\n ×\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n </mo>\n <mi>\n ly\n </mi>\n </mrow>\n <msup>\n <mi>\n c\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mfrac>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n <p>\n = 19\n <em>\n <strong>\n OR\n </strong>\n </em>\n 20 «years» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for\n <strong>\n BCA\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (f)\n </div><div class=\"card-body\">\n <p>\n shuttle measures proper time ✓\n </p>\n <p style=\"text-align:justify;\">\n as the events occur at the same place for the shuttle / shuttle is at both events ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-5-galilean-and-special-relativity"
]
},
{
"question_id": "23M.2.HL.TZ2.5",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline what is meant by an isotope.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the speed of the spaceship relative to Earth.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Estimate, using the spacetime diagram, the time in seconds when the flash of light reaches the spaceship according to the Earth observer.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the time coordinate\n <em>\n ct\n </em>\n when the flash of light reaches the spaceship, according to an observer at rest in the spaceship.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n «An atom with» the same number of protons\n <em>\n <strong>\n AND\n </strong>\n </em>\n different numbers of neutrons\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n Same chemical properties\n <em>\n <strong>\n AND\n </strong>\n </em>\n different physical properties ✓\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n allow just atomic number and mass number\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 0.6c\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n = 1.8 × 10\n <sup>\n 8\n </sup>\n «ms\n <sup>\n 1\n </sup>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Line drawn at 45° from\n <em>\n ct\n </em>\n = 2km to hit spaceship world line at\n <em>\n ct\n </em>\n = 5km\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <em>\n ct\n </em>\n = 1.2/(\n <em>\n c\n </em>\n 0.6\n <em>\n c\n </em>\n ) + 2 = 5 «km» ✓\n </p>\n <p>\n <em>\n t\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 5000\n </mn>\n <mi>\n c\n </mi>\n </mfrac>\n </math>\n = 1.7 × 10\n <sup>\n 5\n </sup>\n «s» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for\n <strong>\n BCA\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n (\n <em>\n ct\n </em>\n ')\n <sup>\n 2\n </sup>\n 0 = 5\n <sup>\n 2\n </sup>\n 3\n <sup>\n 2\n </sup>\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n γ\n </mi>\n </math>\n = 1.25 ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n ct\n </em>\n ' = 4«km»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <em>\n t\n </em>\n ' = 13«\n <em>\n µ\n </em>\n s» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n (b)\n </strong>\n </em>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"a-5-galilean-and-special-relativity",
"e-3-radioactive-decay"
]
},
{
"question_id": "23M.2.HL.TZ2.6",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msub>\n <mi>\n g\n </mi>\n <mi mathvariant=\"normal\">\n M\n </mi>\n </msub>\n <msub>\n <mi>\n g\n </mi>\n <mi mathvariant=\"normal\">\n P\n </mi>\n </msub>\n </mfrac>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the net torque on the system about the central axis is approximately 30Nm.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The system rotates from rest and reaches a maximum angular speed of 20rads\n <sup>\n 1\n </sup>\n in a time of 5.0s. Calculate the angular acceleration of the system.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State and explain the magnitude of the resultant gravitational field strength at O.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline why the graph between P and O is negative.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the gravitational potential\n <em>\n V\n </em>\n <sub>\n P\n </sub>\n at the surface of P due to the mass of P is given by\n <em>\n V\n </em>\n <sub>\n P\n </sub>\n = \n <em>\n g\n </em>\n <sub>\n P\n </sub>\n <em>\n R\n </em>\n <sub>\n P\n </sub>\n where\n <em>\n R\n </em>\n <sub>\n P\n </sub>\n is the radius of the planet.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iv)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The gravitational potential due to the mass of M at the surface of P can be assumed to be negligible.\n </p>\n <p>\n Estimate, using the graph, the gravitational potential at the surface of M due to the mass of M.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (v)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw on the axes the variation of gravitational potential between O and M.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the moment of inertia of the system about the central axis.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline why the angular speed\n <em>\n ω\n </em>\n decreases when the spheres move outward.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the rotational kinetic energy is\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n <em>\n Lω\n </em>\n where\n <em>\n L\n </em>\n is the angular momentum of the system.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n When the spheres move outward, the angular speed decreases from 20rads\n <sup>\n 1\n </sup>\n to 12rads\n <sup>\n 1\n </sup>\n . Calculate the percentage change in rotational kinetic energy that occurs when the spheres move outward.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Work using\n <em>\n g\n </em>\n ∝\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mi>\n m\n </mi>\n <msup>\n <mi>\n r\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msub>\n <mi>\n g\n </mi>\n <mi mathvariant=\"normal\">\n M\n </mi>\n </msub>\n <msub>\n <mi>\n g\n </mi>\n <mi mathvariant=\"normal\">\n P\n </mi>\n </msub>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <msub>\n <mi>\n m\n </mi>\n <mi mathvariant=\"normal\">\n M\n </mi>\n </msub>\n <msub>\n <mi>\n m\n </mi>\n <mi mathvariant=\"normal\">\n P\n </mi>\n </msub>\n </mfrac>\n <msup>\n <mfenced>\n <mfrac>\n <msub>\n <mi>\n r\n </mi>\n <mi mathvariant=\"normal\">\n P\n </mi>\n </msub>\n <msub>\n <mi>\n r\n </mi>\n <mi mathvariant=\"normal\">\n M\n </mi>\n </msub>\n </mfrac>\n </mfenced>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n = 0.75 ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n ΣΓ\n </mtext>\n </math>\n = 50 × 0.5 + 40 × 0.2\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n 33 «Nm» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept opposite rotational sign convention\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n «α =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 20\n </mn>\n <mn>\n 5\n </mn>\n </mfrac>\n </math>\n =» 4 «rads\n <sup>\n 2\n </sup>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n g = 0 ✓\n </p>\n <p>\n As g «=\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n -\n </mo>\n <mfrac>\n <mrow>\n <mi mathvariant=\"normal\">\n Δ\n </mi>\n <msub>\n <mi>\n V\n </mi>\n <mi>\n g\n </mi>\n </msub>\n </mrow>\n <mrow>\n <mi mathvariant=\"normal\">\n Δ\n </mi>\n <mi>\n r\n </mi>\n </mrow>\n </mfrac>\n </math>\n which» is the gradient of the graph\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n As the force of attraction/field strength of P and M are equal ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n The gravitational field is attractive so that energy is required «to move away from P» ✓\n </p>\n <p>\n the gravitational potential is defined as 0 at\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ∞\n </mo>\n </math>\n , (the potential must be negative) ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n <em>\n V\n </em>\n <sub>\n P\n </sub>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n -\n </mo>\n <mfrac>\n <mrow>\n <mi>\n G\n </mi>\n <mi>\n M\n </mi>\n </mrow>\n <msub>\n <mi>\n R\n </mi>\n <mi mathvariant=\"normal\">\n P\n </mi>\n </msub>\n </mfrac>\n </math>\n <em>\n <strong>\n AND\n </strong>\n g\n </em>\n <sub>\n P\n </sub>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n G\n </mi>\n <mi>\n M\n </mi>\n </mrow>\n <msup>\n <msub>\n <mi>\n R\n </mi>\n <mi mathvariant=\"normal\">\n P\n </mi>\n </msub>\n <mn>\n 2\n </mn>\n </msup>\n </mfrac>\n </math>\n (at surface) ✓\n </p>\n <p>\n Suitable working and cancellation of\n <em>\n G\n </em>\n and\n <em>\n M\n </em>\n seen ✓\n </p>\n <p>\n <em>\n V\n </em>\n <sub>\n P\n </sub>\n = \n <em>\n g\n </em>\n <sub>\n P\n </sub>\n <em>\n R\n </em>\n <sub>\n P\n </sub>\n </p>\n <p>\n <em>\n Must see negative sign\n </em>\n </p>\n <p>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iv)\n </div><div class=\"card-body\">\n <p>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n M\n </mi>\n </msub>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n P\n </mi>\n </msub>\n </mfrac>\n </math>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <msub>\n <mi>\n g\n </mi>\n <mi mathvariant=\"normal\">\n M\n </mi>\n </msub>\n <msub>\n <mi>\n R\n </mi>\n <mi mathvariant=\"normal\">\n M\n </mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>\n g\n </mi>\n <mi mathvariant=\"normal\">\n P\n </mi>\n </msub>\n <msub>\n <mi>\n R\n </mi>\n <mtext>\n P\n </mtext>\n </msub>\n </mrow>\n </mfrac>\n </math>\n = 0.75 × 0.27» = 0.20 ✓\n </p>\n <p>\n <em>\n V\n </em>\n <sub>\n M\n </sub>\n = «6.4 × 10\n <sup>\n 7\n </sup>\n × 0.2 =» «»1.3 × 10\n <sup>\n 7\n </sup>\n «Jkg\n <sup>\n 1\n </sup>\n »✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (v)\n </div><div class=\"card-body\">\n <p>\n Line always negative, of suitable shape and end point below 8 and above 20 unless awarding\n <em>\n <strong>\n ECF\n </strong>\n </em>\n from\n <em>\n <strong>\n b(iv)\n </strong>\n </em>\n ✓\n </p>\n <p>\n <img src=\"\"/>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mi>\n Γ\n </mi>\n <mi>\n α\n </mi>\n </mfrac>\n </math>\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n 33 =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n </math>\n × 4 ✓\n </p>\n <p>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n </math>\n = 8.25 «kgm\n <sup>\n 2\n </sup>\n » ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n (a)\n </strong>\n and\n <strong>\n (b)\n </strong>\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for a\n <strong>\n BCA\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n moment of inertia increases ✓\n </p>\n <p>\n Angular momentum is conserved ✓\n </p>\n <p>\n <em>\n <br/>\n Allow algebraic expressions e.g. ω =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mi>\n L\n </mi>\n <mi>\n I\n </mi>\n </mfrac>\n </math>\n so ω decreases for\n <strong>\n MP2\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n E\n </em>\n <sub>\n k\n </sub>\n «=\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mi>\n I\n </mi>\n </math>\n <em>\n ω\n </em>\n <sup>\n 2\n </sup>\n =»\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n (\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n </math>\n <em>\n ω\n </em>\n )\n <em>\n ω\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n <em>\n Lω\n </em>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept equivalent methods\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n <em>\n «E\n </em>\n <sub>\n k\n </sub>\n =»\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n <em>\n Lω\n </em>\n <sub>\n 1\n </sub>\n <em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n Lω\n <sub>\n 2\n </sub>\n </em>\n ✓\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msub>\n <mi mathvariant=\"bold-italic\">\n E\n </mi>\n <mrow>\n <mi>\n k\n </mi>\n <mn>\n 1\n </mn>\n </mrow>\n </msub>\n <msub>\n <mi mathvariant=\"bold-italic\">\n E\n </mi>\n <mrow>\n <mi>\n k\n </mi>\n <mn>\n 2\n </mn>\n </mrow>\n </msub>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <msub>\n <mi>\n ω\n </mi>\n <mn>\n 1\n </mn>\n </msub>\n <msub>\n <mi>\n ω\n </mi>\n <mn>\n 2\n </mn>\n </msub>\n </mfrac>\n </math>\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n «\n <em>\n L\n </em>\n is constant so»\n <em>\n E\n </em>\n <sub>\n k\n </sub>\n is proportional to\n <em>\n ω\n </em>\n ✓\n </p>\n <p>\n 40% «energy loss» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n MP1\n </strong>\n is for understanding that angular momentum is constant so change in rotational kinetic energy is proportional to change in angular velocity\n </em>\n </p>\n <p>\n <em>\n <strong>\n Award [0]\n </strong>\n if E = 0.5Iω\n <sup>\n 2\n </sup>\n is used with the same I value for both values of E\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for\n <strong>\n BCA\n </strong>\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"d-fields"
],
"subtopics": [
"a-4-rigid-body-mechanics",
"d-1-gravitational-fields"
]
},
{
"question_id": "23M.2.HL.TZ2.7",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the pressure of the gas at B.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Sketch, on the\n <em>\n pV\n </em>\n diagram, the remaining two processes BC and CA that the gas undergoes.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the temperature of the gas at C is approximately 350°C.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why the change of entropy for the gas during the process BC is equal to zero.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (e)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why the work done by the gas during the isothermal expansion AB is less than the work done on the gas during the adiabatic compression BC.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (f)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The quantity of trapped gas is 53.2mol. Calculate the thermal energy removed from the gas during process CA.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n use of\n <em>\n pV\n </em>\n = constant ✓\n </p>\n <p>\n <em>\n P\n </em>\n <sub>\n B\n </sub>\n = 43 «Kpa» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [2]\n </strong>\n for\n <strong>\n BCA\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n concave curved line from B to locate C with a higher pressure than A ✓\n </p>\n <p>\n vertical line joining C to A ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n i.e.,\n <strong>\n award [1]\n </strong>\n for first process locating C at a lower pressure than A, then vertical line to A.\n </em>\n </p>\n <p>\n <em>\n Arrows on the processes are not needed.\n </em>\n </p>\n <p>\n <em>\n Point C need not be labelled.\n </em>\n </p>\n <p>\n <img src=\"\"/>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <msup>\n <mi>\n V\n </mi>\n <mfrac>\n <mn>\n 2\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n </math>\n = constant «so\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 300\n </mn>\n <msup>\n <mrow>\n <mo>\n (\n </mo>\n <mn>\n 3\n </mn>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n <mo>\n )\n </mo>\n </mrow>\n <mfrac>\n <mn>\n 2\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n <mo>\n =\n </mo>\n <msub>\n <mi>\n T\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n <msup>\n <mrow>\n <mo>\n (\n </mo>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n <mo>\n )\n </mo>\n </mrow>\n <mfrac>\n <mn>\n 2\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n </math>\n » ✓\n </p>\n <p>\n <em>\n T\n </em>\n <sub>\n C\n </sub>\n = 624«K»\n <em>\n <strong>\n OR\n </strong>\n </em>\n <em>\n T\n </em>\n <sub>\n C\n </sub>\n = 351«°C» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n p\n </mi>\n <msup>\n <mi>\n V\n </mi>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n </math>\n to get either\n <em>\n p\n </em>\n <sub>\n c\n </sub>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 43\n </mn>\n <msup>\n <mrow>\n <mo>\n (\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n )\n </mo>\n </mrow>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <em>\n p\n </em>\n <sub>\n c\n </sub>\n = 268 «kPa» ✓\n </p>\n <p>\n «\n <em>\n T\n </em>\n <sub>\n C\n </sub>\n = 268 × 300/129 = so »\n </p>\n <p>\n <em>\n T\n </em>\n <sub>\n C\n </sub>\n = 624«K»\n <em>\n <strong>\n OR\n </strong>\n </em>\n <em>\n T\n </em>\n <sub>\n C\n </sub>\n = 351«°C» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n «the process is adiabatic so» ΔQ = 0 ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n The compression is reversible «so ΔS = 0» ✓\n </p>\n <p>\n </p>\n <p>\n <strong>\n <em>\n OWTTE\n </em>\n </strong>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e)\n </div><div class=\"card-body\">\n <p>\n area under curve AB is less than area under curve BC ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n allow\n <strong>\n ECF\n </strong>\n from part\n <strong>\n (b)\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (f)\n </div><div class=\"card-body\">\n <p>\n «W = 0 so» Q = ΔU ✓\n </p>\n <p>\n «ΔU =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n × 53.2 × R × (351 27) so » ΔU = 2.15 × 10\n <sup>\n 5\n </sup>\n «J» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [2]\n </strong>\n for\n <strong>\n BCA\n </strong>\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-4-thermodynamics"
]
},
{
"question_id": "23M.2.HL.TZ2.8",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the net torque on the system about the central axis is approximately 30Nm.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The system rotates from rest and reaches a maximum angular speed of 20rads\n <sup>\n 1\n </sup>\n in a time of 5.0s. Calculate the angular acceleration of the system.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the moment of inertia of the system about the central axis.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline why the angular speed\n <em>\n ω\n </em>\n decreases when the spheres move outward.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the rotational kinetic energy is\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n <em>\n Lω\n </em>\n where\n <em>\n L\n </em>\n is the angular momentum of the system.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n When the spheres move outward, the angular speed decreases from 20rads\n <sup>\n 1\n </sup>\n to 12rads\n <sup>\n 1\n </sup>\n . Calculate the percentage change in rotational kinetic energy that occurs when the spheres move outward.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (e)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline one reason why this model of a dancer is unrealistic.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n ΣΓ\n </mtext>\n </math>\n = 50 × 0.5 + 40 × 0.2\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n 33 «Nm» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept opposite rotational sign convention\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n «α =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 20\n </mn>\n <mn>\n 5\n </mn>\n </mfrac>\n </math>\n =» 4 «rads\n <sup>\n 2\n </sup>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mi>\n Γ\n </mi>\n <mi>\n α\n </mi>\n </mfrac>\n </math>\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n 33 =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n </math>\n × 4 ✓\n </p>\n <p>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n </math>\n = 8.25 «kgm\n <sup>\n 2\n </sup>\n » ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n (a)\n </strong>\n and\n <strong>\n (b)\n </strong>\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for a\n <strong>\n BCA\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n moment of inertia increases ✓\n </p>\n <p>\n Angular momentum is conserved ✓\n </p>\n <p>\n <em>\n <br/>\n Allow algebraic expressions e.g. ω =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mi>\n L\n </mi>\n <mi>\n I\n </mi>\n </mfrac>\n </math>\n so ω decreases for\n <strong>\n MP2\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n E\n </em>\n <sub>\n k\n </sub>\n «=\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mi>\n I\n </mi>\n </math>\n <em>\n ω\n </em>\n <sup>\n 2\n </sup>\n =»\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n (\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n </math>\n <em>\n ω\n </em>\n )\n <em>\n ω\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n <em>\n Lω\n </em>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept equivalent methods\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n <em>\n «E\n </em>\n <sub>\n k\n </sub>\n =»\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n <em>\n Lω\n </em>\n <sub>\n 1\n </sub>\n <em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n Lω\n <sub>\n 2\n </sub>\n </em>\n ✓\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msub>\n <mi mathvariant=\"bold-italic\">\n E\n </mi>\n <mrow>\n <mi>\n k\n </mi>\n <mn>\n 1\n </mn>\n </mrow>\n </msub>\n <msub>\n <mi mathvariant=\"bold-italic\">\n E\n </mi>\n <mrow>\n <mi>\n k\n </mi>\n <mn>\n 2\n </mn>\n </mrow>\n </msub>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <msub>\n <mi>\n ω\n </mi>\n <mn>\n 1\n </mn>\n </msub>\n <msub>\n <mi>\n ω\n </mi>\n <mn>\n 2\n </mn>\n </msub>\n </mfrac>\n </math>\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n «\n <em>\n L\n </em>\n is constant so»\n <em>\n E\n </em>\n <sub>\n k\n </sub>\n is proportional to\n <em>\n ω\n </em>\n ✓\n </p>\n <p>\n 40% «energy loss» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n MP1\n </strong>\n is for understanding that angular momentum is constant so change in rotational kinetic energy is proportional to change in angular velocity\n </em>\n </p>\n <p>\n <em>\n <strong>\n Award [0]\n </strong>\n if E = 0.5Iω\n <sup>\n 2\n </sup>\n is used with the same I value for both values of E\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for\n <strong>\n BCA\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e)\n </div><div class=\"card-body\">\n <p>\n one example specified\n <em>\n eg\n </em>\n friction, air resistance, mass distribution not modelled ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [1]\n </strong>\n for any reasonable physical parameter that is not consistent with the model\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-4-rigid-body-mechanics"
]
},
{
"question_id": "23M.2.HL.TZ2.9",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show, using the data, that the energy released in the decay of one magnesium-27 nucleus is about 2.62MeV.\n </p>\n <p style=\"text-align:center;\">\n Mass of aluminium-27 atom = 26.98153u\n <br/>\n Mass of magnesium-27 atom = 26.98434u\n <br/>\n The unified atomic mass unit is 931.5MeVc\n <sup>\n 2\n </sup>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the pressure of the gas at B.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Sketch, on the\n <em>\n pV\n </em>\n diagram, the remaining two processes BC and CA that the gas undergoes.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the conclusion that can be drawn from the existence of these two routes.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the difference between the magnitudes of the total energy transfers in parts (a) and (b).\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain how the difference in part (b)(ii) arises.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the temperature of the gas at C is approximately 350°C.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The smallest mass of magnesium that can be detected with this technique is 1.1 × 10\n <sup>\n 8\n </sup>\n kg.\n </p>\n <p>\n Show that the smallest number of magnesium atoms that can be detected with this technique is about 10\n <sup>\n 17\n </sup>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n A sample of glass is irradiated with neutrons so that all the magnesium atoms become magnesium-27. The sample contains 9.50 × 10\n <sup>\n 15\n </sup>\n magnesium atoms.\n </p>\n <p>\n The decay constant of magnesium-27 is 1.22 × 10\n <sup>\n 3\n </sup>\n s\n <sup>\n 1\n </sup>\n .\n </p>\n <p>\n Determine the number of aluminium atoms that form in 10.0 minutes after the irradiation ends.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Estimate, in W, the average rate at which energy is transferred by the decay of magnesium-27 during the 10.0 minutes after the irradiation ends.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why the change of entropy for the gas during the process BC is equal to zero.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (e)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why the work done by the gas during the isothermal expansion AB is less than the work done on the gas during the adiabatic compression BC.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (f)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The quantity of trapped gas is 53.2mol. Calculate the thermal energy removed from the gas during process CA.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n (26.98434 - 26.98153) × 931.5\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n 2.6175 «MeV» seen ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n use of\n <em>\n pV\n </em>\n = constant ✓\n </p>\n <p>\n <em>\n P\n </em>\n <sub>\n B\n </sub>\n = 43 «Kpa» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [2]\n </strong>\n for\n <strong>\n BCA\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n concave curved line from B to locate C with a higher pressure than A ✓\n </p>\n <p>\n vertical line joining C to A ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n i.e.,\n <strong>\n award [1]\n </strong>\n for first process locating C at a lower pressure than A, then vertical line to A.\n </em>\n </p>\n <p>\n <em>\n Arrows on the processes are not needed.\n </em>\n </p>\n <p>\n <em>\n Point C need not be labelled.\n </em>\n </p>\n <p>\n <img src=\"\"/>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n evidence for nuclear energy levels ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Difference = 2.6175 (1.76656 +0.84376) = 2.6175 2.61032 = 0.007195 «MeV»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n Difference = 2.6175 (1.59587 +1.01445) = 2.61032 = 0.007195 «MeV» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n Another particle/«anti» neutrino is emitted «that accounts for this mass / energy» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <msup>\n <mi>\n V\n </mi>\n <mfrac>\n <mn>\n 2\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n </math>\n = constant «so\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 300\n </mn>\n <msup>\n <mrow>\n <mo>\n (\n </mo>\n <mn>\n 3\n </mn>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n <mo>\n )\n </mo>\n </mrow>\n <mfrac>\n <mn>\n 2\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n <mo>\n =\n </mo>\n <msub>\n <mi>\n T\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n <msup>\n <mrow>\n <mo>\n (\n </mo>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n <mo>\n )\n </mo>\n </mrow>\n <mfrac>\n <mn>\n 2\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n </math>\n » ✓\n </p>\n <p>\n <em>\n T\n </em>\n <sub>\n C\n </sub>\n = 624«K»\n <em>\n <strong>\n OR\n </strong>\n </em>\n <em>\n T\n </em>\n <sub>\n C\n </sub>\n = 351«°C» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n p\n </mi>\n <msup>\n <mi>\n V\n </mi>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n </math>\n to get either\n <em>\n p\n </em>\n <sub>\n c\n </sub>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 43\n </mn>\n <msup>\n <mrow>\n <mo>\n (\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n )\n </mo>\n </mrow>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <em>\n p\n </em>\n <sub>\n c\n </sub>\n = 268 «kPa» ✓\n </p>\n <p>\n «\n <em>\n T\n </em>\n <sub>\n C\n </sub>\n = 268 × 300/129 = so »\n </p>\n <p>\n <em>\n T\n </em>\n <sub>\n C\n </sub>\n = 624«K»\n <em>\n <strong>\n OR\n </strong>\n </em>\n <em>\n T\n </em>\n <sub>\n C\n </sub>\n = 351«°C» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n So 1.1 × 10\n <sup>\n 8\n </sup>\n kg ≡\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 027\n </mn>\n </mrow>\n </mfrac>\n </math>\n × 10\n <sup>\n 8\n </sup>\n «mol»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n Mass of atom = 27 × 1.66 × 10\n <sup>\n 27\n </sup>\n «kg» ✓\n </p>\n <p>\n 2.4  2.5 x 10\n <sup>\n 17\n </sup>\n atoms ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n N\n </em>\n <sub>\n 10\n </sub>\n = 9.50 × 10\n <sup>\n 15\n </sup>\n ×\n <em>\n e\n </em>\n <sup>\n 0.00122×60\n </sup>\n seen ✓\n </p>\n <p>\n <em>\n N\n </em>\n <sub>\n 10\n </sub>\n = 4.57 × 10\n <sup>\n 15\n </sup>\n ✓\n </p>\n <p>\n So number of aluminium-27 nuclei = (9.50 4.57) × 10\n <sup>\n 15\n </sup>\n = 4.9(3) × 10\n <sup>\n 15\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n Total energy released = ans\n <strong>\n (c)(ii)\n </strong>\n × 2.62 × 10\n <sup>\n 6\n </sup>\n × 1.6 × 10\n <sup>\n 19\n </sup>\n «= 2100J» ✓\n </p>\n <p>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 2100\n </mn>\n <mn>\n 600\n </mn>\n </mfrac>\n </math>\n =» 3.4 3.5 «W» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n «the process is adiabatic so» ΔQ = 0 ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n The compression is reversible «so ΔS = 0» ✓\n </p>\n <p>\n </p>\n <p>\n <strong>\n <em>\n OWTTE\n </em>\n </strong>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e)\n </div><div class=\"card-body\">\n <p>\n area under curve AB is less than area under curve BC ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n allow\n <strong>\n ECF\n </strong>\n from part\n <strong>\n (b)\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (f)\n </div><div class=\"card-body\">\n <p>\n «W = 0 so» Q = ΔU ✓\n </p>\n <p>\n «ΔU =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n × 53.2 × R × (351 27) so » ΔU = 2.15 × 10\n <sup>\n 5\n </sup>\n «J» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [2]\n </strong>\n for\n <strong>\n BCA\n </strong>\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter",
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"b-1-thermal-energy-transfers",
"b-4-thermodynamics",
"e-3-radioactive-decay"
]
},
{
"question_id": "23M.2.SL.TZ1.1",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Deduce the unit of μ in terms of fundamental SI units.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n draw a free-body diagram for the ball.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n show that the speed of the ball is about 4.3ms\n <sup>\n 1\n </sup>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n determine the tension in the string.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the collision is elastic.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the maximum height risen by the centre of the ball.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain a possible reason for the systematic error.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iv)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the gradient of the graph.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The coefficient of dynamic friction between the block and the rough surface is 0.400.\n </p>\n <p>\n Estimate the distance travelled by the block on the rough surface until it stops.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n [μ] = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n kg\n </mi>\n <mo>\n ×\n </mo>\n <mi mathvariant=\"normal\">\n m\n </mi>\n <mo>\n </mo>\n <msup>\n <mi mathvariant=\"normal\">\n s\n </mi>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <msup>\n <mi mathvariant=\"normal\">\n s\n </mi>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <msup>\n <mi mathvariant=\"normal\">\n m\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </math>\n » kg × m\n <sup>\n 1\n </sup>\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept kg/m.\n </em>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept gm\n <sup>\n 1\n </sup>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Tension upwards, weight downwards ✓\n <br/>\n Tension is clearly longer than weight ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Look for:\n </em>\n </p>\n <p>\n <img src=\"\"/>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n v\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msqrt>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 81\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 95\n </mn>\n </msqrt>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n = 4.32 «ms\n <sup>\n 1\n </sup>\n » ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Must see either full substitution or answer to at least 3 s.f.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n <em>\n T mg = F\n <sub>\n net\n </sub>\n <strong>\n OR\n </strong>\n </em>\n <em>\n T mg =\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n m\n </mi>\n <msup>\n <mi>\n v\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n <mi>\n r\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <em>\n T\n </em>\n «= 0.800 × 9.81 +\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 800\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 317\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 95\n </mn>\n </mrow>\n </mfrac>\n </math>\n » = 23.5 «N» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Use of conservation of momentum. ✓\n <br/>\n Rebound speed = 2.16 «ms\n <sup>\n 1\n </sup>\n » ✓\n <br/>\n Calculation of initial KE = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n × 0.800 × 4.317\n <sup>\n 2\n </sup>\n » = 7.46 « J » ✓\n <br/>\n Calculation of final KE = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n × 0.800  × 2.16\n <sup>\n 2\n </sup>\n +\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n × 2.40 × 2.16\n <sup>\n 2\n </sup>\n » = 7.46 «J» ✓\n <br/>\n «hence elastic»\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n <br/>\n Rebound speed is halved so energy less by a factor of 4 ✓\n <br/>\n Hence height is\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 95\n </mn>\n <mn>\n 4\n </mn>\n </mfrac>\n </math>\n =23.8 «cm» ✓\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n <br/>\n </strong>\n </em>\n Use of conservation of energy /\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n × 0.800 × 2.16\n <sup>\n 2\n </sup>\n = 0.800 × 9.8 ×\n <em>\n h\n <br/>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n Use of proper kinematics equation (e.g. 0 = 2.16\n <sup>\n 2\n </sup>\n 2 × 9.8 ×\n <em>\n h\n </em>\n ) ✓\n </p>\n <p>\n <em>\n h\n </em>\n = 23.8 «cm» ✓\n </p>\n <p>\n <em>\n <br/>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n b(i)\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n mass of tray of weights neglected/friction at pulley/friction at slider/thickness of slider/zero off-set error ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n allow vague answers like friction neglected / error in length measurement.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iv)\n </div><div class=\"card-body\">\n <p>\n large enough triangle Δ\n <em>\n m\n </em>\n ≥ 50g✓\n </p>\n <p>\n answer in range 0.210 0.240 «kgm\n <sup>\n 1\n </sup>\n » ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept answers in gm\n <sup>\n 2\n </sup>\n .\n </em>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n <br/>\n Frictional force is\n <em>\n f\n </em>\n «= 0.400 × 2.40 × 9.81» = 9.42 «N» ✓\n <br/>\n 9.42 ×\n <em>\n d\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n × 2.40 × 2.16\n <sup>\n 2\n </sup>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <em>\n d\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5987\n </mn>\n </mrow>\n <mrow>\n <mn>\n 9\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 42\n </mn>\n </mrow>\n </mfrac>\n </math>\n ✓\n <br/>\n <em>\n d\n </em>\n = 0.594 «m» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n <br/>\n <em>\n a\n </em>\n = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mi>\n f\n </mi>\n <mi>\n m\n </mi>\n </mfrac>\n </math>\n =\n <em>\n µg\n </em>\n = 0.4 × 9.81 =» 3.924 «ms\n <sup>\n 2\n </sup>\n » ✓\n </p>\n <p>\n Proper use of kinematics equation(s) to determine ✓\n </p>\n <p>\n <em>\n d\n </em>\n = 0.594 «m» ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"inquiry",
"tools"
],
"subtopics": [
"a-2-forces-and-momentum",
"a-3-work-energy-and-power",
"i-3-2-evaluating",
"inquiry-3-concluding-and-evaluating",
"tool-3-mathematics"
]
},
{
"question_id": "23M.2.SL.TZ1.2",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the average rate at which thermal energy is transferred into the chocolate is about 15W.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n one variable that must be controlled,\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the main source of error in\n <em>\n T\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n To determine\n <em>\n T\n </em>\n more precisely, the student measures the total time for 20 oscillations and divides by 20.\n </p>\n <p>\n Explain why this is preferable to measuring the time for just one oscillation.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Compare the internal energy of the chocolate at\n <em>\n t\n </em>\n = 2 minutes with that at\n <em>\n t\n </em>\n = 6 minutes.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The student plots a graph with\n <em>\n L\n </em>\n on the horizontal axis. State the variable that must be plotted on the vertical axis in order to obtain a line of best fit that is straight.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculations using the data of the experiment show that\n <em>\n g\n </em>\n = 9.71622ms\n <sup>\n 2\n </sup>\n with a percentage uncertainty of 8%. Determine the value of\n <em>\n g\n </em>\n that can be obtained from this experiment. Include the absolute uncertainty in\n <em>\n g\n </em>\n to one significant figure.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Reads change in temperature to be 45  31\n <strong>\n <em>\n OR\n </em>\n </strong>\n 14°C ✓\n </p>\n <p>\n <br/>\n <em>\n Q\n </em>\n = 0.082 × 1.6 × 10\n <sup>\n 3\n </sup>\n × 14 = 1.84 × 10\n <sup>\n 3\n </sup>\n «J» ✓\n </p>\n <p>\n <em>\n P\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 84\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 60\n </mn>\n </mrow>\n </mfrac>\n </math>\n = 15.3\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ≈\n </mo>\n </math>\n 15 «W»✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Must see either full substitution\n <strong>\n OR\n </strong>\n answer to at least 3 s.f. in\n <strong>\n MP3\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n mass\n <em>\n <strong>\n OR\n </strong>\n </em>\n diameter\n <em>\n <strong>\n OR\n </strong>\n </em>\n material of bob\n <em>\n <strong>\n OR\n </strong>\n </em>\n « initial » amplitude/angle ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n allow statements about rulers, stopwatches, string, number of oscillations, constant gravity.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n students reaction time «in starting and stopping stopwatch» / starting/stopping stopwatch ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n it reduces «the random» error/uncertainty ✓\n </p>\n <p>\n by a factor of 20 «compared to that in a single period measurement» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n For\n <strong>\n MP1\n </strong>\n , allow increasing accuracy/precision.\n </em>\n </p>\n <p>\n <em>\n <strong>\n Award [0]\n </strong>\n for answers related to number of trials, 20 measurements of one period.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Internal energy is greater at\n <em>\n t\n </em>\n = 6 min\n <em>\n <strong>\n OR\n </strong>\n </em>\n internal energy is lower at\n <em>\n t\n </em>\n = 2 min\n <em>\n <strong>\n OR\n </strong>\n </em>\n internal energy increases «as energy is added to the system» ✓\n </p>\n <p>\n Because kinetic energy «of the molecules» is the same\n <em>\n <strong>\n AND\n </strong>\n </em>\n potential energy «of the molecules» has increased /\n <em>\n <strong>\n OWTTE\n </strong>\n </em>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <em>\n T\n </em>\n <sup>\n 2\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n g\n </em>\n = 9.7 «ms\n <sup>\n 2\n </sup>\n » ✓\n </p>\n <p>\n Δ\n <em>\n g\n </em>\n = 0.8 «ms\n <sup>\n 2\n </sup>\n » ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter",
"inquiry",
"tools"
],
"subtopics": [
"b-1-thermal-energy-transfers",
"i-1-2-designing",
"inquiry-1-exploring-and-designing",
"tool-1-experimental-techniques",
"tool-3-mathematics"
]
},
{
"question_id": "23M.2.SL.TZ1.3",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n A transverse water wave travels to the right. The diagram shows the shape of the surface of the water at time\n <em>\n t\n </em>\n = 0. P and Q show two corks floating on the surface.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State what is meant by a transverse wave.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The frequency of the wave is 0.50Hz. Calculate the speed of the wave.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Plot on the diagram the position of P at time\n <em>\n t\n </em>\n = 0.50s.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Monochromatic light is incident on two very narrow slits. The light that passes through the slits is observed on a screen. M is directly opposite the midpoint of the slits.\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n represents the displacement from M in the direction shown.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n <p>\n A student argues that what will be observed on the screen will be a total of two bright spots opposite the slits. Explain why the students argument is incorrect.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The graph shows the actual variation with displacement\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n from M of the intensity of the light on the screen.\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n I\n </mi>\n <mn>\n 0\n </mn>\n </msub>\n </math>\n is the intensity of light at the screen from one slit only.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n <p style=\"text-align:left;\">\n The slits are separated by a distance of 0.18mm and the distance to the screen is 2.2m. Determine, in m, the wavelength of light.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n «A wave where the» displacement of particles/oscillations of particles/movement of particles/vibrations of particles is perpendicular/normal to the direction of energy transfer/wave travel/wave velocity/wave movement/wave propagation ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow medium, material, water, molecules, or atoms for particles.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n «A wave where the» displacement of particles/oscillations of particles/movement of particles/vibrations of particles is perpendicular/normal to the direction of energy transfer/wave travel/wave velocity/wave movement/wave propagation ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow medium, material, water, molecules, or atoms for particles.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n v\n </em>\n = «0.50 × 16 =» 8.0 «ms\n <sup>\n 1\n </sup>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n P at (8,1.2) ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n light acts as a wave «and not a particle in this situation» ✓\n </p>\n <p>\n light at slits will diffract / create a diffraction pattern ✓\n </p>\n <p>\n light passing through slits will interfere / create an interference pattern «creating bright and dark spots» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Ue of\n <em>\n s\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n λ\n </mi>\n <mi>\n D\n </mi>\n </mrow>\n <mi>\n d\n </mi>\n </mfrac>\n <mo>\n ⇒\n </mo>\n <mi>\n λ\n </mi>\n </math>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n s\n </mi>\n <mi>\n d\n </mi>\n </mrow>\n <mi>\n D\n </mi>\n </mfrac>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <em>\n s\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n n\n </mi>\n <mi>\n λ\n </mi>\n <mi>\n D\n </mi>\n </mrow>\n <mi>\n d\n </mi>\n </mfrac>\n <mo>\n ⇒\n </mo>\n <mi>\n λ\n </mi>\n </math>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n s\n </mi>\n <mi>\n d\n </mi>\n </mrow>\n <mrow>\n <mi>\n n\n </mi>\n <mi>\n D\n </mi>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n </math>\n = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 567\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 18\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </mfrac>\n </math>\n =» 4.6 × 10\n <sup>\n 7\n </sup>\n «m» ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-1-simple-harmonic-motion",
"c-2-wave-model",
"c-3-wave-phenomena"
]
},
{
"question_id": "23M.2.SL.TZ1.4",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the speed of the spacecraft is 0.80\n <em>\n c\n </em>\n as measured in S.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the current in Q is 0.45A.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the resistance of R.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the total power dissipated in the circuit.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Resistor P is removed. State and explain, without any calculations, the effect of this on the resistance of Q.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n An event has coordinates\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n = 0 and\n <em>\n ct\n </em>\n = 0.60ly in S. Show, using a Lorentz transformation, that the time coordinate of this event in S is\n <em>\n ct\n </em>\n = 1.00ly .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Label, on the diagram with the letter P, the point on the\n <em>\n ct\n </em>\n axis whose\n <em>\n ct\n </em>\n coordinate is 1.00ly.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw lines to indicate R on the diagram.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine, using the diagram or otherwise, the space coordinate\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n of event R in S.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n moves 4ly in 5 years\n <em>\n <strong>\n OR\n </strong>\n </em>\n slope of angle with time axis is 0.8 ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow evidence for mark on the graph.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Voltage across P is 1.4 «V» ✓\n </p>\n <p>\n Voltage across Q is 4.6 «V» ✓\n </p>\n <p>\n And 6 1.4 = 4.6 «V» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Need to see a calculation involving the two voltages and the total voltage in the circuit for\n <strong>\n MP3\n </strong>\n (e.g. 1.4 + 4.6 = 6).\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Current in R is «(0.45 0.4)=» 0.05 A ✓\n </p>\n <p>\n So resistance is «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 4\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 05\n </mn>\n </mrow>\n </mfrac>\n </math>\n » = 28 «Ω»\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n a(i)\n </strong>\n </em>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n «0.45 × 6.0» = 2.7 «W»✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Q will have a smaller resistance ✓\n </p>\n <p>\n «Because total resistance in the circuit is now larger so» the current «through the\n <br/>\n circuit/Q» is smaller /\n <em>\n <strong>\n OWTTE\n </strong>\n </em>\n ✓\n <em>\n <strong>\n <br/>\n </strong>\n </em>\n </p>\n <p>\n <em>\n Allow similar argument for\n <strong>\n MP2\n </strong>\n based on voltage across\n </em>\n Q\n <em>\n becoming smaller.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <em>\n γ\n </em>\n = 1.67\n <em>\n <strong>\n OR\n </strong>\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <msqrt>\n <mfenced>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 8\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n </mfenced>\n </msqrt>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <em>\n ct\n </em>\n ' = «\n <em>\n γ\n </em>\n (\n <em>\n ct\n </em>\n \n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n v\n </mi>\n <mi>\n x\n </mi>\n </mrow>\n <mi>\n c\n </mi>\n </mfrac>\n </math>\n )» =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </math>\n × (0.60 +0) ✓\n </p>\n <p>\n «= 1.00 ly»\n </p>\n <p>\n </p>\n <p>\n <em>\n For\n <strong>\n MP2\n </strong>\n , working should be seen.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n identifies point with coordinates\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n = 0,\n <em>\n ct\n </em>\n = 0.60 on vertical axis ✓\n </p>\n <p>\n draws line parallel to the\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n prime axis until it intersects the prime\n <em>\n ct\n </em>\n axis ✓\n </p>\n <p style=\"text-align:left;\">\n <img src=\"\"/>\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [2]\n </strong>\n for correct position of P without working shown.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <img src=\"\"/>\n </p>\n <p>\n R located at (4,4) ✓\n </p>\n <p>\n «as intersection of» vertical line through 4 ly and photon worldline at 45 degrees✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow\n <strong>\n MP2\n </strong>\n even if one of the lines is not drawn.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <strong>\n <em>\n ALTERNATIVE 1\n </em>\n </strong>\n </p>\n <p>\n <em>\n Using diagram:\n </em>\n </p>\n <p>\n line from R parallel to prime ct axis until it intersects space axis ✓\n </p>\n <p>\n use of scale from (b) to estimate coordinate to\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n ' = (1.3±0.2)ly ✓\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n <p>\n </p>\n <p>\n <strong>\n <em>\n ALTERNATIVE 2\n </em>\n </strong>\n </p>\n <p>\n <em>\n Using Lorentz transformation:\n </em>\n </p>\n <p>\n event R has coordinates\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n =\n <em>\n ct\n </em>\n = 4.00ly in S ✓\n </p>\n <p>\n so\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n ' = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n y\n </mi>\n </math>\n (\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n \n <em>\n vt\n </em>\n ) =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </math>\n × (4.00 0.80 × 4.00)» = 1.33ly ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"a-5-galilean-and-special-relativity",
"b-5-current-and-circuits"
]
},
{
"question_id": "23M.2.SL.TZ1.5",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n According to laboratory observers\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n number\n </mi>\n <mo>\n </mo>\n <mi>\n of\n </mi>\n <mo>\n </mo>\n <mi>\n muons\n </mi>\n <mo>\n </mo>\n <mi>\n detected\n </mi>\n </mrow>\n <mrow>\n <mi>\n number\n </mi>\n <mo>\n </mo>\n <mi>\n of\n </mi>\n <mo>\n </mo>\n <mi>\n muons\n </mi>\n <mo>\n </mo>\n <mi>\n produced\n </mi>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n .\n </p>\n <p>\n Calculate\n <em>\n D\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the energy released is about 18MeV.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n determine the time taken for the detector to reach the muon source.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate, using the answers to (b)(i) and (b)(ii) the ratio\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n number\n </mi>\n <mo>\n </mo>\n <mi>\n of\n </mi>\n <mo>\n </mo>\n <mi>\n muons\n </mi>\n <mo>\n </mo>\n <mi>\n detected\n </mi>\n </mrow>\n <mrow>\n <mi>\n number\n </mi>\n <mo>\n </mo>\n <mi>\n of\n </mi>\n <mo>\n </mo>\n <mi>\n muons\n </mi>\n <mo>\n </mo>\n <mi>\n produced\n </mi>\n </mrow>\n </mfrac>\n </math>\n in S.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <strong>\n two\n </strong>\n difficulties of energy production by nuclear fusion.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <strong>\n one\n </strong>\n advantage of energy production by nuclear fusion compared to nuclear fission.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Discuss the ratios in (a) and (c).\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the nucleon number of the He isotope that\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mi mathvariant=\"normal\">\n H\n </mi>\n <mprescripts>\n </mprescripts>\n <mn>\n 1\n </mn>\n <mn>\n 3\n </mn>\n </mmultiscripts>\n </math>\n decays into.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n T\n </mi>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </msub>\n </math>\n = 2.00 × 1.56 × 10\n <sup>\n 6\n </sup>\n or  3.12 × 10\n <sup>\n 6\n </sup>\n s ✓\n </p>\n <p>\n <em>\n D\n </em>\n = «3.12 × 10\n <sup>\n 6\n </sup>\n × 0.866 × 3 × 10\n <sup>\n 8\n </sup>\n =» 811m\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [2]\n </strong>\n for\n <strong>\n BCA\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n «𝜇» = 2.0141 + 3.0160  (4.0026 + 1.008665) «= 0.0188u»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <em>\n In\n </em>\n MeV: 1876.13415 + 2809.404  (3728.4219 + 939.5714475) ✓\n </p>\n <p>\n </p>\n <p>\n = 0.0188 × 931.5\n <em>\n <strong>\n OR\n </strong>\n </em>\n = 17.512 «MeV» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Must see either clear substitutions or answer to at least 3 s.f. for\n <strong>\n MP2\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n transit time =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 405\n </mn>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 866\n </mn>\n <mi>\n c\n </mi>\n </mrow>\n </mfrac>\n </math>\n = 1.56\n <em>\n µs\n </em>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [1]\n </strong>\n for\n <strong>\n BCA\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n transit time is one half life ✓\n </p>\n <p>\n so ratio has to be\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [2]\n </strong>\n for\n <strong>\n BCA\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Requires high temp/pressure ✓\n <br/>\n Must overcome Coulomb/intermolecular repulsion ✓\n <br/>\n Difficult to contain / control «at high temp/pressure» ✓\n <br/>\n Difficult to produce excess energy/often energy input greater than output /\n <em>\n <strong>\n OWTTE\n </strong>\n </em>\n ✓\n <br/>\n Difficult to capture energy from fusion reactions ✓\n <br/>\n Difficult to maintain/sustain a constant reaction rate ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Plentiful fuel supplies\n <em>\n <strong>\n OR\n </strong>\n </em>\n larger specific energy\n <em>\n <strong>\n OR\n </strong>\n </em>\n larger energy density\n <em>\n <strong>\n OR\n </strong>\n </em>\n little or no «major radioactive» waste products ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow descriptions such as “more energy per unit mass” or “more energy per unit volume”\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n the answers are the same ✓\n </p>\n <p>\n count rates cannot vary from frame to frame /\n <em>\n <strong>\n OWTTE\n </strong>\n </em>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n (c)\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n <strong>\n Award [2]\n </strong>\n for “count rates cannot vary” if student made a mistake\n <strong>\n OR\n </strong>\n no answer in\n <strong>\n (c)\n </strong>\n and well discussed here.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n 3 ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mi>\n H\n </mi>\n <mprescripts>\n </mprescripts>\n <mn mathvariant=\"italic\">\n 2\n </mn>\n <mn mathvariant=\"italic\">\n 3\n </mn>\n </mmultiscripts>\n <mi>\n e\n </mi>\n </math>\n by itself.\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"a-5-galilean-and-special-relativity",
"e-3-radioactive-decay",
"e-4-fission",
"e-5-fusion-and-stars"
]
},
{
"question_id": "23M.2.SL.TZ1.6",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The moment of inertia of the rod about the axis is 0.180kgm\n <sup>\n 2\n </sup>\n . Show that the moment of inertia of the rodparticle system is about 0.25kgm\n <sup>\n 2\n </sup>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the angular speed of the system immediately after the collision is about 5.7rads\n <sup>\n 1\n </sup>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the energy lost during the collision.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the angular deceleration of the rod.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the number of revolutions made by the rod until it stops rotating.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (e)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n In another situation the rod rests on a horizontal frictionless surface with no pivot. Predict, without calculation, the motion of the rodparticle system after the collision.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 0.180 + 0.200 × 0.60\n <sup>\n 2\n </sup>\n «= 0.252kgm\n <sup>\n 2\n </sup>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n angular speed of particle = «12/0.6 = » 20 «rads\n <sup>\n 1\n </sup>\n »\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n angular momentum of particle «0.200 × 12.0 × 0.60» = 1.44 «Js» ✓\n </p>\n <p>\n <br/>\n «angular momentum of rod-particle system 0.252\n <em>\n ω\n </em>\n »\n </p>\n <p>\n equating\n <em>\n ω\n </em>\n = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 44\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 252\n </mn>\n </mrow>\n </mfrac>\n </math>\n » = 5.71rads\n <sup>\n 1\n </sup>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n For\n <strong>\n MP2\n </strong>\n , working or answer to at least 3 SF should be seen.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n × 0.200 × 12.0\n <sup>\n 2\n </sup>\n \n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n (0.252) × 5.71\n <sup>\n 2\n </sup>\n ✓\n </p>\n <p>\n 10.3J ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [1]\n </strong>\n for answer 11.5\n </em>\n J\n <em>\n that neglects moment of inertia of particle but do not penalize this omission in\n <strong>\n (d)(i)\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n α\n </mi>\n </math>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 152\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 252\n </mn>\n </mrow>\n </mfrac>\n </math>\n = 0.603rads\n <sup>\n 2\n </sup>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept negative values.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n θ\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 71\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 603\n </mn>\n </mrow>\n </mfrac>\n </math>\n = 27.0rad ✓\n </p>\n <p>\n <em>\n N\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 27\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </mrow>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <mi>\n π\n </mi>\n </mrow>\n </mfrac>\n </math>\n = 4.3 ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e)\n </div><div class=\"card-body\">\n <p>\n the rod will rotate «about centre of mass» ✓\n </p>\n <p>\n «centre of mass» will move along straight line\n <br/>\n «parallel to the particles initial velocity» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n For\n <strong>\n MP2\n </strong>\n , mention of translational motion is not enough.\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-3-work-energy-and-power",
"a-4-rigid-body-mechanics"
]
},
{
"question_id": "23M.2.SL.TZ1.7",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest why AC is the adiabatic part of the cycle.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the volume at C is 3.33 × 10\n <sup>\n 2\n </sup>\n m\n <sup>\n 3\n </sup>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest, for the change A ⇒ B, whether the entropy of the gas is increasing, decreasing or constant.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the thermal energy (heat) taken out of the gas from B to C.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (e)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The highest and lowest temperatures of the gas during the cycle are 602K and 92K.\n </p>\n <p>\n The efficiency of this engine is about 0.6. Outline how these data are consistent with the second law of thermodynamics.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n «considering expansions from A» an adiabatic process will reduce/change temperature ✓\n </p>\n <p>\n and so curve AC must be the steeper ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n temperature drop occurs for BC ✓\n </p>\n <p>\n therefore CA must increase temperature «via adiabatic process». ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n Use of adiabatic formula «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n p\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n <msup>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n <mo>\n =\n </mo>\n <msub>\n <mi>\n p\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n <msup>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n <mo>\n </mo>\n <mo>\n ⇒\n </mo>\n </math>\n »\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <msup>\n <mfenced>\n <mfrac>\n <msub>\n <mi>\n p\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n <msub>\n <mi>\n p\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n </mfrac>\n </mfenced>\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 5\n </mn>\n </mfrac>\n </msup>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <msup>\n <mfenced>\n <mfrac>\n <mrow>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 00\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 60\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </mfenced>\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 5\n </mn>\n </mfrac>\n </msup>\n </math>\n × 2.00 × 10\n <sup>\n 3\n </sup>\n «= 3.333 × 10\n <sup>\n 2\n </sup>\n m\n <sup>\n 3\n </sup>\n » ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n For\n <strong>\n MP2\n </strong>\n , working or answer to at least 4 SF must be seen.\n </em>\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n <em>\n V\n </em>\n <sub>\n C\n </sub>\n =\n <em>\n V\n </em>\n <sub>\n B\n </sub>\n <em>\n <strong>\n AND\n </strong>\n </em>\n <em>\n p\n </em>\n <sub>\n A\n </sub>\n <em>\n V\n </em>\n <sub>\n A\n </sub>\n =\n <em>\n p\n </em>\n <sub>\n B\n </sub>\n <em>\n V\n </em>\n <sub>\n B\n </sub>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 3\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 4\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 3\n </strong>\n </em>\n </p>\n <p>\n <em>\n V\n </em>\n <sub>\n C\n </sub>\n =\n <em>\n V\n </em>\n <sub>\n B\n </sub>\n <em>\n <strong>\n AND\n </strong>\n </em>\n <em>\n n\n </em>\n = 0.2mol ✓\n </p>\n <p>\n <em>\n V\n </em>\n <sub>\n C\n </sub>\n = (0.2 × 8.31 × 602) / 4 × 10\n <sup>\n 4\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Increasing ✓\n </p>\n <p>\n because thermal energy/heat is being provided to the gas « and temperature is constant,\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi mathvariant=\"normal\">\n Δ\n </mi>\n <mi>\n S\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi mathvariant=\"normal\">\n Δ\n </mi>\n <mi>\n Q\n </mi>\n </mrow>\n <mi>\n T\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n Q\n </mi>\n <mo>\n =\n </mo>\n <mi mathvariant=\"normal\">\n Δ\n </mi>\n <mi>\n U\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <msub>\n <mi>\n V\n </mi>\n <mtext>\n C\n </mtext>\n </msub>\n <mi mathvariant=\"normal\">\n Δ\n </mi>\n <mi>\n P\n </mi>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n Q\n </mi>\n <mo>\n =\n </mo>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n × 3.33 × 10\n <sup>\n 2\n </sup>\n × (3.00 × 10\n <sup>\n 4\n </sup>\n 4.60 × 10\n <sup>\n 3\n </sup>\n )» = 1268.7 ≈ 1270 «J» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [2]\n </strong>\n for\n <strong>\n BCA\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n Accept negative values.\n </em>\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n R\n </mi>\n <mi>\n n\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mn>\n 602\n </mn>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 66\n </mn>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <em>\n T\n <sub>\n c\n </sub>\n </em>\n = 4.6 × 10\n <sup>\n 3\n </sup>\n × 3.33 × 10\n <sup>\n 2\n </sup>\n × 1.66 = 92.2  ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi mathvariant=\"normal\">\n Δ\n </mi>\n <mi>\n U\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 661\n </mn>\n <mo>\n ×\n </mo>\n <mo>\n (\n </mo>\n <mn>\n 602\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 92\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 21\n </mn>\n <mo>\n )\n </mo>\n <mo>\n =\n </mo>\n <mn>\n 1270\n </mn>\n </math>\n «J» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Award\n <strong>\n MP1\n </strong>\n if T\n <sub>\n c\n </sub>\n = 92 taken from\n <strong>\n (e)\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e)\n </div><div class=\"card-body\">\n <p>\n <em>\n e\n </em>\n <sub>\n c\n </sub>\n = 1 \n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 92\n </mn>\n <mn>\n 602\n </mn>\n </mfrac>\n </math>\n = 0.847 ✓\n </p>\n <p>\n this engine has\n <em>\n e\n </em>\n &lt;\n <em>\n e\n </em>\n <sub>\n c\n </sub>\n as it should ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [0]\n </strong>\n if no calculation shown.\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-4-thermodynamics"
]
},
{
"question_id": "23M.2.SL.TZ1.8",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The moment of inertia of the rod about the axis is 0.180kgm\n <sup>\n 2\n </sup>\n . Show that the moment of inertia of the rodparticle system is about 0.25kgm\n <sup>\n 2\n </sup>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the angular speed of the system immediately after the collision is about 5.7rads\n <sup>\n 1\n </sup>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the energy lost during the collision.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the angular deceleration of the rod.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the number of revolutions made by the rod until it stops rotating.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (e)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n In another situation the rod rests on a horizontal frictionless surface with no pivot. Predict, without calculation, the motion of the rodparticle system after the collision.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 0.180 + 0.200 × 0.60\n <sup>\n 2\n </sup>\n «= 0.252kgm\n <sup>\n 2\n </sup>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n angular speed of particle = «12/0.6 = » 20 «rads\n <sup>\n 1\n </sup>\n »\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n angular momentum of particle «0.200 × 12.0 × 0.60» = 1.44 «Js» ✓\n </p>\n <p>\n <br/>\n «angular momentum of rod-particle system 0.252\n <em>\n ω\n </em>\n »\n </p>\n <p>\n equating\n <em>\n ω\n </em>\n = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 44\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 252\n </mn>\n </mrow>\n </mfrac>\n </math>\n » = 5.71rads\n <sup>\n 1\n </sup>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n For\n <strong>\n MP2\n </strong>\n , working or answer to at least 3 SF should be seen.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n × 0.200 × 12.0\n <sup>\n 2\n </sup>\n \n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n (0.252) × 5.71\n <sup>\n 2\n </sup>\n ✓\n </p>\n <p>\n 10.3J ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [1]\n </strong>\n for answer 11.5\n </em>\n J\n <em>\n that neglects moment of inertia of particle but do not penalize this omission in\n <strong>\n (d)(i)\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n α\n </mi>\n </math>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 152\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 252\n </mn>\n </mrow>\n </mfrac>\n </math>\n = 0.603rads\n <sup>\n 2\n </sup>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept negative values.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <em>\n θ\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 71\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 603\n </mn>\n </mrow>\n </mfrac>\n </math>\n = 27.0rad ✓\n </p>\n <p>\n <em>\n N\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 27\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </mrow>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <mi>\n π\n </mi>\n </mrow>\n </mfrac>\n </math>\n = 4.3 ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e)\n </div><div class=\"card-body\">\n <p>\n the rod will rotate «about centre of mass» ✓\n </p>\n <p>\n «centre of mass» will move along straight line\n <br/>\n «parallel to the particles initial velocity» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n For\n <strong>\n MP2\n </strong>\n , mention of translational motion is not enough.\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-3-work-energy-and-power",
"a-4-rigid-body-mechanics"
]
},
{
"question_id": "23M.2.SL.TZ1.9",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest why AC is the adiabatic part of the cycle.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the volume at C is 3.33 × 10\n <sup>\n 2\n </sup>\n m\n <sup>\n 3\n </sup>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest, for the change A ⇒ B, whether the entropy of the gas is increasing, decreasing or constant.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the thermal energy (heat) taken out of the gas from B to C.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (e)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The highest and lowest temperatures of the gas during the cycle are 602K and 92K.\n </p>\n <p>\n The efficiency of this engine is about 0.6. Outline how these data are consistent with the second law of thermodynamics.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n «considering expansions from A» an adiabatic process will reduce/change temperature ✓\n </p>\n <p>\n and so curve AC must be the steeper ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n temperature drop occurs for BC ✓\n </p>\n <p>\n therefore CA must increase temperature «via adiabatic process». ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n Use of adiabatic formula «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n p\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n <msup>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n <mo>\n =\n </mo>\n <msub>\n <mi>\n p\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n <msup>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n </msup>\n <mo>\n </mo>\n <mo>\n ⇒\n </mo>\n </math>\n »\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <msup>\n <mfenced>\n <mfrac>\n <msub>\n <mi>\n p\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n <msub>\n <mi>\n p\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n </mfrac>\n </mfenced>\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 5\n </mn>\n </mfrac>\n </msup>\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n A\n </mi>\n </msub>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <msup>\n <mfenced>\n <mfrac>\n <mrow>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 00\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 60\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </mfenced>\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 5\n </mn>\n </mfrac>\n </msup>\n </math>\n × 2.00 × 10\n <sup>\n 3\n </sup>\n «= 3.333 × 10\n <sup>\n 2\n </sup>\n m\n <sup>\n 3\n </sup>\n » ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n For\n <strong>\n MP2\n </strong>\n , working or answer to at least 4 SF must be seen.\n </em>\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n <em>\n V\n </em>\n <sub>\n C\n </sub>\n =\n <em>\n V\n </em>\n <sub>\n B\n </sub>\n <em>\n <strong>\n AND\n </strong>\n </em>\n <em>\n p\n </em>\n <sub>\n A\n </sub>\n <em>\n V\n </em>\n <sub>\n A\n </sub>\n =\n <em>\n p\n </em>\n <sub>\n B\n </sub>\n <em>\n V\n </em>\n <sub>\n B\n </sub>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n V\n </mi>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 3\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 4\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 3\n </strong>\n </em>\n </p>\n <p>\n <em>\n V\n </em>\n <sub>\n C\n </sub>\n =\n <em>\n V\n </em>\n <sub>\n B\n </sub>\n <em>\n <strong>\n AND\n </strong>\n </em>\n <em>\n n\n </em>\n = 0.2mol ✓\n </p>\n <p>\n <em>\n V\n </em>\n <sub>\n C\n </sub>\n = (0.2 × 8.31 × 602) / 4 × 10\n <sup>\n 4\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Increasing ✓\n </p>\n <p>\n because thermal energy/heat is being provided to the gas « and temperature is constant,\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi mathvariant=\"normal\">\n Δ\n </mi>\n <mi>\n S\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi mathvariant=\"normal\">\n Δ\n </mi>\n <mi>\n Q\n </mi>\n </mrow>\n <mi>\n T\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n Q\n </mi>\n <mo>\n =\n </mo>\n <mi mathvariant=\"normal\">\n Δ\n </mi>\n <mi>\n U\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <msub>\n <mi>\n V\n </mi>\n <mtext>\n C\n </mtext>\n </msub>\n <mi mathvariant=\"normal\">\n Δ\n </mi>\n <mi>\n P\n </mi>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n Q\n </mi>\n <mo>\n =\n </mo>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </math>\n × 3.33 × 10\n <sup>\n 2\n </sup>\n × (3.00 × 10\n <sup>\n 4\n </sup>\n 4.60 × 10\n <sup>\n 3\n </sup>\n )» = 1268.7 ≈ 1270 «J» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [2]\n </strong>\n for\n <strong>\n BCA\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n Accept negative values.\n </em>\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n R\n </mi>\n <mi>\n n\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mn>\n 602\n </mn>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 66\n </mn>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <em>\n T\n <sub>\n c\n </sub>\n </em>\n = 4.6 × 10\n <sup>\n 3\n </sup>\n × 3.33 × 10\n <sup>\n 2\n </sup>\n × 1.66 = 92.2  ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi mathvariant=\"normal\">\n Δ\n </mi>\n <mi>\n U\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 661\n </mn>\n <mo>\n ×\n </mo>\n <mo>\n (\n </mo>\n <mn>\n 602\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 92\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 21\n </mn>\n <mo>\n )\n </mo>\n <mo>\n =\n </mo>\n <mn>\n 1270\n </mn>\n </math>\n «J» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Award\n <strong>\n MP1\n </strong>\n if T\n <sub>\n c\n </sub>\n = 92 taken from\n <strong>\n (e)\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e)\n </div><div class=\"card-body\">\n <p>\n <em>\n e\n </em>\n <sub>\n c\n </sub>\n = 1 \n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 92\n </mn>\n <mn>\n 602\n </mn>\n </mfrac>\n </math>\n = 0.847 ✓\n </p>\n <p>\n this engine has\n <em>\n e\n </em>\n &lt;\n <em>\n e\n </em>\n <sub>\n c\n </sub>\n as it should ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [0]\n </strong>\n if no calculation shown.\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-4-thermodynamics"
]
},
{
"question_id": "23M.2.SL.TZ2.1",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Estimate, using the graph, the maximum height of the bottle.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Estimate the acceleration of the bottle when it is at its maximum height.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the fraction of the kinetic energy of the bottle that remains after the bounce.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The mass of the bottle is 27g and it is in contact with the ground for 85ms.\n </p>\n <p>\n Determine the average force exerted by the ground on the bottle. Give your answer to an appropriate number of significant figures.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The maximum height reached by the bottle is greater with an airwater mixture than with only high-pressure air in the bottle.\n </p>\n <p>\n Assume that the speed at which the propellant leaves the bottle is the same in both cases.\n </p>\n <p>\n Explain why the bottle reaches a greater maximum height with an airwater mixture.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the absolute uncertainty in\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msubsup>\n <mi>\n F\n </mi>\n <mi>\n max\n </mi>\n <mn>\n 3\n </mn>\n </msubsup>\n </math>\n for Δ\n <em>\n p\n </em>\n = 30kPa. State an appropriate number of significant figures for your answer.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw the absolute uncertainty determined in part (d)(i) as an error bar on the graph.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why the new hypothesis is supported.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (e)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The maximum height reached by the bottle is greater with an airwater mixture than with only high-pressure air in the bottle.\n </p>\n <p>\n Assume that the speed at which the propellant leaves the bottle is the same in both cases.\n </p>\n <p>\n Explain why the bottle reaches a greater maximum height with an airwater mixture.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n Attempt to count squares ✓\n </p>\n <p>\n Area of one square found ✓\n </p>\n <p>\n 7.2 «m» (accept 6.4 7.4 m) ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n Uses area equation for either triangle ✓\n </p>\n <p>\n Correct read offs for estimate of area of triangle ✓\n </p>\n <p>\n 7.2 «m» (accept 6.4 7.4) ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Attempt to calculate gradient of line at\n <em>\n t\n </em>\n = 1.2 s ✓\n </p>\n <p>\n «−» 9.8 «ms\n <sup>\n 2\n </sup>\n » (accept 9.6  10.0) ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Attempt to evaluate KE ratio as\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msup>\n <mfenced>\n <mfrac>\n <msub>\n <mi>\n V\n </mi>\n <mi>\n final\n </mi>\n </msub>\n <msub>\n <mi>\n V\n </mi>\n <mi>\n initial\n </mi>\n </msub>\n </mfrac>\n </mfenced>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n ✓\n </p>\n <p>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msup>\n <mfenced>\n <mfrac>\n <mrow>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n <mn>\n 10\n </mn>\n </mfrac>\n </mfenced>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n =» 0.20\n <em>\n <strong>\n OR\n </strong>\n </em>\n 20 %\n <em>\n <strong>\n OR\n </strong>\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 5\n </mn>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept ± 0.5 velocity values from graph\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Attempt to use force = momentum change ÷ time ✓\n </p>\n <p>\n «=\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mo>\n (\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n +\n </mo>\n <mn>\n 10\n </mn>\n <mo>\n )\n </mo>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 027\n </mn>\n </mrow>\n <mrow>\n <mn>\n 85\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n </math>\n = 4.6»\n </p>\n <p>\n Force = «4.6 + 0.3» 4.9 «N» ✓\n </p>\n <p>\n Any answer to 2sf ✓\n </p>\n <p>\n <em>\n Accept ± 0.5 velocity values from graph\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n Mass «leaving the bottle per second» will be larger for airwater ✓\n </p>\n <p>\n the momentum change/force is greater ✓\n </p>\n <p>\n <em>\n Allow opposite argument for air only\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n 15% seen anywhere ✓\n </p>\n <p>\n «Δ(\n <em>\n F\n </em>\n <sup>\n 3\n </sup>\n ) =» 39.4 × 10\n <sup>\n 5\n </sup>\n × 0.15 = 5.9 × 10\n <sup>\n 5\n </sup>\n ✓\n </p>\n <p>\n ±6 × 10\n <sup>\n 5\n </sup>\n ✓\n </p>\n <p>\n <em>\n <strong>\n <br/>\n MP1\n </strong>\n is for the propagation of 5%. It can be shown differently, e.g. 3 × 5% Allow students to use 40 × 10\n <sup>\n 5\n </sup>\n (from the graph).\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n MP3\n </strong>\n for\n <strong>\n any\n </strong>\n uncertainty rounded to 1 significant digit\n </em>\n </p>\n <p>\n <em>\n <strong>\n Award [3]\n </strong>\n for a\n <strong>\n BCA\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n MP1\n </strong>\n and\n <strong>\n MP2\n </strong>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n error bar drawn at 30kPa from 34 × 10\n <sup>\n 5\n </sup>\n to 46 × 10\n <sup>\n 5\n </sup>\n N\n <sup>\n 3\n </sup>\n ✓\n </p>\n <p>\n <em>\n <br/>\n Allow ± half square on each side of the bar or one square overall (± 2 × 10\n <sup>\n 5\n </sup>\n )\n </em>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n from\n <strong>\n d(i)\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n a «straight» line can be drawn that passes through origin ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e)\n </div><div class=\"card-body\">\n <p>\n Mass «leaving the bottle per second» will be larger for airwater ✓\n </p>\n <p>\n the momentum change/force is greater ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow opposite argument for air only\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"inquiry",
"tools"
],
"subtopics": [
"a-1-kinematics",
"a-2-forces-and-momentum",
"a-3-work-energy-and-power",
"i-2-3-interpreting-results",
"inquiry-2-collecting-and-processing-data",
"tool-3-mathematics"
]
},
{
"question_id": "23M.2.SL.TZ2.11",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine which star will appear to move more.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate, in m, the distance to star X.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the ratio\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n luminosity\n </mi>\n <mo>\n </mo>\n <mi>\n of\n </mi>\n <mo>\n </mo>\n <mi>\n star\n </mi>\n <mo>\n </mo>\n <mi mathvariant=\"normal\">\n X\n </mi>\n </mrow>\n <mrow>\n <mi>\n luminosity\n </mi>\n <mo>\n </mo>\n <mi>\n of\n </mi>\n <mo>\n </mo>\n <mi>\n star\n </mi>\n <mo>\n </mo>\n <mi mathvariant=\"normal\">\n Y\n </mi>\n </mrow>\n </mfrac>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Star Y ✓\n </p>\n <p>\n because parallax angle is greater\n <em>\n <strong>\n OR\n </strong>\n </em>\n star Y is closer «and that means movement relative to distant stars is greater» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow reverse argument for star X\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n «distance =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mfrac>\n <mn>\n 1\n </mn>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 019\n </mn>\n </mrow>\n </mfrac>\n </mfenced>\n </math>\n × 3.26 × 9.46 × 10\n <sup>\n 15\n </sup>\n »\n </p>\n <p>\n 1.6 × 10\n <sup>\n 18\n </sup>\n «m» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n Luminosity\n </mi>\n <mo>\n </mo>\n <mi>\n of\n </mi>\n <mo>\n </mo>\n <mi>\n Star\n </mi>\n <mo>\n </mo>\n <mi mathvariant=\"normal\">\n X\n </mi>\n </mrow>\n <mrow>\n <mi>\n Luminosity\n </mi>\n <mo>\n </mo>\n <mi>\n of\n </mi>\n <mo>\n </mo>\n <mi>\n Star\n </mi>\n <mo>\n </mo>\n <mi mathvariant=\"normal\">\n Y\n </mi>\n </mrow>\n </mfrac>\n </math>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <msub>\n <mi>\n b\n </mi>\n <mi>\n x\n </mi>\n </msub>\n <msubsup>\n <mi>\n d\n </mi>\n <mi>\n x\n </mi>\n <mn>\n 2\n </mn>\n </msubsup>\n </mrow>\n <mrow>\n <msub>\n <mi>\n b\n </mi>\n <mi>\n y\n </mi>\n </msub>\n <msubsup>\n <mi>\n d\n </mi>\n <mi>\n y\n </mi>\n <mn>\n 2\n </mn>\n </msubsup>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n = 10.8 ≈ 11 ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Award\n <strong>\n MP1\n </strong>\n if ratio shown with distance or parallax angle.\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n MP1\n </strong>\n for any correct substitution into ratio expression\n </em>\n </p>\n <p>\n <em>\n <strong>\n Award [2]\n </strong>\n for\n <strong>\n BCA\n </strong>\n </em>\n </p>\n <p>\n <em>\n Allow\n <strong>\n ECF\n </strong>\n for incorrect distances from\n <strong>\n b(i)\n </strong>\n or\n <strong>\n b(ii)\n </strong>\n .\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter",
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"b-1-thermal-energy-transfers",
"e-5-fusion-and-stars"
]
},
{
"question_id": "23M.2.SL.TZ2.12",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the main element that is undergoing nuclear fusion in star C.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why star B has a greater surface area than star A.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n White dwarfs with similar volumes to each other are shown on the HR diagram.\n </p>\n <p>\n Sketch, on the HR diagram, to show the possible positions of other white dwarf stars with similar volumes to those marked on the HR diagram.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Hydrogen ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n stars have same/similar\n <em>\n L\n </em>\n <em>\n <strong>\n AND\n </strong>\n </em>\n star B has lower\n <em>\n T\n </em>\n ✓\n </p>\n <p>\n correct reference to luminosity formula (\n <em>\n L\n </em>\n α\n <em>\n AT\n </em>\n <sup>\n 4\n </sup>\n ) ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n MP1\n </strong>\n Allow reverse argument i.e., star A has higher T\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Any evidence of correct identification that three dots bottom left represent white dwarfs ✓\n </p>\n <p>\n line passing through all 3 white dwarfs\n <em>\n <strong>\n OR\n </strong>\n </em>\n line continuing from 3 white dwarfs with approximately same gradient, in either direction ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Award\n <strong>\n MP2\n </strong>\n if no line drawn through the three dots but just beyond them in either direction\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter",
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"b-1-thermal-energy-transfers",
"e-5-fusion-and-stars"
]
},
{
"question_id": "23M.2.SL.TZ2.17",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the main element that is undergoing nuclear fusion in star C.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why star B has a greater surface area than star A.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n White dwarfs with similar volumes to each other are shown on the HR diagram.\n </p>\n <p>\n Sketch, on the HR diagram, to show the possible positions of other white dwarf stars with similar volumes to those marked on the HR diagram.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Hydrogen ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n stars have same/similar\n <em>\n L\n </em>\n <em>\n <strong>\n AND\n </strong>\n </em>\n star B has lower\n <em>\n T\n </em>\n ✓\n </p>\n <p>\n correct reference to luminosity formula (\n <em>\n L\n </em>\n α\n <em>\n AT\n </em>\n <sup>\n 4\n </sup>\n ) ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n MP1\n </strong>\n Allow reverse argument i.e., star A has higher T\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Any evidence of correct identification that three dots bottom left represent white dwarfs ✓\n </p>\n <p>\n line passing through all 3 white dwarfs\n <em>\n <strong>\n OR\n </strong>\n </em>\n line continuing from 3 white dwarfs with approximately same gradient, in either direction ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Award\n <strong>\n MP2\n </strong>\n if no line drawn through the three dots but just beyond them in either direction\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter",
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"b-1-thermal-energy-transfers",
"e-5-fusion-and-stars"
]
},
{
"question_id": "23M.2.SL.TZ2.2",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the unit for\n <em>\n pV\n </em>\n in fundamental SI units.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine, using the graph, whether the gas acts as an ideal gas.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate, in g, the mass of the gas.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n kgm\n <sup>\n 2\n </sup>\n s\n <sup>\n 2\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n </p>\n <p>\n Graph shown is a straight line/linear\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n expected graph should be a straight line/linear ✓\n </p>\n <p>\n If ideal then\n <em>\n T\n </em>\n intercept must be at\n <em>\n T\n </em>\n = 273°C ✓\n </p>\n <p>\n Use of\n <em>\n y\n </em>\n =\n <em>\n mx\n </em>\n +\n <em>\n c\n </em>\n to show that\n <em>\n x\n </em>\n = 273°C when\n <em>\n y\n </em>\n = 0 ✓\n <br/>\n (hence ideal)\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n </p>\n <p>\n Calculates\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n p\n </mi>\n <mi>\n V\n </mi>\n </mrow>\n <mi>\n T\n </mi>\n </mfrac>\n </math>\n for two different points ✓\n <br/>\n Obtains 1.50 «JK\n <sup>\n 1\n </sup>\n » for both ✓\n </p>\n <p>\n States that for ideal gas\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n p\n </mi>\n <mi>\n V\n </mi>\n </mrow>\n <mi>\n T\n </mi>\n </mfrac>\n <mo>\n =\n </mo>\n <mi>\n n\n </mi>\n <mi>\n R\n </mi>\n </math>\n which is constant and concludes that gas is ideal ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n n\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n p\n </mi>\n <mi>\n V\n </mi>\n </mrow>\n <mrow>\n <mi>\n R\n </mi>\n <mi>\n T\n </mi>\n </mrow>\n </mfrac>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n N\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n p\n </mi>\n <mi>\n V\n </mi>\n </mrow>\n <mrow>\n <mi>\n k\n </mi>\n <mi>\n T\n </mi>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n Mass of gas =\n <em>\n n\n </em>\n ×\n <em>\n N\n </em>\n <sub>\n A\n </sub>\n × mass of molecule\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n Mass of gas = N\n <em>\n </em>\n × mass of molecule ✓\n </p>\n <p>\n 5.1 «g» ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter",
"tools"
],
"subtopics": [
"b-3-gas-laws",
"tool-3-mathematics"
]
},
{
"question_id": "23M.2.SL.TZ2.3",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain the pattern seen on the screen.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate, in nm,\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate, in nm,\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The student moves the screen closer to the double slit and repeats the measurements. The instruments used to make the measurements are unchanged.\n </p>\n <p>\n Discuss the effect this movement has on the fractional uncertainty in the value of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The student changes the light source to one that emits two colours:\n <br/>\n • blue light of wavelength\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n </math>\n , and\n <br/>\n • red light of wavelength 1.5\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n </math>\n .\n </p>\n <p>\n Predict the pattern that the student will see on the screen.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Mention of interference / superposition ✓\n </p>\n <p>\n Bright fringe occurs when light from the slits arrives in phase ✓\n </p>\n <p>\n Dark fringe occurs when light from the slits arrives 180°/\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n π\n </mi>\n </math>\n out of phase ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <em>\n s\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 15\n </mn>\n </mrow>\n <mn>\n 8\n </mn>\n </mfrac>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n = 0.0188 «m» ✓\n </p>\n <p>\n use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n d\n </mi>\n <mi>\n s\n </mi>\n </mrow>\n <mi>\n D\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n 450 «nm» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <em>\n s\n </em>\n =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 15\n </mn>\n </mrow>\n <mn>\n 8\n </mn>\n </mfrac>\n </math>\n <em>\n <strong>\n OR\n </strong>\n </em>\n = 0.0188 «m» ✓\n </p>\n <p>\n use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n d\n </mi>\n <mi>\n s\n </mi>\n </mrow>\n <mi>\n D\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n 450 «nm» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n «As the measurements decrease» the fractional uncertainty in D/s increases. ✓\n </p>\n <p>\n «Fractional uncertainties are additive here» so fractional uncertainty in\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n </math>\n increases ✓\n </p>\n <p>\n <em>\n Answers can be described in symbols e.g. Δs/s\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Blue fringe is unchanged ✓\n </p>\n <p>\n Red fringes are farther apart than blue ✓\n </p>\n <p>\n By a factor of 1.5 ✓\n </p>\n <p>\n At some point/s the fringes coincide/are purple ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"c-wave-behaviour",
"tools"
],
"subtopics": [
"c-3-wave-phenomena",
"tool-3-mathematics"
]
},
{
"question_id": "23M.2.SL.TZ2.4",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The designers state that the energy transferred by the resistor every second is 15J.\n </p>\n <p>\n Calculate the current in the resistor.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The resistor has a cross-sectional area of 9.6 × 10\n <sup>\n 6\n </sup>\n m\n <sup>\n 2\n </sup>\n .\n </p>\n <p>\n Show that a resistor made from carbon fibre will be suitable for the pad.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The power supply to the pad has a negligible internal resistance.\n </p>\n <p>\n State and explain the variation in current in the resistor as the temperature of the pad increases.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n outline the magnetic force acting on it due to the current in PQ.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n state and explain the net magnetic force acting on it due to the currents in PQ and TU.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The design of the pad encloses the resistor in a material that traps air. The design also places the resistor close to the top surface of the pad.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n <p>\n Explain, with reference to thermal energy transfer, why the pad is designed in this way.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <em>\n I\n </em>\n = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msqrt>\n <mfrac>\n <mi>\n P\n </mi>\n <mi>\n R\n </mi>\n </mfrac>\n </msqrt>\n </math>\n =» 1.9 «A» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <em>\n <strong>\n ALTERNATIVE 1\n </strong>\n </em>\n (Calculation of length)\n <br/>\n Read off from graph [2.8  3.2 × 10\n <sup>\n 5\n </sup>\n Ωm]✓\n <br/>\n Use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n R\n </mi>\n <mi>\n A\n </mi>\n </mrow>\n <mi>\n ρ\n </mi>\n </mfrac>\n </math>\n ✓\n <br/>\n <em>\n l\n </em>\n = 1.3  1.4 «m» ✓\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2\n </strong>\n </em>\n (Calculation of area)\n <br/>\n Read off from graph [2.8  3.2 × 10\n <sup>\n 5\n </sup>\n Ωm]✓\n <br/>\n Use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n A\n </mi>\n <mo>\n =\n </mo>\n <mi>\n ρ\n </mi>\n <mfrac>\n <mi>\n I\n </mi>\n <mi>\n R\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <em>\n A\n </em>\n = 8.3 9.5 × 10\n <sup>\n 6\n </sup>\n «m\n <sup>\n 2\n </sup>\n » ✓\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 3\n </strong>\n </em>\n (Calculation of resistance)\n <br/>\n Read off from graph [2.8  3.2 × 10\n <sup>\n 5\n </sup>\n Ωm]✓\n <br/>\n Use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n R\n </mi>\n <mo>\n =\n </mo>\n <mi>\n ρ\n </mi>\n <mfrac>\n <mi>\n I\n </mi>\n <mi>\n A\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <em>\n R\n </em>\n = 3.6  4.2 «Ω» ✓\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 4\n </strong>\n </em>\n (Calculation of resistivity)\n <br/>\n Use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n ρ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n R\n </mi>\n <mi>\n A\n </mi>\n </mrow>\n <mi>\n I\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n ρ\n </mi>\n </math>\n </em>\n = 3.2 × 10\n <sup>\n 5\n </sup>\n «Ωm» ✓\n </p>\n <p>\n Read off from graph 260 280 K ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n «Resistivity and hence» resistance will decrease ✓\n </p>\n <p>\n «Pd across pad will not change because internal resistance is negligible»\n <br/>\n Current will increase ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n «The force is» away from PQ/repulsive/to the right ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n The magnetic fields «due to currents in PQ and TU» are in opposite directions\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n There are two «repulsive» forces in opposite directions ✓\n </p>\n <p>\n Net force is zero ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n Air is a poor «thermal» conductor ✓\n </p>\n <p>\n Lack of convection due to air not being able to move in material ✓\n </p>\n <p>\n Appropriate statement about energy transfer between the pet, the resistor and surroundings ✓\n </p>\n <p>\n The rate of thermal energy transfer to the top surface is greater than the bottom «due to thinner material» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept air is a good insulator\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter",
"d-fields"
],
"subtopics": [
"b-1-thermal-energy-transfers",
"b-5-current-and-circuits",
"d-3-motion-in-electromagnetic-fields"
]
},
{
"question_id": "23M.2.SL.TZ2.5",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline what is meant by an isotope.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n mass number.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n proton number.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (e)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n A beta-minus particle and an alpha particle have the same initial kinetic energy.\n </p>\n <p>\n Outline why the beta-minus particle can travel further in air than the alpha particle.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n «An atom with» the same number of protons\n <em>\n <strong>\n AND\n </strong>\n </em>\n different numbers of neutrons\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n Same chemical properties\n <em>\n <strong>\n AND\n </strong>\n </em>\n different physical properties ✓\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n allow just atomic number and mass number\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n 3 ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n 2 ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e)\n </div><div class=\"card-body\">\n <p>\n Alphas have double charge «and so are better ionisers »✓\n </p>\n <p>\n alphas have more mass and therefore slower «for same energy» ✓\n </p>\n <p>\n so longer time/more likely to interact with the «atomic» electrons/atoms «and therefore better ionisers» ✓\n </p>\n <p>\n <em>\n Accept reverse argument in terms of betas travelling faster.\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-3-radioactive-decay"
]
},
{
"question_id": "23M.2.SL.TZ2.6",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msub>\n <mi>\n g\n </mi>\n <mi mathvariant=\"normal\">\n M\n </mi>\n </msub>\n <msub>\n <mi>\n g\n </mi>\n <mi mathvariant=\"normal\">\n P\n </mi>\n </msub>\n </mfrac>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (e)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline one reason why this model of a dancer is unrealistic.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Work using\n <em>\n g\n </em>\n ∝\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mi>\n m\n </mi>\n <msup>\n <mi>\n r\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msub>\n <mi>\n g\n </mi>\n <mi mathvariant=\"normal\">\n M\n </mi>\n </msub>\n <msub>\n <mi>\n g\n </mi>\n <mi mathvariant=\"normal\">\n P\n </mi>\n </msub>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <msub>\n <mi>\n m\n </mi>\n <mi mathvariant=\"normal\">\n M\n </mi>\n </msub>\n <msub>\n <mi>\n m\n </mi>\n <mi mathvariant=\"normal\">\n P\n </mi>\n </msub>\n </mfrac>\n <msup>\n <mfenced>\n <mfrac>\n <msub>\n <mi>\n r\n </mi>\n <mi mathvariant=\"normal\">\n P\n </mi>\n </msub>\n <msub>\n <mi>\n r\n </mi>\n <mi mathvariant=\"normal\">\n M\n </mi>\n </msub>\n </mfrac>\n </mfenced>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n = 0.75 ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e)\n </div><div class=\"card-body\">\n <p>\n one example specified\n <em>\n eg\n </em>\n friction, air resistance, mass distribution not modelled ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n Award [1]\n </strong>\n for any reasonable physical parameter that is not consistent with the model\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"d-fields"
],
"subtopics": [
"a-4-rigid-body-mechanics",
"d-1-gravitational-fields"
]
},
{
"question_id": "EXE.2.HL.TZ0.1",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the principal energy change in nuclear fission.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the principal energy change in nuclear fission.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The energy released in the reaction is about 180MeV. Estimate, in J, the energy released when 1kg of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mtext>\n U\n </mtext>\n <mprescripts>\n </mprescripts>\n <mn>\n 92\n </mn>\n <mn>\n 235\n </mn>\n </mmultiscripts>\n </math>\n undergoes fission.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State and explain the decay mode of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mtext>\n Te\n </mtext>\n <mprescripts>\n </mprescripts>\n <mn>\n 52\n </mn>\n <mn>\n 132\n </mn>\n </mmultiscripts>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate, in s\n <sup>\n 1\n </sup>\n , the initial activity of the sample.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the decay constant of a nuclide is given by \n <em>\n m\n </em>\n , where\n <em>\n m\n </em>\n is the slope of the graph of ln\n <em>\n A\n </em>\n against\n <em>\n t\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iv)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine, in days, the half-life of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mtext>\n Te\n </mtext>\n <mprescripts>\n </mprescripts>\n <mn>\n 52\n </mn>\n <mn>\n 132\n </mn>\n </mmultiscripts>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline the role of the heat exchanger in a nuclear power station.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the maximum temperature of the gas during the cycle.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline why the entropy of the gas remains constant during changes BC and DA.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iv)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the efficiency of the cycle.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the rotational kinetic energy of the turbine decreases at a constant rate.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n Mass-energy «of uranium» into kinetic energy of fission products ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Mass-energy «of uranium» into kinetic energy of fission products ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Mass of uranium nucleus\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ≈\n </mo>\n <mn>\n 235\n </mn>\n <mtext>\n u\n </mtext>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mtext>\n energy\n </mtext>\n <mtext>\n mass\n </mtext>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 180\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 60\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 19\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 235\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 661\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 27\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 13\n </mn>\n </msup>\n </math>\n «J» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n beta minus decay ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mtext>\n Te\n </mtext>\n <mprescripts>\n </mprescripts>\n <mn>\n 52\n </mn>\n <mn>\n 132\n </mn>\n </mmultiscripts>\n </math>\n has more neutrons / higher\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mi>\n N\n </mi>\n <mi>\n Z\n </mi>\n </mfrac>\n </math>\n ratio than stable nuclides of similar\n <em>\n A\n </em>\n «and beta minus reduces\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mi>\n N\n </mi>\n <mi>\n Z\n </mi>\n </mfrac>\n </math>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msup>\n <mi>\n e\n </mi>\n <mn>\n 25\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 10\n </mn>\n </msup>\n </math>\n «s\n <sup>\n 1\n </sup>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n Takes ln of both sides of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n A\n </mi>\n <mo>\n =\n </mo>\n <msub>\n <mi>\n A\n </mi>\n <mn>\n 0\n </mn>\n </msub>\n <msup>\n <mi>\n e\n </mi>\n <mrow>\n <mo>\n -\n </mo>\n <mi>\n λ\n </mi>\n <mi>\n t\n </mi>\n </mrow>\n </msup>\n </math>\n , leading to\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n ln\n </mi>\n <mo>\n </mo>\n <mi>\n A\n </mi>\n <mo>\n =\n </mo>\n <mi>\n ln\n </mi>\n <mo>\n </mo>\n <msub>\n <mi>\n A\n </mi>\n <mn>\n 0\n </mn>\n </msub>\n <mo>\n -\n </mo>\n <mi>\n λ\n </mi>\n <mi>\n t\n </mi>\n </math>\n ✓\n </p>\n <p>\n «hence slope\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mo>\n -\n </mo>\n <mi>\n λ\n </mi>\n </math>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iv)\n </div><div class=\"card-body\">\n <p>\n Slope =«−»\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </msup>\n </math>\n «s\n <sup>\n 1\n </sup>\n » ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n T\n </mi>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </msub>\n <mo>\n =\n </mo>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n ln\n </mi>\n <mo>\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 60\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 60\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 24\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n </math>\n » 3.2 «days» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Collects thermal energy from the coolant and delivers it to the gas ✓\n </p>\n <p>\n Prevents the «irradiated» coolant from leaving the reactor vessel ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Correct read offs of pressure and volume at B ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n <mo>\n =\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 31\n </mn>\n <mo>\n ×\n </mo>\n <mi>\n T\n </mi>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 1500\n </mn>\n </math>\n «K»  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n From\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n Δ\n </mtext>\n <mi>\n S\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n Q\n </mi>\n </mrow>\n <mi>\n T\n </mi>\n </mfrac>\n </math>\n , the change in entropy is zero when\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n Δ\n </mtext>\n <mi>\n Q\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iv)\n </div><div class=\"card-body\">\n <p>\n Net work done  = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 23\n </mn>\n <mo>\n +\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 11\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 32\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 25\n </mn>\n </math>\n » 9.77«kJ» ✓\n </p>\n <p>\n Efficiency =«\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 9\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 77\n </mn>\n </mrow>\n <mrow>\n <mn>\n 20\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 58\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n </math>\n » 0.47 ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n Rotational KE is proportional to\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msup>\n <mi>\n ω\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n ✓\n </p>\n <p>\n Calculation of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msup>\n <mi>\n ω\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n for at least four points, e.g. {96.1, 76.7, 57.6, 38.4, 19.3}×10\n <sup>\n 3\n </sup>\n </p>\n <p>\n Shows that the differences in equal time intervals are approximately the same, e.g. {19.4, 19.1, 19.2, 19.1, 19.3}×10\n <sup>\n 3\n </sup>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow a tolerance of ±1×10\n <sup>\n 3\n </sup>\n s\n <sup>\n 2\n </sup>\n from the values stated in MP2.\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"b-the-particulate-nature-of-matter",
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"a-4-rigid-body-mechanics",
"b-3-gas-laws",
"b-4-thermodynamics",
"e-3-radioactive-decay",
"e-4-fission"
]
},
{
"question_id": "EXE.2.HL.TZ0.10",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the angular impulse applied to the flywheel.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The angular speed of the flywheel increased by 280rads\n <sup>\n 1\n </sup>\n during the application of the angular impulse.\n </p>\n <p>\n Determine the moment of inertia of the flywheel.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The flywheel was rotating at 150 rev per minute before the application of the angular impulse. Determine the change in angular rotational energy of the flywheel during the application of the flywheel.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Attempt to find area of triangle ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 180\n </mn>\n <mo>\n =\n </mo>\n <mn>\n 720\n </mn>\n </math>\n «kgm\n <sup>\n 2\n </sup>\n s\n <sup>\n 1\n </sup>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Attempt to find area of triangle ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 180\n </mn>\n <mo>\n =\n </mo>\n <mn>\n 720\n </mn>\n </math>\n «kgm\n <sup>\n 2\n </sup>\n s\n <sup>\n 1\n </sup>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n Δ\n </mtext>\n <mi>\n L\n </mi>\n <mo>\n =\n </mo>\n <mtext>\n Δ\n </mtext>\n <mfenced>\n <mrow>\n <mi>\n I\n </mi>\n <mi>\n ω\n </mi>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n <p>\n 2.6kgm\n <sup>\n 2\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Correct conversions to a consistent set of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n ω\n </mi>\n </math>\n units ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mi>\n L\n </mi>\n <mo>\n ×\n </mo>\n <mfenced>\n <mrow>\n <msubsup>\n <mi>\n ω\n </mi>\n <mtext>\n f\n </mtext>\n <mn>\n 2\n </mn>\n </msubsup>\n <mo>\n -\n </mo>\n <msubsup>\n <mi>\n ω\n </mi>\n <mtext>\n i\n </mtext>\n <mn>\n 2\n </mn>\n </msubsup>\n </mrow>\n </mfenced>\n </math>\n or correct substitution seen ✓\n </p>\n <p>\n 113kJ ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-4-rigid-body-mechanics"
]
},
{
"question_id": "EXE.2.HL.TZ0.11",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why the gas in configuration B has a greater number of microstates than in A.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Deduce, with reference to entropy, that the expansion of the gas from the initial configuration A is irreversible.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Configuration A has only one microstate ✓\n </p>\n <p>\n In configuration B, pairs of particles can be swapped between the halves ✓\n </p>\n <p>\n Every such change gives rise to a new microstate «so there is a large number of microstates in B» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Configuration A has only one microstate ✓\n </p>\n <p>\n In configuration B, pairs of particles can be swapped between the halves ✓\n </p>\n <p>\n Every such change gives rise to a new microstate «so there is a large number of microstates in B» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n The entropy of the gas is related to the number of microstates\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n S\n </mi>\n <mtext>\n A\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <msub>\n <mi>\n k\n </mi>\n <mtext>\n B\n </mtext>\n </msub>\n <mo>\n </mo>\n <mi>\n ln\n </mi>\n <mo>\n </mo>\n <msub>\n <mtext>\n Ω\n </mtext>\n <mtext>\n A\n </mtext>\n </msub>\n </math>\n and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n S\n </mi>\n <mtext>\n A\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <msub>\n <mi>\n k\n </mi>\n <mtext>\n B\n </mtext>\n </msub>\n <mo>\n </mo>\n <mi>\n ln\n </mi>\n <mo>\n </mo>\n <msub>\n <mtext>\n Ω\n </mtext>\n <mtext>\n B\n </mtext>\n </msub>\n </math>\n ✓\n </p>\n <p>\n <br/>\n Since\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n </mo>\n <msub>\n <mtext>\n Ω\n </mtext>\n <mtext>\n B\n </mtext>\n </msub>\n <mo>\n &gt;\n </mo>\n <msub>\n <mtext>\n Ω\n </mtext>\n <mtext>\n A\n </mtext>\n </msub>\n </math>\n , the entropy in configuration B is greater ✓\n </p>\n <p>\n A process that results in an increase of entropy in an isolated system is irreversible ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-4-thermodynamics"
]
},
{
"question_id": "EXE.2.HL.TZ0.12",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State what is meant by an isolated system.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State and explain the number of microstates of the system in configuration A.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Configuration B has 120 microstates. Calculate the entropy difference between configurations B and A. State the answer in terms of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n k\n </mi>\n <mtext>\n B\n </mtext>\n </msub>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The system is initially in configuration A. Comment, with reference to the second law of thermodynamics and your answer in (c), on the likely evolution of the system.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Neither mass nor energy is exchanged with the surroundings ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Neither mass nor energy is exchanged with the surroundings ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n 6 microstates ✓\n </p>\n <p>\n Any of the six particles can be the one of the highest energy ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n k\n </mi>\n <mtext>\n B\n </mtext>\n </msub>\n <mo>\n </mo>\n <mi>\n ln\n </mi>\n <mo>\n </mo>\n <mn>\n 120\n </mn>\n <mo>\n -\n </mo>\n <msub>\n <mi>\n k\n </mi>\n <mtext>\n B\n </mtext>\n </msub>\n <mo>\n </mo>\n <mi>\n ln\n </mi>\n <mo>\n </mo>\n <mn>\n 6\n </mn>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 3\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <msub>\n <mi>\n k\n </mi>\n <mtext>\n B\n </mtext>\n </msub>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n The second law predicts that isolated systems spontaneously evolve towards high-entropy states ✓\n </p>\n <p>\n From (c), the entropy of B is greater than that of A ✓\n </p>\n <p>\n The final state will likely be similar to B / contain relatively many low-energy particles «of different energies» ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-4-thermodynamics"
]
},
{
"question_id": "EXE.2.HL.TZ0.14",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the fractional number of throws for which the three most likely macrostates occur.\n </p>\n <p>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n A throw is made once every minute. Estimate the average time required before a throw occurs where all coins are heads or all coins are tails.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n In one throw the coins all land heads upwards. The following throw results in 7 heads and 3 tails. Calculate, in terms of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n k\n </mi>\n <mtext>\n B\n </mtext>\n </msub>\n </math>\n , the change in entropy between the two throws.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Recognises that 4 heads and 6 tails also required ✓\n </p>\n <p>\n Total number of microstates = 672 ✓\n </p>\n <p>\n Fractional number = 672/1024 = 0.66 ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow ecf for MP3\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Recognises that 4 heads and 6 tails also required ✓\n </p>\n <p>\n Total number of microstates = 672 ✓\n </p>\n <p>\n Fractional number = 672/1024 = 0.66 ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow ecf for MP3\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Two chances in 1024 so once every 512 throws ✓\n </p>\n <p>\n 512 throws take 8.5h so (a reasonable estimate is half way through) on average 4.3h ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n Δ\n </mtext>\n <mi>\n S\n </mi>\n <mo>\n =\n </mo>\n <msub>\n <mi>\n k\n </mi>\n <mtext>\n B\n </mtext>\n </msub>\n <mo>\n </mo>\n <mfenced>\n <mrow>\n <mi>\n ln\n </mi>\n <mo>\n </mo>\n <mn>\n 120\n </mn>\n <mo>\n -\n </mo>\n <mi>\n ln\n </mi>\n <mo>\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 8\n </mn>\n <msub>\n <mi>\n k\n </mi>\n <mtext>\n B\n </mtext>\n </msub>\n </math>\n ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-4-thermodynamics"
]
},
{
"question_id": "EXE.2.HL.TZ0.15",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n orbital speed;\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n escape speed from its orbit.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n in its initial circular orbit;\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n in its final orbit.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msqrt>\n <mfrac>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 67\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 11\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 97\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 24\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 70\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </msqrt>\n <mo>\n =\n </mo>\n </math>\n »\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 71\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </math>\n «ms\n <sup>\n 1\n </sup>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msqrt>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 67\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 11\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 97\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 24\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 70\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </msqrt>\n </math>\n = »\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 09\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 4\n </mn>\n </msup>\n <mo>\n </mo>\n <mo>\n «\n </mo>\n <mi mathvariant=\"normal\">\n m\n </mi>\n <mo>\n </mo>\n <msup>\n <mi mathvariant=\"normal\">\n s\n </mi>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n <mo>\n »\n </mo>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Negative ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Positive ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"d-fields"
],
"subtopics": [
"d-1-gravitational-fields"
]
},
{
"question_id": "EXE.2.HL.TZ0.16",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The radius of the dwarf planet Pluto is 1.19 x 10\n <sup>\n 6\n </sup>\n m. The acceleration due to gravity at its surface is 0.617ms\n <sup>\n 2\n </sup>\n .\n </p>\n <p>\n Determine the escape speed for an object at the surface of Pluto.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Pluto rotates about an axis through its centre. Its rotation is in the opposite sense to that of the Earth, i.e. from east to west.\n </p>\n <p>\n Explain the advantage of an object launching from the equator of Pluto and travelling to the west.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n esc\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <msqrt>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mi>\n G\n </mi>\n <mi>\n M\n </mi>\n </mrow>\n <mi>\n r\n </mi>\n </mfrac>\n </msqrt>\n </math>\n AND\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n g\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n G\n </mi>\n <mi>\n M\n </mi>\n </mrow>\n <msup>\n <mi>\n r\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mfrac>\n </math>\n seen ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n esc\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <msqrt>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mi>\n g\n </mi>\n <msup>\n <mi>\n r\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n <mi>\n r\n </mi>\n </mfrac>\n </msqrt>\n </math>\n ✓\n </p>\n <p>\n Leading to\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n esc\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <msqrt>\n <mn>\n 2\n </mn>\n <mi>\n g\n </mi>\n <mi>\n r\n </mi>\n </msqrt>\n </math>\n ✓\n </p>\n <p>\n 1.2kms\n <sup>\n 1\n </sup>\n ✓\n <sup>\n </sup>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n esc\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <msqrt>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mi>\n G\n </mi>\n <mi>\n M\n </mi>\n </mrow>\n <mi>\n r\n </mi>\n </mfrac>\n </msqrt>\n </math>\n AND\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n g\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n G\n </mi>\n <mi>\n M\n </mi>\n </mrow>\n <msup>\n <mi>\n r\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mfrac>\n </math>\n seen ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n esc\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <msqrt>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mi>\n g\n </mi>\n <msup>\n <mi>\n r\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n <mi>\n r\n </mi>\n </mfrac>\n </msqrt>\n </math>\n ✓\n </p>\n <p>\n Leading to\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n esc\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <msqrt>\n <mn>\n 2\n </mn>\n <mi>\n g\n </mi>\n <mi>\n r\n </mi>\n </msqrt>\n </math>\n ✓\n </p>\n <p>\n 1.2kms\n <sup>\n 1\n </sup>\n ✓\n <sup>\n </sup>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Object at equator has the maximum linear/tangential speed possible ✓\n </p>\n <p>\n It therefore has maximum kinetic energy before takeoff (and this is not required from the fuel) ✓\n </p>\n <p>\n Idea that the object is already moving in direction of planet before takeoff ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"d-fields"
],
"subtopics": [
"d-1-gravitational-fields"
]
},
{
"question_id": "EXE.2.HL.TZ0.17",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the energy of the scattered photon is about 16keV.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the wavelength of the incident photon.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline why the results of the experiment are inconsistent with the wave model of electromagnetic radiation.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the scattering angle of the photon.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 24\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 80\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 11\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n </math>\n «= 15.9keV» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 24\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 80\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 11\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n </math>\n «= 15.9keV» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Energy of incident photon =«\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 15\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n +\n </mo>\n <mn>\n 500\n </mn>\n <mo>\n =\n </mo>\n </math>\n »\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 16\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </math>\n «eV» ✓\n </p>\n <p>\n Wavelength of incident photon =«\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 24\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 16\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n </math>\n »\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 56\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 11\n </mn>\n </mrow>\n </msup>\n </math>\n «m» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n The wavelength of the X-rays changes ✓\n </p>\n <p>\n According to the wave model, the wavelength of the incident and scattered X-rays should be the same ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mrow>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 80\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 56\n </mn>\n </mrow>\n </mfenced>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 11\n </mn>\n </mrow>\n </msup>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 24\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 511\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n </mrow>\n </mfrac>\n <mfenced>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n -\n </mo>\n <mi>\n cos\n </mi>\n <mo>\n </mo>\n <mi>\n θ\n </mi>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n θ\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 89\n </mn>\n <mo>\n °\n </mo>\n </math>\n ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-2-quantum-physics"
]
},
{
"question_id": "EXE.2.HL.TZ0.18",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline why the pattern observed on the screen is an evidence for matter waves.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n A typical interatomic distance in the graphite crystal is of the order of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 10\n </mn>\n </mrow>\n </msup>\n </math>\n m. Estimate the minimum value of\n <em>\n U\n </em>\n for the pattern in (a) to be formed on the screen.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Protons can also be accelerated by the same potential difference\n <em>\n U\n </em>\n . Compare, without calculation, the de Broglie wavelength of the protons to that of the electrons.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n The pattern is formed when the electrons scattered from adjacent planes in the graphite crystal undergo interference / diffract ✓\n </p>\n <p>\n Interference / diffraction is a property of waves only ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n The pattern is formed when the electrons scattered from adjacent planes in the graphite crystal undergo interference / diffract ✓\n </p>\n <p>\n Interference / diffraction is a property of waves only ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n The de Broglie wavelength of the electrons should be comparable to or shorter than the interatomic distance /\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 10\n </mn>\n </mrow>\n </msup>\n </math>\n m ✓\n </p>\n <p>\n Momentum of electrons\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ≈\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 63\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 34\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 10\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 32\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </msup>\n </math>\n Ns» ✓\n </p>\n <p>\n Kinetic energy of electrons = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msup>\n <mi>\n p\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n <mrow>\n <mn>\n 2\n </mn>\n <mi>\n m\n </mi>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <msup>\n <mfenced>\n <mrow>\n <mn>\n 3\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 32\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 24\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n <mn>\n 2\n </mn>\n </msup>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 11\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 31\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n </math>\n »\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 18\n </mn>\n </mrow>\n </msup>\n </math>\n «J»  ✓\n </p>\n <p>\n <em>\n U\n </em>\n = «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mi>\n E\n </mi>\n <mi>\n e\n </mi>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 10\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 18\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 19\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n </math>\n »40«V» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n The protons have the same energy but greater mass hence a greater momentum than the electrons ✓\n </p>\n <p>\n From\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mi>\n h\n </mi>\n <mi>\n p\n </mi>\n </mfrac>\n </math>\n , the protons will have a shorter wavelength ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-2-quantum-physics"
]
},
{
"question_id": "EXE.2.HL.TZ0.19",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the de Broglie hypothesis.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the maximum speed of the electrons in the beam.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n After passing through the circular hole the electrons strike a fluorescent screen.\n </p>\n <p>\n Predict whether an apparatus such as this can demonstrate that moving electrons have wave properties.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n a moving particle has wave properties ✓\n </p>\n <p>\n de Broglie wavelength = Planck constant÷momentum (must define p if quoted as equation) ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n a moving particle has wave properties ✓\n </p>\n <p>\n de Broglie wavelength = Planck constant÷momentum (must define p if quoted as equation) ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n use of ½\n <em>\n mv\n </em>\n <sup>\n 2\n </sup>\n =\n <em>\n eV ✓\n </em>\n </p>\n <p>\n 1.33 × 10\n <sup>\n 7\n </sup>\n ms\n <sup>\n 1\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n idea that de Broglie wavelength and hole size must be similar ✓\n </p>\n <p>\n Use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mi>\n h\n </mi>\n <msqrt>\n <mn>\n 2\n </mn>\n <mi>\n m\n </mi>\n <mi>\n e\n </mi>\n <mi>\n V\n </mi>\n </msqrt>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n Leading to\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n λ\n </mi>\n </math>\n around 5 x 10\n <sup>\n 11\n </sup>\n m (which is unrealistic for a practical situation) ✓\n </p>\n <p>\n It would not be possible to construct this hole\n <br/>\n <strong>\n OR\n </strong>\n <br/>\n hole must be smaller than an atom so impossible ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-2-quantum-physics"
]
},
{
"question_id": "EXE.2.HL.TZ0.2",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the movement direction for which the geophone has its greatest sensitivity.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the movement direction for which the geophone has its greatest sensitivity.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline how an emf is generated in the coil.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why the magnitude of the emf is related to the amplitude of the ground movement.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iv)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n In one particular event, a maximum emf of 65mV is generated in the geophone. The geophone coil has 150 turns.\n </p>\n <p>\n Calculate the rate of flux change that leads to this emf.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest\n <strong>\n two\n </strong>\n changes to the system that will make the geophone more sensitive.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that, when sound travels from clay to sandstone, the critical angle is approximately 40°.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The angle between the clayair surface and\n <strong>\n path 1\n </strong>\n is 80°.\n </p>\n <p>\n Draw, on the diagram, the subsequent path of a sound wave that travels initially in the clay along\n <strong>\n path 1\n </strong>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate\n <em>\n d\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n Vertical direction / parallel to springs ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Vertical direction / parallel to springs ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n The magnetic field moves relative to the coil ✓\n </p>\n <p>\n As field lines cut the coil, forces act on (initially stationary) electrons in the wire (and these move producing an emf) ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n The springs have a natural time period for the oscillation ✓\n </p>\n <p>\n A greater amplitude of movement leads to higher magnet speed (with constant time period) ✓\n </p>\n <p>\n So field lines cut coil more quickly leading to greater emf ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iv)\n </div><div class=\"card-body\">\n <p>\n Use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n ε\n </mi>\n <mo>\n =\n </mo>\n <mo>\n -\n </mo>\n <mfrac>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mfenced>\n <mrow>\n <mi>\n N\n </mi>\n <mtext>\n Φ\n </mtext>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n t\n </mi>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mtext>\n ΔΦ\n </mtext>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n t\n </mi>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mfenced>\n <mo>\n -\n </mo>\n </mfenced>\n <mfrac>\n <mrow>\n <mn>\n 65\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mn>\n 150\n </mn>\n </mfrac>\n </math>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 43\n </mn>\n </math>\n mWbs\n <sup>\n 1\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Any two suggestions from:\n </p>\n <p>\n Increase number of turns in coil ✓\n <br/>\n Because more flux cutting per cycle ✓\n </p>\n <p>\n Increase field strength of magnet  ✓\n <br/>\n So that there are more field lines ✓\n </p>\n <p>\n Change mass-spring system so that time period decreases ✓\n <br/>\n So magnet will be moving faster for given amplitude of movement ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <em>\n <sub>\n c\n </sub>\n n\n <sub>\n s\n </sub>\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 3\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </mrow>\n <mrow>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 7\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 57\n </mn>\n </math>\n ✓\n </p>\n <p>\n Critical angle\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <msup>\n <mi>\n sin\n </mi>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n <mfenced>\n <mfrac>\n <mn>\n 1\n </mn>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 57\n </mn>\n </mrow>\n </mfrac>\n </mfenced>\n <mo>\n =\n </mo>\n <mn>\n 39\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n °\n </mo>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n ray shown reflected back into the clay (and then to Z) at (by eye) the incidence angle ✓\n </p>\n <p>\n ray shown refracted into the sandstone with angle of refraction greater than angle of incidence (by eye) ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n distance difference\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 3000\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 00667\n </mn>\n <mo>\n =\n </mo>\n </mrow>\n </mfenced>\n <mn>\n 19\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 8\n </mn>\n </math>\n m ✓\n </p>\n <p>\n ½ distance difference\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 9\n </mn>\n </math>\n m so YZ\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 49\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 9\n </mn>\n </math>\n m ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n d\n </mi>\n <mo>\n =\n </mo>\n <mfenced>\n <msqrt>\n <msup>\n <mtext>\n YZ\n </mtext>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n -\n </mo>\n <msup>\n <mfenced>\n <mfrac>\n <mtext>\n XZ\n </mtext>\n <mn>\n 2\n </mn>\n </mfrac>\n </mfenced>\n <mn>\n 2\n </mn>\n </msup>\n </msqrt>\n </mfenced>\n <mo>\n =\n </mo>\n <msqrt>\n <mn>\n 49\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 9\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n -\n </mo>\n <msup>\n <mn>\n 40\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n </msqrt>\n </math>\n ✓\n </p>\n <p>\n <br/>\n 29.8m ✓\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n Recognises situation as (almost) 3:4:5 triangle ✓\n </p>\n <p>\n <br/>\n 30m (\n <em>\n 1 sf answer only accepted in this route\n </em>\n ) ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"c-wave-behaviour",
"d-fields"
],
"subtopics": [
"a-1-kinematics",
"c-1-simple-harmonic-motion",
"c-3-wave-phenomena",
"d-4-induction"
]
},
{
"question_id": "EXE.2.HL.TZ0.20",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The quantity\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mi>\n h\n </mi>\n <mrow>\n <msub>\n <mi>\n m\n </mi>\n <mtext>\n e\n </mtext>\n </msub>\n <mi>\n c\n </mi>\n </mrow>\n </mfrac>\n </math>\n is known as the Compton wavelength.\n </p>\n <p>\n Show that the Compton wavelength is about 2.4pm.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the wavelength of the photon after the interaction.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline why the wavelength of the photon has changed.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Deduce the scattering angle for the photon.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iv)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine, in J, the kinetic energy of the electron after the interaction.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 2.43pm ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 2.43pm ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n 8.43pm ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n (Energy of photon inversely prop to wavelength)\n </p>\n <p>\n </p>\n <p>\n photon transfers some of its energy to the electron. ✓\n </p>\n <p>\n If its energy decreases so its wavelength increases. ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n (for this interaction)\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n Δ\n </mtext>\n <mi>\n λ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mi>\n h\n </mi>\n <mrow>\n <msub>\n <mi>\n m\n </mi>\n <mtext>\n e\n </mtext>\n </msub>\n <mi>\n c\n </mi>\n </mrow>\n </mfrac>\n <mfenced>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n -\n </mo>\n <mi>\n cos\n </mi>\n <mo>\n </mo>\n <mi>\n θ\n </mi>\n </mrow>\n </mfenced>\n <mo>\n =\n </mo>\n <mfrac>\n <mi>\n h\n </mi>\n <mrow>\n <msub>\n <mi>\n m\n </mi>\n <mtext>\n e\n </mtext>\n </msub>\n <mi>\n c\n </mi>\n </mrow>\n </mfrac>\n </math>\n and therefore\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n -\n </mo>\n <mi>\n cos\n </mi>\n <mo>\n </mo>\n <mi>\n θ\n </mi>\n </mrow>\n </mfenced>\n </math>\n must equal 1 ✓\n </p>\n <p>\n so cos theta = 0 and theta = 90 deg ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iv)\n </div><div class=\"card-body\">\n <p>\n (Because energy is conserved)\n </p>\n <p>\n <br/>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n E\n </mi>\n <mtext>\n k\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <mi>\n h\n </mi>\n <mi>\n c\n </mi>\n <mfenced>\n <mrow>\n <mfrac>\n <mn>\n 1\n </mn>\n <msub>\n <mi>\n λ\n </mi>\n <mtext>\n i\n </mtext>\n </msub>\n </mfrac>\n <mo>\n -\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <msub>\n <mi>\n λ\n </mi>\n <mtext>\n f\n </mtext>\n </msub>\n </mfrac>\n </mrow>\n </mfenced>\n </math>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 63\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 34\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 00\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 8\n </mn>\n </msup>\n <mfenced>\n <mrow>\n <mfrac>\n <mn>\n 1\n </mn>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 00\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 12\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n <mo>\n -\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mrow>\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 43\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 12\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n <p>\n 9.6fJ ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-2-quantum-physics"
]
},
{
"question_id": "EXE.2.HL.TZ0.21",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest one problem that is faced in dealing with the waste from nuclear fission reactors. Go on to outline how this problem is overcome.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Strontium-90 is a waste product from nuclear reactors that has a decay constant of 7.63 x 10\n <sup>\n 10\n </sup>\n s\n <sup>\n 1\n </sup>\n . Determine, in s, the time that it takes for the activity of strontium-90 to decay to 2% of its original activity.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the energy released when one mole of strontium-90 decays to 2% of its original activity forming the stable daughter product.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Strontium-90 decays to Zirconium-90 via two successive beta emissions. Discuss whether all the energy released when strontium-90 decays to Zirconium-90 can be transferred to a thermal form.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Waste is very hot …\n </p>\n <p>\n … So has to be placed in cooling ponds to transfer the (thermal) energy away ✓\n </p>\n <p>\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n Waste is very radioactive … ✓\n </p>\n <p>\n … So has to be placed in cooling ponds to absorb this radiation\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n … So has to be handled remotely\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n … So has to be transported in crash resistant casings / stored on site ✓\n </p>\n <p>\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n Waste will be radioactive for thousands of years … ✓\n </p>\n <p>\n … So storage needs to be (eventually) in geologically stable areas ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Waste is very hot …\n </p>\n <p>\n … So has to be placed in cooling ponds to transfer the (thermal) energy away ✓\n </p>\n <p>\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n Waste is very radioactive … ✓\n </p>\n <p>\n … So has to be placed in cooling ponds to absorb this radiation\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n … So has to be handled remotely\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n … So has to be transported in crash resistant casings / stored on site ✓\n </p>\n <p>\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n Waste will be radioactive for thousands of years … ✓\n </p>\n <p>\n … So storage needs to be (eventually) in geologically stable areas ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n ln\n </mi>\n <mo>\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 02\n </mn>\n </mrow>\n </mfenced>\n <mo>\n =\n </mo>\n <mo>\n -\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 63\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 10\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n <mi>\n t\n </mi>\n </math>\n or equivalent seen ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n t\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 1\n </mn>\n </math>\n Gs ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Idea that the Yttrium half life is much less than Strontium so can assume all Yttrium energy is included. ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 98\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 02\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 23\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 52\n </mn>\n <mo>\n +\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </mfenced>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n </math>\n seen ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mrow>\n <mo>\n =\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 67\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 1030\n </mn>\n <mo>\n </mo>\n <mtext>\n eV\n </mtext>\n </mrow>\n </mfenced>\n </math>\n </p>\n <p>\n Answer\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 19\n </mn>\n </mrow>\n </msup>\n <mo>\n =\n </mo>\n <mn>\n 270\n </mn>\n </math>\n GJ ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n (No)\n <br/>\n (anti-)neutrinos are released in (both) decays ✓\n </p>\n <p>\n Carrying away energy because they interact poorly with matter ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Ignore arguments relating to energy transferred to nucleus as this appears eventually as thermal energy.\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-4-fission"
]
},
{
"question_id": "EXE.2.HL.TZ0.3",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the vertical component of the total momentum of the balls after the collision.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the vertical component of the total momentum of the balls after the collision.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Hence, calculate the vertical component of the velocity of ball B after the collision.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the angle\n <em>\n θ\n </em>\n that the velocity of ball B makes with the initial direction of motion of ball A.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Predict whether the collision is elastic.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n Zero ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Zero ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n m\n </mi>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <mi>\n sin\n </mi>\n <mo>\n </mo>\n <mn>\n 45\n </mn>\n <mo>\n °\n </mo>\n <mo>\n +\n </mo>\n <mi>\n m\n </mi>\n <mo>\n ×\n </mo>\n <msub>\n <mi>\n v\n </mi>\n <mi>\n y\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n v\n </mi>\n <mi>\n y\n </mi>\n </msub>\n </math>\n = «»0.71«ms\n <sup>\n 1\n </sup>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n The use of conservation of momentum in the horizontal direction, e.g.\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n m\n </mi>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <mi>\n cos\n </mi>\n <mo>\n </mo>\n <mn>\n 45\n </mn>\n <mo>\n °\n </mo>\n <mo>\n +\n </mo>\n <mi>\n m\n </mi>\n <mo>\n ×\n </mo>\n <msub>\n <mi>\n v\n </mi>\n <mi>\n x\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mi>\n m\n </mi>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n v\n </mi>\n <mi>\n x\n </mi>\n </msub>\n <mo>\n =\n </mo>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <mi>\n cos\n </mi>\n <mo>\n </mo>\n <mn>\n 45\n </mn>\n <mo>\n °\n </mo>\n <mo>\n =\n </mo>\n </math>\n »\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n </math>\n «ms\n <sup>\n 1\n </sup>\n » ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n θ\n </mi>\n <mo>\n =\n </mo>\n <msup>\n <mi>\n tan\n </mi>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n <mfenced>\n <mfrac>\n <msub>\n <mi>\n v\n </mi>\n <mi>\n y\n </mi>\n </msub>\n <msub>\n <mi>\n v\n </mi>\n <mi>\n x\n </mi>\n </msub>\n </mfrac>\n </mfenced>\n <mo>\n =\n </mo>\n <mn>\n 29\n </mn>\n <mo>\n °\n </mo>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Initial kinetic energy\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mi>\n m\n </mi>\n <msup>\n <mfenced>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </mrow>\n </mfenced>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n </mo>\n <mfenced>\n <mi>\n m\n </mi>\n </mfenced>\n </math>\n </p>\n <p>\n Final kinetic energy\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mi>\n m\n </mi>\n <mfenced>\n <mrow>\n <msup>\n <mfenced>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </mrow>\n </mfenced>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n +\n </mo>\n <msup>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 71\n </mn>\n </mrow>\n </mfenced>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n +\n </mo>\n <msup>\n <mfenced>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </mfenced>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n </mo>\n <mo>\n (\n </mo>\n <mi>\n m\n </mi>\n <mo>\n )\n </mo>\n </math>\n ✓\n </p>\n <p>\n Final energy is less than the initial energy hence inelastic  ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-2-forces-and-momentum"
]
},
{
"question_id": "EXE.2.HL.TZ0.4",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State what is meant by an elastic collision.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State what is meant by an elastic collision.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n No unbalanced external forces act on the system of the curling stones. Outline why the momentum of the system does not change during the collision.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n B\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n sin\n </mi>\n <mo>\n </mo>\n <mn>\n 70\n </mn>\n <mo>\n °\n </mo>\n </mrow>\n <mrow>\n <mi>\n sin\n </mi>\n <mo>\n </mo>\n <mn>\n 20\n </mn>\n <mo>\n °\n </mo>\n </mrow>\n </mfrac>\n <msub>\n <mi>\n v\n </mi>\n <mi>\n A\n </mi>\n </msub>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine\n <em>\n v\n </em>\n <sub>\n A\n </sub>\n . State the answer in terms of\n <em>\n v\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n No change in the kinetic energy of the system  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n No change in the kinetic energy of the system  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n From\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n F\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n p\n </mi>\n </mrow>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n t\n </mi>\n </mrow>\n </mfrac>\n </math>\n , zero net force on the system implies that\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n Δ\n </mtext>\n <mi>\n p\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n </math>\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n From Newtons third law, the impulse delivered to A is equal but opposite to the impulse delivered to B, hence\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n Δ\n </mtext>\n <mi>\n p\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n </math>\n for the system  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n The vertical momentum is zero hence\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n m\n </mi>\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n A\n </mtext>\n </msub>\n <mi>\n sin\n </mi>\n <mo>\n </mo>\n <mn>\n 70\n </mn>\n <mo>\n °\n </mo>\n <mo>\n -\n </mo>\n <mi>\n m\n </mi>\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n B\n </mtext>\n </msub>\n <mi>\n sin\n </mi>\n <mo>\n </mo>\n <mn>\n 20\n </mn>\n <mo>\n °\n </mo>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n </math>\n ✓\n </p>\n <p>\n «leading to the expected result»  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Energy is conserved hence\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mi>\n m\n </mi>\n <msup>\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n A\n </mtext>\n </msub>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n +\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mi>\n m\n </mi>\n <msup>\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n B\n </mtext>\n </msub>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mi>\n m\n </mi>\n <msup>\n <mi>\n v\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n ✓\n </p>\n <p>\n Eliminate\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n B\n </mtext>\n </msub>\n </math>\n using the result of part (a), e.g.,\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msup>\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n A\n </mtext>\n </msub>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n +\n </mo>\n <msup>\n <mfenced>\n <mfrac>\n <mrow>\n <mi>\n sin\n </mi>\n <mo>\n </mo>\n <mn>\n 70\n </mn>\n <mo>\n °\n </mo>\n </mrow>\n <mrow>\n <mi>\n sin\n </mi>\n <mo>\n </mo>\n <mn>\n 20\n </mn>\n <mo>\n °\n </mo>\n </mrow>\n </mfrac>\n </mfenced>\n <mn>\n 2\n </mn>\n </msup>\n <msup>\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n A\n </mtext>\n </msub>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <msup>\n <mi>\n v\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n v\n </mi>\n <mtext>\n A\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 342\n </mn>\n <mi>\n v\n </mi>\n </math>\n ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-2-forces-and-momentum"
]
},
{
"question_id": "EXE.2.HL.TZ0.5",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the component of momentum of the first curling stone perpendicular to the initial direction.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the component of momentum of the first curling stone perpendicular to the initial direction.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the velocity component of the first curling stone in the initial direction.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the velocity of the first curling stone.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Deduce whether this collision is elastic.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n v\n </mi>\n <mn>\n 17\n </mn>\n </msub>\n <mo>\n </mo>\n <mi>\n sin\n </mi>\n <mo>\n </mo>\n <mi>\n θ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 19\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <mi>\n sin\n </mi>\n <mfenced>\n <mn>\n 30\n </mn>\n </mfenced>\n </mrow>\n <mn>\n 17\n </mn>\n </mfrac>\n <mfenced>\n <mrow>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 279\n </mn>\n <mo>\n </mo>\n <mtext>\n m\n </mtext>\n <mo>\n </mo>\n <msup>\n <mtext>\n s\n </mtext>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n v\n </mi>\n <mn>\n 17\n </mn>\n </msub>\n <mo>\n </mo>\n <mi>\n sin\n </mi>\n <mo>\n </mo>\n <mi>\n θ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 19\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <mi>\n sin\n </mi>\n <mfenced>\n <mn>\n 30\n </mn>\n </mfenced>\n </mrow>\n <mn>\n 17\n </mn>\n </mfrac>\n <mfenced>\n <mrow>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 279\n </mn>\n <mo>\n </mo>\n <mtext>\n m\n </mtext>\n <mo>\n </mo>\n <msup>\n <mtext>\n s\n </mtext>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n v\n </mi>\n <mn>\n 17\n </mn>\n </msub>\n <mo>\n </mo>\n <mi>\n cos\n </mi>\n <mo>\n </mo>\n <mi>\n θ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 17\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 19\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 50\n </mn>\n <mo>\n ×\n </mo>\n <mi>\n cos\n </mi>\n <mfenced>\n <mn>\n 30\n </mn>\n </mfenced>\n </mrow>\n <mn>\n 17\n </mn>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 02\n </mn>\n <mo>\n </mo>\n <msup>\n <mtext>\n ms\n </mtext>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n 2.04ms\n <sup>\n 1\n </sup>\n ✓\n </p>\n <p>\n At 7.9° to initial direction  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Total angle between stones is 38°, angle will be 90° when elastic\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n Compares kinetic energies in a correct calculation (initial ke = 53J, final ke = 34J +2.4J) ✓\n </p>\n <p>\n <br/>\n Collision is not elastic ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-2-forces-and-momentum"
]
},
{
"question_id": "EXE.2.HL.TZ0.6",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the recoil velocity of the cannon.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the initial kinetic energy of the cannon.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest what happens to the vertical component of momentum of the cannon when the shell is fired.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Momentum must be conserved in initial direction of shell (20° above horizontal)  ✓\n </p>\n <p>\n Recoil velocity is 4.2ms\n <sup>\n 1\n </sup>\n at 20° below horizontal  ✓\n </p>\n <p>\n 3.95ms\n <sup>\n 1\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Momentum must be conserved in initial direction of shell (20° above horizontal)  ✓\n </p>\n <p>\n Recoil velocity is 4.2ms\n <sup>\n 1\n </sup>\n at 20° below horizontal  ✓\n </p>\n <p>\n 3.95ms\n <sup>\n 1\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n E\n </mi>\n <mi>\n k\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mfenced>\n <mrow>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mi>\n m\n </mi>\n <msup>\n <mi>\n v\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n </mfenced>\n <mo>\n =\n </mo>\n <mn>\n 11\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n </mo>\n <mtext>\n kJ\n </mtext>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Must be transferred into the ground beneath the cannon\n <strong>\n OR\n </strong>\n into the suspension system  ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-2-forces-and-momentum"
]
},
{
"question_id": "EXE.2.HL.TZ0.7",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the angular impulse delivered to the flywheel during the acceleration.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the average magnitude of\n <em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n F\n </mi>\n </math>\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State\n <strong>\n two\n </strong>\n assumptions of your calculation in part (b).\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n Δ\n </mtext>\n <mi>\n L\n </mi>\n <mo>\n =\n </mo>\n <mtext>\n l\n </mtext>\n <mi>\n Δ\n </mi>\n <mi>\n ω\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 15\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 9\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 10\n </mn>\n </math>\n «Nm  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n Δ\n </mtext>\n <mi>\n L\n </mi>\n <mo>\n =\n </mo>\n <mtext>\n l\n </mtext>\n <mi>\n Δ\n </mi>\n <mi>\n ω\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 15\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 9\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 10\n </mn>\n </math>\n «Nm  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Average torque\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n L\n </mi>\n </mrow>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n t\n </mi>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 10\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 24\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 42\n </mn>\n </math>\n «N ✓\n </p>\n <p>\n Average force\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfrac>\n <mi>\n τ\n </mi>\n <mi>\n R\n </mi>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 42\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 15\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 8\n </mn>\n </math>\n «N» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n No other forces than\n <em>\n F\n </em>\n provide the torque ✓\n </p>\n <p>\n The thread unwinds without slipping ✓\n </p>\n <p>\n The thread is weightless ✓\n </p>\n <p>\n <em>\n F\n </em>\n is always tangent to the flywheel ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-4-rigid-body-mechanics"
]
},
{
"question_id": "EXE.2.HL.TZ0.8",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate:\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the angular acceleration of the ring;\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the angular velocity of the ring after a time of 5.0s.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the angular impulse delivered to the disc and to the ring during the first 5.0s.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the final kinetic energy of the disc and the ring.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n α\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mi>\n τ\n </mi>\n <mi>\n l\n </mi>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 20\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 32\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 25\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 10\n </mn>\n </math>\n «rads\n <sup>\n 2\n </sup>\n »  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n α\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mi>\n τ\n </mi>\n <mi>\n l\n </mi>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 20\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 32\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 25\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 10\n </mn>\n </math>\n «rads\n <sup>\n 2\n </sup>\n »  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 10\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n =\n </mo>\n <mn>\n 50\n </mn>\n </math>\n «rads\n <sup>\n 1\n </sup>\n »  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n The angular impulse is the product of torque and time ✓\n </p>\n <p>\n Both factors are the same so the angular impulse is the same ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n The disc has a smaller moment of inertia «because its mass is distributed closer to the axis of rotation» ✓\n </p>\n <p>\n From\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n E\n </mi>\n <mi>\n k\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mfrac>\n <msup>\n <mi>\n L\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n <mrow>\n <mn>\n 2\n </mn>\n <mi>\n l\n </mi>\n </mrow>\n </mfrac>\n </math>\n , the disc will achieve a greater kinetic energy «because\n <em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n L\n </mi>\n </math>\n </em>\n is the same for both» ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-4-rigid-body-mechanics"
]
},
{
"question_id": "EXE.2.HL.TZ0.9",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n For the propellor,\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n L\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mtext>\n cm\n </mtext>\n </math>\n and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n M\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 035\n </mn>\n <mo>\n </mo>\n <mtext>\n kg\n </mtext>\n </math>\n .\n </p>\n <p>\n Calculate the moment of inertia of the propellor.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the angular impulse that acts on the propellor.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate, using your answer to (b)(i), the time taken by the propellor to attain this rotational speed.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State and explain the effect of the angular impulse on the body of the aeroplane.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </msup>\n <mo>\n </mo>\n <msup>\n <mtext>\n kgm\n </mtext>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </msup>\n <mo>\n </mo>\n <msup>\n <mtext>\n kgm\n </mtext>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n 190revs\n <sup>\n 1\n </sup>\n = 1190rads\n <sup>\n 1\n </sup>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n Δ\n </mtext>\n <mi>\n L\n </mi>\n <mo>\n =\n </mo>\n <mtext>\n Δ\n </mtext>\n <mfenced>\n <mrow>\n <mi>\n I\n </mi>\n <mi>\n ω\n </mi>\n </mrow>\n </mfenced>\n <mo>\n =\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 1190\n </mn>\n <mo>\n =\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n <mo>\n </mo>\n <msup>\n <mtext>\n kgm\n </mtext>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n </mo>\n <msup>\n <mi>\n s\n </mi>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n Δ\n </mtext>\n <mi>\n t\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n L\n </mi>\n </mrow>\n <mi>\n τ\n </mi>\n </mfrac>\n </math>\n used ✓\n </p>\n <p>\n 0.25s ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n As the motor is internal, angular momentum is conserved (ignoring the torques due to resistive forces) ✓\n </p>\n <p>\n The body of the plane will (try to) rotate in the opposite direction to the propellor ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-4-rigid-body-mechanics"
]
},
{
"question_id": "EXE.2.SL.TZ0.10",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the pressure of the gas in the container.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the mass of the gas in the container.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the average translational speed of the gas particles.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The temperature of the gas in the container is increased.\n </p>\n <p>\n Explain, using the kinetic theory, how this change leads to a change in pressure in the container.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n p\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n n\n </mi>\n <mi>\n R\n </mi>\n <mi>\n T\n </mi>\n </mrow>\n <mi>\n V\n </mi>\n </mfrac>\n </math>\n seen\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 12\n </mn>\n <mo>\n </mo>\n <mtext>\n kPa\n </mtext>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n p\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n n\n </mi>\n <mi>\n R\n </mi>\n <mi>\n T\n </mi>\n </mrow>\n <mi>\n V\n </mi>\n </mfrac>\n </math>\n seen\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 12\n </mn>\n <mo>\n </mo>\n <mtext>\n kPa\n </mtext>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </msup>\n <mo>\n </mo>\n <mtext>\n kg\n </mtext>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n v\n </mi>\n <mo>\n =\n </mo>\n <msqrt>\n <mfrac>\n <mrow>\n <mn>\n 3\n </mn>\n <mi>\n P\n </mi>\n <mi>\n V\n </mi>\n </mrow>\n <mi>\n M\n </mi>\n </mfrac>\n </msqrt>\n <mo>\n =\n </mo>\n <mn>\n 450\n </mn>\n <mo>\n </mo>\n <msup>\n <mtext>\n ms\n </mtext>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n increased temperature means increased average KE and hence increased average translational speed ✓\n </p>\n <p>\n This increases the momentum transfer at the walls for each collision /\n <em>\n mv\n </em>\n is greater per collision ✓\n </p>\n <p>\n This increases the frequency of collisions at the walls / particles cover the distance between walls more quickly ✓\n </p>\n <p>\n Ideas that\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n F\n </mi>\n <mtext>\n wall\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n p\n </mi>\n </mrow>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n t\n </mi>\n </mrow>\n </mfrac>\n </math>\n AND\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n P\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mi>\n F\n </mi>\n <mi>\n A\n </mi>\n </mfrac>\n </math>\n (can be in words) so that force increases and pressure\n <span style=\"text-decoration:underline;\">\n increases\n </span>\n ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-3-gas-laws"
]
},
{
"question_id": "EXE.2.SL.TZ0.11",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n A comet orbits the Sun in an elliptical orbit. A and B are two positions of the comet.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n <p style=\"text-align:left;\">\n Explain, with reference to Keplers second law of planetary motion, the change in the kinetic energy of the comet as it moves from A to B.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n An asteroid (minor planet) orbits the Sun in a circular orbit of radius 4.5 × 10\n <sup>\n 8\n </sup>\n km. The radius of Earths orbit is 1.5 × 10\n <sup>\n 8\n </sup>\n km. Calculate, in years, the orbital period of the asteroid.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n The areas swept out in unit time by the Sun-comet line are the same at A and B ✓\n </p>\n <p>\n At B, the distance is greater hence the orbital speed/distance moved in unit time is lower «so that the area remains the same» ✓\n </p>\n <p>\n A decrease in speed means that the kinetic energy also decreases ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n The areas swept out in unit time by the Sun-comet line are the same at A and B ✓\n </p>\n <p>\n At B, the distance is greater hence the orbital speed/distance moved in unit time is lower «so that the area remains the same» ✓\n </p>\n <p>\n A decrease in speed means that the kinetic energy also decreases ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n An attempt to use Keplers 3\n <sup>\n rd\n </sup>\n law, e.g.,\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msup>\n <mfenced>\n <mfrac>\n <mi>\n T\n </mi>\n <mn>\n 1\n </mn>\n </mfrac>\n </mfenced>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <msup>\n <mfenced>\n <mfrac>\n <mrow>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </mfrac>\n </mfenced>\n <mn>\n 3\n </mn>\n </msup>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <mo>\n =\n </mo>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msup>\n <mfenced>\n <mfrac>\n <mrow>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </mfrac>\n </mfenced>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </msup>\n <mo>\n =\n </mo>\n </math>\n » 5.2 «years» ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"d-fields"
],
"subtopics": [
"d-1-gravitational-fields"
]
},
{
"question_id": "EXE.2.SL.TZ0.12",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n k\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mrow>\n <mi>\n G\n </mi>\n <mi>\n M\n </mi>\n </mrow>\n </mfrac>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p style=\"text-align:left;\">\n The table gives data relating to the two moons of Mars.\n </p>\n <p style=\"text-align:left;\">\n </p>\n <table border=\"1\" style=\"height:68px;margin-left:auto;margin-right:auto;\" width=\"245\">\n <tbody>\n <tr>\n <td style=\"width:74.8295px;text-align:center;\">\n Moon\n </td>\n <td style=\"width:74.8295px;text-align:center;\">\n <em>\n T\n </em>\n / hour\n </td>\n <td style=\"width:74.8295px;text-align:center;\">\n <em>\n r\n </em>\n / Mm\n </td>\n </tr>\n <tr>\n <td style=\"width:74.8295px;\">\n Phobos\n </td>\n <td style=\"width:74.8295px;text-align:center;\">\n 7.66\n </td>\n <td style=\"width:74.8295px;text-align:center;\">\n 9.38\n </td>\n </tr>\n <tr>\n <td style=\"width:74.8295px;\">\n Deimos\n </td>\n <td style=\"width:74.8295px;text-align:center;\">\n 30.4\n </td>\n <td style=\"width:74.8295px;text-align:center;\">\n -\n </td>\n </tr>\n </tbody>\n </table>\n <p>\n </p>\n <p>\n Determine\n <em>\n r\n </em>\n for Deimos.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the mass of Mars.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Equates centripetal force (with Newtons law of gravitation\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n m\n </mi>\n <mi>\n r\n </mi>\n <mo>\n </mo>\n <msup>\n <mi>\n ω\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n G\n </mi>\n <mi>\n M\n </mi>\n <mi>\n m\n </mi>\n </mrow>\n <msup>\n <mi>\n r\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mfrac>\n </math>\n )\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mi mathvariant=\"normal\">\n π\n </mi>\n </mrow>\n <mi>\n ω\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <br/>\n Uses both equation correctly with clear re-arrangement ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Equates centripetal force (with Newtons law of gravitation\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n m\n </mi>\n <mi>\n r\n </mi>\n <mo>\n </mo>\n <msup>\n <mi>\n ω\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n G\n </mi>\n <mi>\n M\n </mi>\n <mi>\n m\n </mi>\n </mrow>\n <msup>\n <mi>\n r\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mfrac>\n </math>\n )\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mi mathvariant=\"normal\">\n π\n </mi>\n </mrow>\n <mi>\n ω\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <br/>\n Uses both equation correctly with clear re-arrangement ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msubsup>\n <mi>\n r\n </mi>\n <mtext>\n De\n </mtext>\n <mn>\n 3\n </mn>\n </msubsup>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <msubsup>\n <mi>\n T\n </mi>\n <mtext>\n De\n </mtext>\n <mn>\n 2\n </mn>\n </msubsup>\n <msubsup>\n <mi>\n r\n </mi>\n <mtext>\n Ph\n </mtext>\n <mn>\n 3\n </mn>\n </msubsup>\n </mrow>\n <msubsup>\n <mi>\n T\n </mi>\n <mtext>\n Ph\n </mtext>\n <mn>\n 2\n </mn>\n </msubsup>\n </mfrac>\n </math>\n seen or correct substitution ✓\n </p>\n <p>\n 23.5Mm ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Converts\n <em>\n T\n </em>\n to 27.6ks\n <strong>\n and\n </strong>\n converts to m from Mm ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n k\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 33\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 14\n </mn>\n </mrow>\n </msup>\n </math>\n «s\n <sup>\n 2\n </sup>\n m\n <sup>\n 3\n </sup>\n » ✓\n </p>\n <p>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n M\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mrow>\n <mi>\n k\n </mi>\n <mi>\n G\n </mi>\n </mrow>\n </mfrac>\n </math>\n »\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 04\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 23\n </mn>\n </msup>\n </math>\n «kg» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n MP1 can be implicit\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"d-fields"
],
"subtopics": [
"d-1-gravitational-fields"
]
},
{
"question_id": "EXE.2.SL.TZ0.13",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <mo>\n ∝\n </mo>\n <msup>\n <mi>\n r\n </mi>\n <mfrac>\n <mn>\n 3\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </msup>\n </math>\n for the planets in a solar system where\n <em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n </math>\n </em>\n is the orbital period of a planet and\n <em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n r\n </mi>\n </math>\n </em>\n is the radius of circular orbit of planet about its sun.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline what is meant by one astronomical unit (1 AU)\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Pluto is a dwarf planet of the Sun that orbits at a distance of 5.9 × 10\n <sup>\n 9\n </sup>\n km from the Sun. Determine, in years, the orbital period of Pluto.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Equates centripetal force (with Newtons law gravitation\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n m\n </mi>\n <mi>\n r\n </mi>\n <mo>\n </mo>\n <msup>\n <mi>\n ω\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n G\n </mi>\n <mi>\n M\n </mi>\n <mi>\n m\n </mi>\n </mrow>\n <msup>\n <mi>\n r\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mfrac>\n </math>\n )\n </p>\n <p>\n AND\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mi mathvariant=\"normal\">\n π\n </mi>\n </mrow>\n <mi>\n ω\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n leads to\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msup>\n <mi>\n T\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <msup>\n <mi>\n r\n </mi>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mfenced>\n <mfrac>\n <mrow>\n <mn>\n 4\n </mn>\n <msup>\n <mi mathvariant=\"normal\">\n π\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mi>\n G\n </mi>\n <mi>\n M\n </mi>\n </mrow>\n </mfrac>\n </mfenced>\n </math>\n hence result ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Equates centripetal force (with Newtons law gravitation\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n m\n </mi>\n <mi>\n r\n </mi>\n <mo>\n </mo>\n <msup>\n <mi>\n ω\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mi>\n G\n </mi>\n <mi>\n M\n </mi>\n <mi>\n m\n </mi>\n </mrow>\n <msup>\n <mi>\n r\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mfrac>\n </math>\n )\n </p>\n <p>\n AND\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mi mathvariant=\"normal\">\n π\n </mi>\n </mrow>\n <mi>\n ω\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n leads to\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msup>\n <mi>\n T\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <msup>\n <mi>\n r\n </mi>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mfenced>\n <mfrac>\n <mrow>\n <mn>\n 4\n </mn>\n <msup>\n <mi mathvariant=\"normal\">\n π\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mi>\n G\n </mi>\n <mi>\n M\n </mi>\n </mrow>\n </mfrac>\n </mfenced>\n </math>\n hence result ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n «mean» Distance from centre of Sun to centre of Earth ✓\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n Suitable ratio in terms of parsec and arcsecond ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msubsup>\n <mi>\n T\n </mi>\n <mtext>\n Pluto\n </mtext>\n <mn>\n 2\n </mn>\n </msubsup>\n <mo>\n =\n </mo>\n <msubsup>\n <mi>\n T\n </mi>\n <mtext>\n Earth\n </mtext>\n <mn>\n 2\n </mn>\n </msubsup>\n <mfrac>\n <msubsup>\n <mi>\n r\n </mi>\n <mtext>\n Pluto\n </mtext>\n <mn>\n 3\n </mn>\n </msubsup>\n <msubsup>\n <mi>\n r\n </mi>\n <mtext>\n Earth\n </mtext>\n <mn>\n 3\n </mn>\n </msubsup>\n </mfrac>\n </math>\n used ✓\n </p>\n <p>\n Earth orbital radius = 1.5 × 10\n <sup>\n 11\n </sup>\n m (from AU)\n <strong>\n AND\n </strong>\n uses 1 earth year (in any units) ✓\n </p>\n <p>\n 247 years ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"d-fields"
],
"subtopics": [
"d-1-gravitational-fields"
]
},
{
"question_id": "EXE.2.SL.TZ0.14",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State and explain the magnitude of the force on a length of 0.50m of wire Q due to the current in P.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the current in wire Q.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the direction of the current in R, relative to the current in P.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Deduce the current in R.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n From Newtons third law, the force on a length of Q is equal but opposite to the force on the same length of P ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </msup>\n <mo>\n </mo>\n <mtext>\n N\n </mtext>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n From Newtons third law, the force on a length of Q is equal but opposite to the force on the same length of P ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </msup>\n <mo>\n </mo>\n <mtext>\n N\n </mtext>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 50\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 4\n </mn>\n <mi mathvariant=\"normal\">\n π\n </mi>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 7\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msub>\n <mi>\n I\n </mi>\n <mi>\n Q\n </mi>\n </msub>\n </mrow>\n <mrow>\n <mn>\n 2\n </mn>\n <mi mathvariant=\"normal\">\n π\n </mi>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 10\n </mn>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n I\n </mi>\n <mi>\n Q\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </math>\n «A» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Opposite ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n The force on Q due to R must have the same magnitude «but opposite direction» as the force on Q due to P ✓\n </p>\n <p>\n The distance is halved therefore one half of the current is needed to produce the same force, so 2.5A ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"d-fields"
],
"subtopics": [
"d-3-motion-in-electromagnetic-fields"
]
},
{
"question_id": "EXE.2.SL.TZ0.15",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the fundamental SI units for permeability of free space,\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n μ\n </mi>\n <mn>\n 0\n </mn>\n </msub>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n magnetic field at A;\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n magnetic force on section AB of the loop.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n magnitude of the net force acting on the loop;\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n direction of the net force acting on the loop.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n kgms\n <sup>\n 2\n </sup>\n A\n <sup>\n 2\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n kgms\n <sup>\n 2\n </sup>\n A\n <sup>\n 2\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Into the page ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Repulsive / to the right ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mrow>\n <mfrac>\n <mrow>\n <mn>\n 4\n </mn>\n <mi mathvariant=\"normal\">\n π\n </mi>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 7\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </mrow>\n <mrow>\n <mn>\n 2\n </mn>\n <mi mathvariant=\"normal\">\n π\n </mi>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 30\n </mn>\n </mrow>\n </mfrac>\n <mo>\n -\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 4\n </mn>\n <mi mathvariant=\"normal\">\n π\n </mi>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 7\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </mrow>\n <mrow>\n <mn>\n 2\n </mn>\n <mi mathvariant=\"normal\">\n π\n </mi>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 50\n </mn>\n </mrow>\n </mfrac>\n </mrow>\n </mfenced>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 20\n </mn>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 7\n </mn>\n </mrow>\n </msup>\n </math>\n «N»  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Repulsive / to the right ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"d-fields"
],
"subtopics": [
"d-3-motion-in-electromagnetic-fields"
]
},
{
"question_id": "EXE.2.SL.TZ0.16",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the magnetic force acting on the 15Ω wire due to the current in the 30Ω wire.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The magnetic field strength of Earths field at the location of the wires is 45μT.\n </p>\n <p>\n Discuss the assumption made in this question.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Use of combination of resistors OR\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n V\n </mi>\n <mo>\n =\n </mo>\n <mi>\n I\n </mi>\n <mi>\n R\n </mi>\n </math>\n ✓\n </p>\n <p>\n To show that current in 30Ω wire is 5.0A ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mi>\n F\n </mi>\n <mi>\n I\n </mi>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 7\n </mn>\n </mrow>\n </msup>\n <msub>\n <mi>\n I\n </mi>\n <mn>\n 15\n </mn>\n </msub>\n <msub>\n <mi>\n I\n </mi>\n <mn>\n 30\n </mn>\n </msub>\n </mrow>\n <mi>\n r\n </mi>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 7\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 10\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 20\n </mn>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mrow>\n <mi>\n F\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 25\n </mn>\n <mo>\n =\n </mo>\n </mrow>\n </mfenced>\n <mo>\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </msup>\n </math>\n N ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Use of combination of resistors OR\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n V\n </mi>\n <mo>\n =\n </mo>\n <mi>\n I\n </mi>\n <mi>\n R\n </mi>\n </math>\n ✓\n </p>\n <p>\n To show that current in 30Ω wire is 5.0A ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mi>\n F\n </mi>\n <mi>\n I\n </mi>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 7\n </mn>\n </mrow>\n </msup>\n <msub>\n <mi>\n I\n </mi>\n <mn>\n 15\n </mn>\n </msub>\n <msub>\n <mi>\n I\n </mi>\n <mn>\n 30\n </mn>\n </msub>\n </mrow>\n <mi>\n r\n </mi>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 7\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 10\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 20\n </mn>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mrow>\n <mi>\n F\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 25\n </mn>\n <mo>\n =\n </mo>\n </mrow>\n </mfenced>\n <mo>\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </msup>\n </math>\n N ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n F\n </mi>\n <mo>\n =\n </mo>\n <mi>\n B\n </mi>\n <mi>\n I\n </mi>\n <mi>\n l\n </mi>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 45\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 10\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 25\n </mn>\n <mo>\n =\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 15\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 4\n </mn>\n </mrow>\n </msup>\n <mo>\n </mo>\n <mtext>\n N\n </mtext>\n </math>\n ✓\n </p>\n <p>\n Concludes that the assumption is not valid ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"d-fields"
],
"subtopics": [
"d-3-motion-in-electromagnetic-fields"
]
},
{
"question_id": "EXE.2.SL.TZ0.17",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw the magnetic field lines due to A.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw the magnetic field lines due to A.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State and explain, using your diagram, why a force acts on B due to A in the plane of the paper.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Both wires are 7.5m long and are 0.25m apart. The current in both wires is 12A. Determine the force that acts on one wire due to the other.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n At least one circle centred on centre of wire A\n <br/>\n <strong>\n <em>\n AND\n <br/>\n </em>\n </strong>\n indication of clockwise direction ✓\n </p>\n <p>\n More than 2 circles with increasing separation between circles from centre outwards (by eye) ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n At least one circle centred on centre of wire A\n <br/>\n <strong>\n <em>\n AND\n <br/>\n </em>\n </strong>\n indication of clockwise direction ✓\n </p>\n <p>\n More than 2 circles with increasing separation between circles from centre outwards (by eye) ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n B lies in magnetic field of A OWTTE ✓\n </p>\n <p>\n Explained use of appropriate rule together with drawn indication of rule operating in this case ✓\n </p>\n <p>\n To show that force on B is to left and in plane of paper ✓\n <br/>\n <em>\n <strong>\n OR\n <br/>\n </strong>\n </em>\n Magnetic field lines of B merge with those of A to give combined field line pattern ✓\n </p>\n <p>\n Sketch of combined pattern to show null point somewhere on line between wires. ✓\n </p>\n <p>\n Wires will move to reduce stored energy and this is achieved by moving together so force on B is to left ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mi>\n F\n </mi>\n <mi>\n l\n </mi>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 7\n </mn>\n </mrow>\n </msup>\n <msub>\n <mi>\n I\n </mi>\n <mtext>\n A\n </mtext>\n </msub>\n <msub>\n <mi>\n I\n </mi>\n <mtext>\n B\n </mtext>\n </msub>\n </mrow>\n <mi>\n r\n </mi>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 7\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 12\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 25\n </mn>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 4\n </mn>\n </mrow>\n </msup>\n <mo>\n </mo>\n <mtext>\n N\n </mtext>\n </math>\n ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"d-fields"
],
"subtopics": [
"d-3-motion-in-electromagnetic-fields"
]
},
{
"question_id": "EXE.2.SL.TZ0.18",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline, with reference to the decay equation above, the role of chain reactions in the operation of a nuclear power station.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate, in MeV, the energy released in the reaction.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Two nuclides present in spent nuclear fuel\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mtext>\n Cs\n </mtext>\n <mprescripts>\n </mprescripts>\n <mn>\n 55\n </mn>\n <mn>\n 137\n </mn>\n </mmultiscripts>\n </math>\n are  and cerium-144 (\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mtext>\n Ce\n </mtext>\n <mprescripts>\n </mprescripts>\n <mn>\n 58\n </mn>\n <mn>\n 144\n </mn>\n </mmultiscripts>\n </math>\n ). The initial activity of a sample of pure\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mtext>\n Ce\n </mtext>\n <mprescripts>\n </mprescripts>\n <mn>\n 58\n </mn>\n <mn>\n 144\n </mn>\n </mmultiscripts>\n </math>\n is about 40 times greater than the activity of the same amount of pure\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mtext>\n Cs\n </mtext>\n <mprescripts>\n </mprescripts>\n <mn>\n 55\n </mn>\n <mn>\n 137\n </mn>\n </mmultiscripts>\n </math>\n .\n </p>\n <p>\n Discuss which of the two nuclides is more likely to require long-term storage once removed from the reactor.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n The four neutrons released in the reaction may initiate further fissions ✓\n </p>\n <p>\n «If sufficient U-235 is available,» the reaction is self-sustained ✓\n </p>\n <p>\n Allowing for the continuous production of energy ✓\n </p>\n <p>\n The number of neutrons available is controlled with control rods «to maintain the desired reaction rate» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n The four neutrons released in the reaction may initiate further fissions ✓\n </p>\n <p>\n «If sufficient U-235 is available,» the reaction is self-sustained ✓\n </p>\n <p>\n Allowing for the continuous production of energy ✓\n </p>\n <p>\n The number of neutrons available is controlled with control rods «to maintain the desired reaction rate» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 137\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 389\n </mn>\n <mo>\n +\n </mo>\n <mn>\n 95\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 460\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 235\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 591\n </mn>\n </math>\n ✓\n </p>\n <p>\n 169«MeV» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n «For the same number of nuclei,» the activity is inversely related to half-life ✓\n </p>\n <p>\n Thus\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mtext>\n Cs\n </mtext>\n <mprescripts>\n </mprescripts>\n <mn>\n 55\n </mn>\n <mn>\n 137\n </mn>\n </mmultiscripts>\n </math>\n has a longer half-life and will likely require longer storage ✓\n </p>\n <p>\n Half-lives of their decay products need also be considered when planning storage ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-3-radioactive-decay",
"e-4-fission"
]
},
{
"question_id": "EXE.2.SL.TZ0.19",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Compare and contrast spontaneous and neutron-induced nuclear fission.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Every neutron-induced fission reaction of uranium-235 releases an energy of about 200MeV. A nuclear power station transfers an energy of about 2.4GJ per second.\n </p>\n <p>\n Determine the mass of uranium-235 that undergoes fission in one day in this power station.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State\n <strong>\n two\n </strong>\n properties of the products of nuclear fission due to which the spent nuclear fuel needs to be kept safe.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Spontaneous fission occurs with no external influence, neutron-induced fission requires an interaction with a neutron «of appropriate energy» ✓\n </p>\n <p>\n Both result in the release of energy\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n both have a large number of possible pairs of products ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Spontaneous fission occurs with no external influence, neutron-induced fission requires an interaction with a neutron «of appropriate energy» ✓\n </p>\n <p>\n Both result in the release of energy\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n both have a large number of possible pairs of products ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Fissions per day\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 9\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 60\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 60\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 24\n </mn>\n </mrow>\n <mrow>\n <mn>\n 200\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 19\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mfrac>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 24\n </mn>\n </msup>\n </math>\n » ✓\n </p>\n <p>\n Mass of uranium\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 24\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 05\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 23\n </mn>\n </msup>\n </mrow>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 235\n </mn>\n </math>\n ✓\n </p>\n <p>\n 2.5«kg» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Have relatively short half-lives / high activity ✓\n </p>\n <p>\n Their decay products are «usually» also radioactive ✓\n </p>\n <p>\n Volatile / chemically active ✓\n </p>\n <p>\n Biologically active / easily absorbed by living matter ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-3-radioactive-decay",
"e-4-fission"
]
},
{
"question_id": "EXE.2.SL.TZ0.2",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n A tram is just leaving the lower railway station.\n </p>\n <p>\n Determine, as the train leaves the lower station,\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the pd across the motor of the tram,\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the mechanical power output of the motor.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Discuss the variation in the power output of the motor with distance from the lower station.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The total friction in the system acting on the tram is equivalent to an opposing force of 750N.\n </p>\n <p>\n For one particular journey, the tram is full of passengers.\n </p>\n <p>\n Estimate the maximum speed\n <em>\n v\n </em>\n of the tram as it leaves the lower station.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The tram travels at\n <em>\n v\n </em>\n throughout the journey. Two trams are available so that one is returning to the lower station on another line while the other is travelling to the village. The journeys take the same time.\n </p>\n <p>\n It takes 1.5 minutes to unload and 1.5 minutes to load each tram. Ignore the time taken to accelerate the tram at the beginning and end of the journey.\n </p>\n <p>\n Estimate the maximum number of passengers that can be carried up to the village in one hour.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (e)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n There are eight wheels on each tram with a brake system for each wheel. A pair of brake pads clamp firmly onto an annulus made of steel.\n </p>\n <p>\n The train comes to rest from speed\n <em>\n v\n </em>\n . Ignore the energy transferred to the brake pads and the change in the gravitational potential energy of the tram during the braking.\n </p>\n <p>\n Calculate the temperature change in each steel annulus as the tram comes to rest.\n </p>\n <p>\n Data for this question\n </p>\n <p style=\"padding-left:60px;\">\n The inner radius of the annulus is 0.40m and the outer radius is 0.50m.\n </p>\n <p style=\"padding-left:60px;\">\n The thickness of the annulus is 25mm.\n </p>\n <p style=\"padding-left:60px;\">\n The density of the steel is 7860kgm\n <sup>\n 3\n </sup>\n </p>\n <p style=\"padding-left:60px;\">\n The specific heat capacity of the steel is 420Jkg\n <sup>\n 1\n </sup>\n K\n <sup>\n 1\n </sup>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (f)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The speed of the tram is measured by detecting a beam of microwaves of wavelength 2.8cm reflected from the rear of the tram as it moves away from the station. Predict the change in wavelength of the microwaves at the stationary microwave detector in the station.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Resistance of cable = 0.072 Ω ✓\n </p>\n <p>\n Pd is (500  0.072 × 600) = 457V ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Resistance of cable = 0.072 Ω ✓\n </p>\n <p>\n Pd is (500  0.072 × 600) = 457V ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Power input = 457 × 600 = 274kW ✓\n </p>\n <p>\n Power output = 0.9 × 274 = 247kW ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n The pd across the motor increases as the tram travels up the track ✓\n </p>\n <p>\n (As the current is constant), the power output also rises ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Total weight of tram = 75 × 710 + 5 × 10\n <sup>\n 4\n </sup>\n = 1.03 × 10\n <sup>\n 5\n </sup>\n N ✓\n </p>\n <p>\n Total force down track = 750 + 1.03 × 10\n <sup>\n 5\n </sup>\n sin(10) = 1.87 × 10\n <sup>\n 4\n </sup>\n N ✓\n </p>\n <p>\n Use of\n <em>\n P\n </em>\n =\n <em>\n F ×\n </em>\n <em>\n v ✓\n </em>\n </p>\n <p>\n (\n <em>\n v\n </em>\n = 247000 ÷ 1.87 × 10\n <sup>\n 4\n </sup>\n )= 13ms\n <sup>\n 1\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n Time for run =\n <em>\n s/v\n </em>\n = 3000 ÷ 13.2 = 227s ✓\n </p>\n <p>\n 3 minutes loading = 180s\n </p>\n <p>\n So one trip = 407s ✓\n </p>\n <p>\n And there are 3600/407 trips per hour = 8.84 ✓\n </p>\n <p>\n So 8\n <em>\n complete\n </em>\n trips with 75 = 600 passengers ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e)\n </div><div class=\"card-body\">\n <p>\n Work leading to volume = 7.1 x 10\n <sup>\n 3\n </sup>\n m\n <sup>\n 3\n </sup>\n ✓\n </p>\n <p>\n Work leading to mass of steel = 55 .8kg ✓\n </p>\n <p>\n Kinetic Energy transferred per annulus =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mstyle displaystyle=\"true\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n </mstyle>\n <mi>\n m\n </mi>\n <msup>\n <mi>\n v\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n <mn>\n 8\n </mn>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 16\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 03\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 9\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 81\n </mn>\n </mrow>\n </mfrac>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 13\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n </p>\n <p>\n = 110kJ ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n Δ\n </mtext>\n <mi>\n T\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <msub>\n <mi>\n E\n </mi>\n <mtext>\n k\n </mtext>\n </msub>\n <mrow>\n <mi>\n m\n </mi>\n <mi>\n c\n </mi>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 55\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 420\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 7\n </mn>\n </math>\n K ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (f)\n </div><div class=\"card-body\">\n <p>\n Use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n λ\n </mi>\n </mrow>\n <mi>\n λ\n </mi>\n </mfrac>\n <mo>\n ≈\n </mo>\n <mfrac>\n <mi>\n v\n </mi>\n <mi>\n c\n </mi>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n 1.2nm ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"b-the-particulate-nature-of-matter",
"c-wave-behaviour"
],
"subtopics": [
"a-1-kinematics",
"a-2-forces-and-momentum",
"a-3-work-energy-and-power",
"b-1-thermal-energy-transfers",
"b-5-current-and-circuits",
"c-5-doppler-effect"
]
},
{
"question_id": "EXE.2.SL.TZ0.20",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State\n <strong>\n one\n </strong>\n source of the radioactive waste products from nuclear fission reactions.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline how this waste is treated after it has been removed from the fission reactor.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Fission fragments from the fuel rods\n </p>\n <p>\n <strong>\n OR\n </strong>\n activated materials in (e.g.) fuel rod casings\n </p>\n <p>\n <strong>\n OR\n </strong>\n nuclei formed by neutron activation from U-235\n </p>\n <p>\n <strong>\n OR\n </strong>\n stated products, e.g. Pu, U-236 etc. ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Fission fragments from the fuel rods\n </p>\n <p>\n <strong>\n OR\n </strong>\n activated materials in (e.g.) fuel rod casings\n </p>\n <p>\n <strong>\n OR\n </strong>\n nuclei formed by neutron activation from U-235\n </p>\n <p>\n <strong>\n OR\n </strong>\n stated products, e.g. Pu, U-236 etc. ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Waste (fuel rod) is placed in cooling ponds for a number of years ✓\n </p>\n <p>\n After most active products have decayed the uranium is separated to be recycled/reprocessed ✓\n </p>\n <p>\n The remaining highly active waste is vitrified / made into a solid form ✓\n </p>\n <p>\n And stored (deep) underground ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"e-4-fission"
]
},
{
"question_id": "EXE.2.SL.TZ0.3",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate:\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the initial temperature gradient through the base of the pot. State an appropriate unit for your answer.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the initial rate, in kW, of thermal energy transfer by conduction through the base of the pot.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The electrical power rating of the hot plate is 1kW. Comment, with reference to this value, on your answer in (a)(ii).\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Describe how thermal energy is distributed throughout the volume of the water in the pot.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 180\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 10\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 005\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 4\n </mn>\n </msup>\n </math>\n ✓\n </p>\n <p>\n Km\n <sup>\n 1\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 180\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 10\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 005\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 4\n </mn>\n </msup>\n </math>\n ✓\n </p>\n <p>\n Km\n <sup>\n 1\n </sup>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n 45 × 0.15 × 3.4 × 10\n <sup>\n 4\n </sup>\n = 230«kW» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n The answer is unrealistically large / impossible to sustain ✓\n </p>\n <p>\n Due to much lower actual power, a lower temperature gradient through the base of the pot is quickly established ✓\n </p>\n <p>\n The surface of the hot plate becomes colder from contact with pot\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n there is a temperature gradient also through the hot plate ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n By means of convection currents ✓\n </p>\n <p>\n That arise due to density difference between hot and cold water ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-1-thermal-energy-transfers"
]
},
{
"question_id": "EXE.2.SL.TZ0.4",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The temperature of the air outside of the bottle is 20 °C. The surface area of the bottle is 4.0 × 10\n <sup>\n 2\n </sup>\n m\n <sup>\n 2\n </sup>\n . Calculate the initial rate of thermal energy transfer by conduction through the bottle.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why the rate calculated in part (a) is decreasing.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Estimate the initial rate of the change of the temperature of the water in the bottle. State your answer in Ks\n <sup>\n 1\n </sup>\n . The specific heat capacity of water is 4200Jkg\n <sup>\n 1\n </sup>\n K\n <sup>\n 1\n </sup>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 90\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 60\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 20\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 003\n </mn>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n 480«W» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 90\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 60\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 20\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 003\n </mn>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n 480«W» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n The temperature gradient decreases as the water cools down ✓\n </p>\n <p>\n The rate of energy transfer is proportional to the temperature gradient ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 480\n </mn>\n <mo>\n =\n </mo>\n <mn>\n 4200\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 50\n </mn>\n <mo>\n ×\n </mo>\n <mfrac>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n T\n </mi>\n </mrow>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n t\n </mi>\n </mrow>\n </mfrac>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n T\n </mi>\n </mrow>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n t\n </mi>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 23\n </mn>\n </math>\n «Ks\n <sup>\n 1\n </sup>\n » ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-1-thermal-energy-transfers"
]
},
{
"question_id": "EXE.2.SL.TZ0.5",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Discuss the mechanism that accounts for the greatest rate of energy transfer when:\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <em>\n T\n </em>\n <sub>\n t\n </sub>\n &gt;\n <em>\n T\n </em>\n <sub>\n b\n </sub>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <em>\n T\n </em>\n <sub>\n b\n </sub>\n &gt;\n <em>\n T\n </em>\n <sub>\n t\n </sub>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The liquid now freezes so that the vertical column is entirely of ice. Suggest how your answer to (a)(ii) will change.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Conduction identified ✓\n </p>\n <p>\n energy transfer through interaction of particles in liquid at atomic scale ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Conduction identified ✓\n </p>\n <p>\n energy transfer through interaction of particles in liquid at atomic scale ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Convection identified ✓\n </p>\n <p>\n energy transfer through movement of bodies of liquid at different densities ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n the solid cannot now move relative to material above it ✓\n </p>\n <p>\n so conduction only ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-1-thermal-energy-transfers"
]
},
{
"question_id": "EXE.2.SL.TZ0.6",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The side of the rod can be unlagged or ideally lagged. Explain the difference in energy transfer for these two cases.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the temperature at Y.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The temperatures are now reversed so that X is at 45°C and Z is at 90°C. Show that the rate of energy transfer is unchanged.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n When ideally lagged, no energy transfer can occur through the sides of the bar. ✓\n </p>\n <p>\n All the power input/ energy input per second at one end will emerge at the other end. ✓\n </p>\n <p>\n When unlagged, energy transfer occurs from the sides of the bar and the power /energy input per second at input &gt; the energy output per second at the other end. ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Max 1 if answer does not refer to rate of energy transfer in MP2 and MP3.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n When ideally lagged, no energy transfer can occur through the sides of the bar. ✓\n </p>\n <p>\n All the power input/ energy input per second at one end will emerge at the other end. ✓\n </p>\n <p>\n When unlagged, energy transfer occurs from the sides of the bar and the power /energy input per second at input &gt; the energy output per second at the other end. ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Max 1 if answer does not refer to rate of energy transfer in MP2 and MP3.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n idea that\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mi>\n d\n </mi>\n <mi>\n Q\n </mi>\n </mrow>\n <mrow>\n <mi>\n d\n </mi>\n <mi>\n t\n </mi>\n </mrow>\n </mfrac>\n </math>\n is same in both bars because lagged ✓\n </p>\n <p>\n work to show that\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 90\n </mn>\n <mo>\n -\n </mo>\n <mi>\n θ\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 2\n </mn>\n <mfenced>\n <mrow>\n <mi>\n θ\n </mi>\n <mo>\n -\n </mo>\n <mn>\n 45\n </mn>\n </mrow>\n </mfenced>\n </math>\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n Temperature difference across XY is twice temperature difference across YZ ✓\n </p>\n <p>\n solves to show that\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n θ\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 60\n </mn>\n <mo>\n </mo>\n <mo>\n °\n </mo>\n <mtext>\n C\n </mtext>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n repeats calculation to show that\n <em>\n θ\n </em>\n = 75°C ✓\n </p>\n <p>\n temperature difference across YZ is still 15K which gives the same rate of energy transfer (but in opposite direction) ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-1-thermal-energy-transfers"
]
},
{
"question_id": "EXE.2.SL.TZ0.7",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State\n <strong>\n two\n </strong>\n assumptions of the kinetic model of an ideal gas that refer to intermolecular collisions.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Discuss how the motion of the molecules of a gas gives rise to pressure in the gas.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The average speed of the molecules of a gas is 500ms\n <sup>\n 1\n </sup>\n . The density of the gas is 1.2kgm\n <sup>\n 3\n </sup>\n . Calculate, in kPa, the pressure of the gas.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n The collisions are elastic ✓\n </p>\n <p>\n The time for a collision is much shorter than the time between collisions ✓\n </p>\n <p>\n The intermolecular forces are only present during collisions ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n The collisions are elastic ✓\n </p>\n <p>\n The time for a collision is much shorter than the time between collisions ✓\n </p>\n <p>\n The intermolecular forces are only present during collisions ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n The momentum of a molecule changes when it collides with a container wall ✓\n </p>\n <p>\n From\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n F\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n p\n </mi>\n </mrow>\n <mrow>\n <mtext>\n Δ\n </mtext>\n <mi>\n t\n </mi>\n </mrow>\n </mfrac>\n </math>\n and Newtons third law, this leads to a force exerted on the wall by the molecule ✓\n </p>\n <p>\n The average force exerted by all the molecules on a unit area of the wall is equivalent to pressure ✓\n </p>\n <p>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 500\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n ✓\n </p>\n <p>\n 100«kPa» ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-3-gas-laws"
]
},
{
"question_id": "EXE.2.SL.TZ0.8",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the average translational speed of air molecules.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The air is a mixture of nitrogen, oxygen and other gases. Explain why the component gases of air in the container have different average translational speeds.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The temperature of the sample is increased without a change in pressure. Outline the effect it has on the density of the gas.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mi>\n v\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n v\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 520\n </mn>\n </math>\n «ms\n <sup>\n 1\n </sup>\n »  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 8\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mi>\n v\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n v\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 520\n </mn>\n </math>\n «ms\n <sup>\n 1\n </sup>\n »  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Average kinetic energy of the molecules is determined by the temperature only ✓\n </p>\n <p>\n The mass of a molecule is different for each component gas ✓\n </p>\n <p>\n From\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n E\n </mi>\n <mtext>\n k\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 2\n </mn>\n </mfrac>\n <mi>\n m\n </mi>\n <msup>\n <mi>\n v\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n , the same\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n E\n </mi>\n <mtext>\n k\n </mtext>\n </msub>\n </math>\n and different mass implies a different average velocity  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <strong>\n <em>\n ALTERNATIVE 1\n </em>\n </strong>\n </p>\n <p>\n The average translational speed increases «because\n <em>\n T\n </em>\n increases» ✓\n </p>\n <p>\n From\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n P\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n <mi>\n ρ\n </mi>\n <msup>\n <mi>\n v\n </mi>\n <mn>\n 2\n </mn>\n </msup>\n </math>\n , the density decreases «to keep\n <em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n P\n </mi>\n </math>\n </em>\n constant»  ✓\n </p>\n <p>\n <br/>\n <strong>\n <em>\n ALTERNATIVE 2\n </em>\n </strong>\n </p>\n <p>\n From the ideal gas law, the volume of the gas increases ✓\n </p>\n <p>\n Since\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n ρ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mi>\n m\n </mi>\n <mi>\n v\n </mi>\n </mfrac>\n </math>\n and\n <em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n m\n </mi>\n </math>\n </em>\n is constant, the density decreases  ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-3-gas-laws"
]
},
{
"question_id": "EXE.2.SL.TZ0.9",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline how the concept of absolute zero of temperature is interpreted in terms of:\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the ideal gas law,\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n the kinetic energy of particles in an ideal gas.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n A container holds a mixture of argon and helium atoms at a temperature of 37°C.\n </p>\n <p>\n Calculate the average translational speed of the argon atoms.\n </p>\n <p>\n The molar mass of argon is 4.0 × 10\n <sup>\n 2\n </sup>\n kgmol\n <sup>\n 1\n </sup>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Discuss how the mean kinetic energy of the argon atoms in the mixture compares with that of the helium atoms.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n it is the temperature at which the volume\n </p>\n <p>\n <strong>\n <em>\n OR\n </em>\n </strong>\n </p>\n <p>\n the pressure extrapolates to zero (can be shown by sketch)  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n it is the temperature at which the volume\n </p>\n <p>\n <strong>\n <em>\n OR\n </em>\n </strong>\n </p>\n <p>\n the pressure extrapolates to zero (can be shown by sketch)  ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n it is the temperature at which all the (random) motion stops\n </p>\n <p>\n <strong>\n <em>\n OR\n </em>\n </strong>\n </p>\n <p>\n at which all the motion can be extrapolated to stop\n </p>\n <p>\n <strong>\n <em>\n OR\n </em>\n </strong>\n </p>\n <p>\n at which the kinetic energy of all particles is zero ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Use of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 2\n </mn>\n </mrow>\n </msup>\n </mrow>\n <msub>\n <mi>\n N\n </mi>\n <mtext>\n A\n </mtext>\n </msub>\n </mfrac>\n <mfenced>\n <mrow>\n <mo>\n =\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 26\n </mn>\n </mrow>\n </msup>\n <mo>\n </mo>\n <mtext>\n kg\n </mtext>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n <p>\n Work showing that\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n v\n </mi>\n <mfenced>\n <mrow>\n <mo>\n =\n </mo>\n <msqrt>\n <mfrac>\n <mrow>\n <mn>\n 3\n </mn>\n <mi>\n p\n </mi>\n </mrow>\n <mi>\n ρ\n </mi>\n </mfrac>\n <mo>\n =\n </mo>\n <msqrt>\n <mfrac>\n <mrow>\n <mn>\n 3\n </mn>\n <mi>\n p\n </mi>\n <mi>\n V\n </mi>\n </mrow>\n <mi>\n m\n </mi>\n </mfrac>\n </msqrt>\n </msqrt>\n </mrow>\n </mfenced>\n <mo>\n =\n </mo>\n <msqrt>\n <mfrac>\n <mrow>\n <mn>\n 3\n </mn>\n <mi>\n k\n </mi>\n <mi>\n T\n </mi>\n </mrow>\n <mi>\n m\n </mi>\n </mfrac>\n </msqrt>\n </math>\n ✓\n </p>\n <p>\n Correct substitution AND conversion to K (310K)  ✓\n </p>\n <p>\n 430/440«ms\n <sup>\n 1\n </sup>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n the gases are in the same container at the same temperature so are\n <span style=\"text-decoration:underline;\">\n in equilibrium\n </span>\n ✓\n </p>\n <p>\n they must have the same mean/average kinetic energy ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-3-gas-laws"
]
},
{
"question_id": "SPM.1B.HL.TZ0.1",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The students vary\n <em>\n V\n </em>\n and measure the time\n <em>\n T\n </em>\n for the ball to move\n <strong>\n once\n </strong>\n from one plate to the other. The table shows some of the data.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <em>\n V\n </em>\n is provided by two identical power supplies connected in series. The potential difference of each of the power supplies is known with an uncertainty of 0.01kV.\n </p>\n <p>\n State the uncertainty in the potential difference\n <em>\n V\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <em>\n T\n </em>\n is measured with an electronic stopwatch that measures to the nearest 0.1s.\n </p>\n <p>\n Describe how an uncertainty in\n <em>\n T\n </em>\n of less than 0.1s can be achieved using this stopwatch.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline why it is unlikely that the relationship between\n <em>\n T\n </em>\n and\n <em>\n V\n </em>\n is linear.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iv)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the largest fractional uncertainty in\n <em>\n T\n </em>\n for these data.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine\n <em>\n A\n </em>\n by drawing the line of best fit.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the units of\n <em>\n A\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The theoretical relationship assumes that the ball is only affected by the electric force.\n </p>\n <p>\n Suggest why, in order to test the relationship, the length of the string should be much greater than the distance between the plates.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 0.02«kV» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n 0.02«kV» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n by measuring the time for many bounces ✓\n </p>\n <p>\n and dividing the result by the number of bounces ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n it is not possible to draw a straight line through all the error bars ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iv)\n </div><div class=\"card-body\">\n <p>\n <em>\n T\n </em>\n = 0.5s ✓\n </p>\n <p>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n </math>\n » 0.2 ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n a best-fit line drawn through the entire range of the data ✓\n </p>\n <p>\n large triangle greater than half a line or two data points on the line greater than half a line apart ✓\n </p>\n <p>\n correct read offs consistent with the line,\n <em>\n eg\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 0\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 40\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 0\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </math>\n ✓\n </p>\n <p>\n <em>\n Accept answer in the range 3.84.2\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n kVs ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n the angle between the string and the vertical should be very small «for any position of the ball» ✓\n </p>\n <p>\n </p>\n <p>\n so that the tension in the string is «almost» balanced by the balls weight\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n restoring force from the string / horizontal component of tension negligibly small «compared with electric force» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n OWTTE\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"inquiry",
"tools"
],
"subtopics": [
"i-1-2-designing",
"inquiry-1-exploring-and-designing",
"tool-1-experimental-techniques",
"tool-3-mathematics"
]
},
{
"question_id": "SPM.1B.HL.TZ0.2",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The group obtains the following repeated readings for\n <em>\n d\n </em>\n for\n <strong>\n one\n </strong>\n value of\n <em>\n W\n </em>\n .\n </p>\n <p>\n <img src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\"/>\n </p>\n <p>\n The group divides into two subgroups, A and B, to analyse the data.\n </p>\n <p>\n Group A quotes the mean value of\n <em>\n d\n </em>\n as 2.93cm.\n </p>\n <p>\n Group B quotes the mean value of\n <em>\n d\n </em>\n as 2.8cm.\n </p>\n <p>\n Discuss the values that the groups have quoted.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The variation of\n <em>\n d\n </em>\n with\n <em>\n W\n </em>\n is shown.\n </p>\n <p>\n <img src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\"/>\n </p>\n <p>\n Outline\n <strong>\n one\n </strong>\n experimental reason why the graph does not go through the origin.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Theory predicts that\n </p>\n <p style=\"text-align:center;\">\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n d\n </mi>\n <mo>\n ∝\n </mo>\n <mfrac>\n <mrow>\n <msup>\n <mi>\n W\n </mi>\n <mi>\n x\n </mi>\n </msup>\n <msup>\n <mi>\n L\n </mi>\n <mi>\n y\n </mi>\n </msup>\n </mrow>\n <mrow>\n <mi>\n E\n </mi>\n <mi>\n I\n </mi>\n </mrow>\n </mfrac>\n </math>\n </p>\n <p>\n where\n <em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n E\n </mi>\n </math>\n </em>\n and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n </math>\n are constants. The fundamental units of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n </math>\n are m\n <sup>\n 4\n </sup>\n and those of\n <em>\n E\n </em>\n are kgm\n <sup>\n 1\n </sup>\n s\n <sup>\n 2\n </sup>\n .\n </p>\n <p>\n Calculate\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n y\n </mi>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest an appropriate measuring instrument for determining\n <em>\n b\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the percentage uncertainty in the value of\n <em>\n A\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 3 sf is inappropriate for\n <em>\n A\n </em>\n ✓\n </p>\n <p>\n rejects trial 3 as outlier for\n <em>\n B\n </em>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 3 sf is inappropriate for\n <em>\n A\n </em>\n ✓\n </p>\n <p>\n rejects trial 3 as outlier for\n <em>\n B\n </em>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n beam bends under its own weight / weight of pan\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n specified systematic error in\n <em>\n d\n </em>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n units of\n <em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n W\n </mi>\n </math>\n </em>\n : kgms\n <sup>\n 2\n </sup>\n ✓\n </p>\n <p>\n work leading to\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 1\n </mn>\n </math>\n and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n y\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 3\n </mn>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n instrument (capable of reading to 0.05mm) with reason related to resolution of instrument ✓\n </p>\n <p>\n <em>\n eg micrometer screw gauge, Vernier caliper, travelling microscope\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n attempt to calculate fractional uncertainty in either\n <em>\n a\n </em>\n or\n <em>\n b\n </em>\n [0.0357, 0.0167] ✓\n </p>\n <p>\n 0.0357 + 0.0167 = 0.05 = 5% ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"inquiry",
"tools"
],
"subtopics": [
"i-2-3-interpreting-results",
"inquiry-2-collecting-and-processing-data",
"tool-1-experimental-techniques",
"tool-3-mathematics"
]
},
{
"question_id": "SPM.1B.SL.TZ0.1",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The students vary\n <em>\n V\n </em>\n and measure the time\n <em>\n T\n </em>\n for the ball to move\n <strong>\n once\n </strong>\n from one plate to the other. The table shows some of the data.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <em>\n V\n </em>\n is provided by two identical power supplies connected in series. The potential difference of each of the power supplies is known with an uncertainty of 0.01kV.\n </p>\n <p>\n State the uncertainty in the potential difference\n <em>\n V\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <em>\n T\n </em>\n is measured with an electronic stopwatch that measures to the nearest 0.1s.\n </p>\n <p>\n Describe how an uncertainty in\n <em>\n T\n </em>\n of less than 0.1s can be achieved using this stopwatch.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline why it is unlikely that the relationship between\n <em>\n T\n </em>\n and\n <em>\n V\n </em>\n is linear.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iv)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the largest fractional uncertainty in\n <em>\n T\n </em>\n for these data.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine\n <em>\n A\n </em>\n by drawing the line of best fit.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the units of\n <em>\n A\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The theoretical relationship assumes that the ball is only affected by the electric force.\n </p>\n <p>\n Suggest why, in order to test the relationship, the length of the string should be much greater than the distance between the plates.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 0.02«kV» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n 0.02«kV» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n by measuring the time for many bounces ✓\n </p>\n <p>\n and dividing the result by the number of bounces ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n it is not possible to draw a straight line through all the error bars ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iv)\n </div><div class=\"card-body\">\n <p>\n <em>\n T\n </em>\n = 0.5s ✓\n </p>\n <p>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n </math>\n » 0.2 ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n a best-fit line drawn through the entire range of the data ✓\n </p>\n <p>\n large triangle greater than half a line or two data points on the line greater than half a line apart ✓\n </p>\n <p>\n correct read offs consistent with the line,\n <em>\n eg\n </em>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 0\n </mn>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 40\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 0\n </mn>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 4\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n </math>\n ✓\n </p>\n <p>\n <em>\n Accept answer in the range 3.84.2\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n kVs ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n the angle between the string and the vertical should be very small «for any position of the ball» ✓\n </p>\n <p>\n so that the tension in the string is «almost» balanced by the balls weight\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n restoring force from the string / horizontal component of tension negligibly small «compared with electric force» ✓\n </p>\n <p>\n <em>\n OWTTE\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"inquiry",
"tools"
],
"subtopics": [
"i-1-1-exploring",
"i-1-2-designing",
"i-1-3-controlling-variables",
"inquiry-1-exploring-and-designing",
"tool-1-experimental-techniques",
"tool-3-mathematics"
]
},
{
"question_id": "SPM.1B.SL.TZ0.2",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The group obtains the following repeated readings for\n <em>\n d\n </em>\n for\n <strong>\n one\n </strong>\n value of\n <em>\n W\n </em>\n .\n </p>\n <p>\n <img src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\"/>\n </p>\n <p>\n The group divides into two subgroups, A and B, to analyse the data.\n </p>\n <p>\n Group A quotes the mean value of\n <em>\n d\n </em>\n as 2.93cm.\n </p>\n <p>\n Group B quotes the mean value of\n <em>\n d\n </em>\n as 2.8cm.\n </p>\n <p>\n Discuss the values that the groups have quoted.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The variation of\n <em>\n d\n </em>\n with\n <em>\n W\n </em>\n is shown.\n </p>\n <p>\n <img src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\"/>\n </p>\n <p>\n Outline\n <strong>\n one\n </strong>\n experimental reason why the graph does not go through the origin.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Theory predicts that\n </p>\n <p style=\"text-align:center;\">\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n d\n </mi>\n <mo>\n ∝\n </mo>\n <mfrac>\n <mrow>\n <msup>\n <mi>\n W\n </mi>\n <mi>\n x\n </mi>\n </msup>\n <msup>\n <mi>\n L\n </mi>\n <mi>\n y\n </mi>\n </msup>\n </mrow>\n <mrow>\n <mi>\n E\n </mi>\n <mi>\n I\n </mi>\n </mrow>\n </mfrac>\n </math>\n </p>\n <p style=\"text-align:left;\">\n where\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n E\n </mi>\n </math>\n and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n </math>\n are constants. The fundamental units of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n I\n </mi>\n </math>\n are m\n <sup>\n 4\n </sup>\n and those of\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n E\n </mi>\n </math>\n are kgm\n <sup>\n 1\n </sup>\n s\n <sup>\n 2\n </sup>\n .\n </p>\n <p style=\"text-align:left;\">\n Calculate\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n y\n </mi>\n </math>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest an appropriate measuring instrument for determining\n <em>\n b\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the percentage uncertainty in the value of\n <em>\n A\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 3 sf is inappropriate for\n <em>\n A\n </em>\n ✓\n </p>\n <p>\n rejects trial 3 as outlier for\n <em>\n B\n </em>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 3 sf is inappropriate for\n <em>\n A\n </em>\n ✓\n </p>\n <p>\n rejects trial 3 as outlier for\n <em>\n B\n </em>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n beam bends under its own weight / weight of pan\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n specified systematic error in\n <em>\n d\n </em>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n units of\n <em>\n W\n </em>\n : kgms\n <sup>\n 2\n </sup>\n ✓\n </p>\n <p>\n work leading to\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 1\n </mn>\n </math>\n and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n y\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 3\n </mn>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n instrument (capable of reading to 0.05mm) with reason related to resolution of instrument ✓\n </p>\n <p>\n <em>\n eg micrometer screw gauge, Vernier caliper, travelling microscope\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n attempt to calculate fractional uncertainty in either\n <em>\n a\n </em>\n or\n <em>\n b\n </em>\n [0.0357, 0.0167] ✓\n </p>\n <p>\n 0.0357 + 0.0167 = 0.05 = 5 % ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"inquiry",
"tools"
],
"subtopics": [
"i-2-3-interpreting-results",
"inquiry-2-collecting-and-processing-data",
"tool-1-experimental-techniques",
"tool-3-mathematics"
]
},
{
"question_id": "SPM.2.HL.TZ0.1",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the nature and direction of the force that accelerates the 15kg object.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the largest magnitude of\n <em>\n F\n </em>\n for which the block and the object do not move relative to each other.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n static friction force «between blocks»\n </p>\n <p>\n <em>\n <strong>\n AND\n </strong>\n </em>\n </p>\n <p>\n directed to the right ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n static friction force «between blocks»\n </p>\n <p>\n <em>\n <strong>\n AND\n </strong>\n </em>\n </p>\n <p>\n directed to the right ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <em>\n F\n </em>\n = 60\n <em>\n a ✓\n </em>\n </p>\n <p>\n <em>\n F\n </em>\n <sub>\n f\n </sub>\n = 0.6 × 15 × 9.8 «= 88.2 ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 88\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n =\n </mo>\n <mn>\n 15\n </mn>\n <mo>\n ×\n </mo>\n <mfrac>\n <mi>\n F\n </mi>\n <mn>\n 60\n </mn>\n </mfrac>\n <mo>\n ⇒\n </mo>\n <mi>\n F\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 350\n </mn>\n </math>\n «N» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Allow use of a =\n </em>\n 0.6\n <em>\n g leading to 353N.\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-2-forces-and-momentum"
]
},
{
"question_id": "SPM.2.HL.TZ0.2",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n γ\n </mi>\n </math>\n for a speed of 0.80\n <em>\n c\n </em>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n γ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 80\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 67\n </mn>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n γ\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <msup>\n <mn>\n 80\n </mn>\n <mn>\n 2\n </mn>\n </msup>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mn>\n 5\n </mn>\n <mn>\n 3\n </mn>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 67\n </mn>\n </math>\n ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-5-galilean-and-special-relativity"
]
},
{
"question_id": "SPM.2.HL.TZ0.3",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline how this standing wave pattern of melted spots is formed.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n standing waves form «in the oven» by superposition / constructive interference ✓\n </p>\n <p>\n energy transfer is greatest at the antinodes «of the standing wave pattern» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n standing waves form «in the oven» by superposition / constructive interference ✓\n </p>\n <p>\n energy transfer is greatest at the antinodes «of the standing wave pattern» ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-4-standing-waves-and-resonance"
]
},
{
"question_id": "SPM.2.HL.TZ0.4",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw an arrow on the diagram to represent the direction of the acceleration of the satellite.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n arrow normal to the orbit towards the Earth ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n arrow normal to the orbit towards the Earth ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"d-fields"
],
"subtopics": [
"a-2-forces-and-momentum",
"d-1-gravitational-fields"
]
},
{
"question_id": "SPM.2.HL.TZ0.5",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline why the magnetic flux in ring B increases.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline why work must be done on ring B as it moves towards ring A at a constant speed.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n ring B cuts an increasing number of magnetic field lines ✓\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n magnetic field from current in A increases at the position of B ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n ring B cuts an increasing number of magnetic field lines ✓\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n magnetic field from current in A increases at the position of B ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n the current induced in B gives rise to a magnetic field opposing that of A\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n there will be a magnetic force opposing the motion ✓\n </p>\n <p>\n work must be done to move B in the opposite direction to this force ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"d-fields"
],
"subtopics": [
"a-3-work-energy-and-power",
"d-4-induction"
]
},
{
"question_id": "SPM.2.HL.TZ0.6",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n A nucleus of americium-241 has 146 neutrons. This nuclide decays to neptunium through alpha emission.\n </p>\n <p>\n Complete the nuclear equation for this decay.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the maximum current in the chamber due to the electrons when there is no smoke in the chamber.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mtext>\n Am\n </mtext>\n <mprescripts>\n </mprescripts>\n <mn>\n 95\n </mn>\n <mn>\n 241\n </mn>\n </mmultiscripts>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mtext>\n Np\n </mtext>\n <mprescripts>\n </mprescripts>\n <mn>\n 93\n </mn>\n <mn>\n 237\n </mn>\n </mmultiscripts>\n <mo>\n +\n </mo>\n <mmultiscripts>\n <mi>\n α\n </mi>\n <mprescripts>\n </mprescripts>\n <mn>\n 2\n </mn>\n <mn>\n 4\n </mn>\n </mmultiscripts>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n Each alpha gives rise to\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n </mrow>\n <mn>\n 15\n </mn>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 67\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n </math>\n ion pairs ✓\n </p>\n <p>\n So\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 3\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 67\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 42000\n </mn>\n </mrow>\n <mn>\n 3\n </mn>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 13\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 9\n </mn>\n </msup>\n </math>\n ion pairs per second ✓\n </p>\n <p>\n current\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 19\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 13\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 9\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 82\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 9\n </mn>\n </mrow>\n </msup>\n </math>\n «A» ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter",
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"b-5-current-and-circuits",
"e-3-radioactive-decay"
]
},
{
"question_id": "SPM.2.HL.TZ0.7",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the surface temperature of\n <em>\n δ\n </em>\n Vel A is about 9000K.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n correct substitution into\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n λ\n </mi>\n <mtext>\n max\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mi>\n T\n </mi>\n </mfrac>\n </math>\n OR 9350K ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n correct substitution into\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n λ\n </mi>\n <mtext>\n max\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mi>\n T\n </mi>\n </mfrac>\n </math>\n OR 9350K ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-1-thermal-energy-transfers"
]
},
{
"question_id": "SPM.2.HL.TZ0.8",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the theoretical equilibrium temperature of the mixture.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The mixture was held in a large metal container during the mixing.\n </p>\n <p>\n Explain\n <strong>\n one\n </strong>\n change to the procedure that will reduce the difference in (b)(i).\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </mfenced>\n <mo>\n +\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 220\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n <mo>\n +\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 13\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n <mfenced>\n <mrow>\n <mi>\n T\n </mi>\n <mo>\n -\n </mo>\n <mn>\n 47\n </mn>\n </mrow>\n </mfenced>\n </math>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 150\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 13\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n <mfenced>\n <mrow>\n <mn>\n 240\n </mn>\n <mo>\n -\n </mo>\n <mi>\n T\n </mi>\n </mrow>\n </mfenced>\n </math>\n </p>\n <p>\n One heat capacity term correctly substituted ✓\n </p>\n <p>\n latent heat correctly substituted\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 220\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 190\n </mn>\n </math>\n «°C» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </mfenced>\n <mo>\n +\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 220\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n <mo>\n +\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 13\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n <mfenced>\n <mrow>\n <mi>\n T\n </mi>\n <mo>\n -\n </mo>\n <mn>\n 47\n </mn>\n </mrow>\n </mfenced>\n </math>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 150\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 13\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n <mfenced>\n <mrow>\n <mn>\n 240\n </mn>\n <mo>\n -\n </mo>\n <mi>\n T\n </mi>\n </mrow>\n </mfenced>\n </math>\n </p>\n <p>\n One heat capacity term correctly substituted ✓\n </p>\n <p>\n latent heat correctly substituted\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 220\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 190\n </mn>\n </math>\n «°C» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Insulate the container\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n Carry out experiment quicker\n </p>\n <p>\n <strong>\n OR\n </strong>\n </p>\n <p>\n Use larger volumes of substances ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter",
"inquiry"
],
"subtopics": [
"b-1-thermal-energy-transfers",
"i-1-3-controlling-variables",
"inquiry-1-exploring-and-designing"
]
},
{
"question_id": "SPM.2.HL.TZ0.9",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw the electric field lines due to the charged plates.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw the electric field lines due to the charged plates.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw the forces acting on the oil drop, ignoring the buoyancy force.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the electric charge on the oil drop is given by\n </p>\n <p style=\"text-align:center;\">\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n q\n </mi>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <msub>\n <mi>\n ρ\n </mi>\n <mi>\n o\n </mi>\n </msub>\n <mi>\n g\n </mi>\n <mi>\n V\n </mi>\n </mrow>\n <mi>\n E\n </mi>\n </mfrac>\n </math>\n </p>\n <p>\n where\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n ρ\n </mi>\n <mi>\n o\n </mi>\n </msub>\n </math>\n is the density of oil and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n V\n </mi>\n </math>\n is the volume of the oil drop.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n equally spaced arrows «by eye» all pointing down ✓\n </p>\n <p>\n edge effects also shown with arrows ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n equally spaced arrows «by eye» all pointing down ✓\n </p>\n <p>\n edge effects also shown with arrows ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n Weight vertically down\n <em>\n <strong>\n AND\n </strong>\n </em>\n electric force vertically up ✓\n </p>\n <p>\n Of equal length «by eye» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n Mass of drop is\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n ρ\n </mi>\n <mi>\n o\n </mi>\n </msub>\n <mi>\n V\n </mi>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n q\n </mi>\n <mi>\n E\n </mi>\n <mo>\n =\n </mo>\n <mfenced>\n <mrow>\n <msub>\n <mi>\n ρ\n </mi>\n <mi>\n o\n </mi>\n </msub>\n <mi>\n V\n </mi>\n </mrow>\n </mfenced>\n <mi>\n g\n </mi>\n </math>\n ✓\n </p>\n <p>\n «hence answer»\n </p>\n <p>\n <br/>\n <em>\n MP1 must be shown implicitly for credit.\n </em>\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"d-fields",
"tools"
],
"subtopics": [
"a-2-forces-and-momentum",
"d-2-electric-and-magnetic-fields",
"tool-3-mathematics"
]
},
{
"question_id": "SPM.2.SL.TZ0.1",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the nature and direction of the force that accelerates the 15kg object.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n static friction force «between blocks»\n </p>\n <p>\n <strong>\n AND\n </strong>\n </p>\n <p>\n directed to the right ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n static friction force «between blocks»\n </p>\n <p>\n <strong>\n AND\n </strong>\n </p>\n <p>\n directed to the right ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion"
],
"subtopics": [
"a-2-forces-and-momentum"
]
},
{
"question_id": "SPM.2.SL.TZ0.2",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline how this standing wave pattern of melted spots is formed.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n standing waves form «in the oven» by superposition / constructive interference ✓\n </p>\n <p>\n energy transfer is greatest at the antinodes «of the standing wave pattern» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n standing waves form «in the oven» by superposition / constructive interference ✓\n </p>\n <p>\n energy transfer is greatest at the antinodes «of the standing wave pattern» ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"c-wave-behaviour"
],
"subtopics": [
"c-4-standing-waves-and-resonance"
]
},
{
"question_id": "SPM.2.SL.TZ0.3",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw an arrow on the diagram to represent the direction of the acceleration of the satellite.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n arrow normal to the orbit towards the Earth ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n arrow normal to the orbit towards the Earth ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"a--space-time-and-motion",
"d-fields"
],
"subtopics": [
"a-2-forces-and-momentum",
"d-1-gravitational-fields"
]
},
{
"question_id": "SPM.2.SL.TZ0.4",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n A nucleus of americium-241 has 146 neutrons. This nuclide decays to neptunium through alpha emission.\n </p>\n <p>\n Complete the nuclear equation for this decay.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the maximum current in the chamber due to the electrons when there is no smoke in the chamber.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mi>\n Am\n </mi>\n <mprescripts>\n </mprescripts>\n <mn>\n 95\n </mn>\n <mn>\n 241\n </mn>\n </mmultiscripts>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mmultiscripts>\n <mi>\n Np\n </mi>\n <mprescripts>\n </mprescripts>\n <mn>\n 93\n </mn>\n <mn>\n 237\n </mn>\n </mmultiscripts>\n <mo>\n +\n </mo>\n <mmultiscripts>\n <mi>\n α\n </mi>\n <mprescripts>\n </mprescripts>\n <mn>\n 2\n </mn>\n <mn>\n 4\n </mn>\n </mmultiscripts>\n </math>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Each alpha gives rise to\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 6\n </mn>\n </msup>\n </mrow>\n <mn>\n 15\n </mn>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 67\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n </math>\n ion pairs ✓\n </p>\n <p>\n So\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 3\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 67\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 42000\n </mn>\n </mrow>\n <mn>\n 3\n </mn>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 13\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 9\n </mn>\n </msup>\n </math>\n ion pairs per second ✓\n </p>\n <p>\n current\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 19\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 13\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 9\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 82\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 9\n </mn>\n </mrow>\n </msup>\n </math>\n «A» ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter",
"e-nuclear-and-quantum-physics"
],
"subtopics": [
"b-5-current-and-circuits",
"e-3-radioactive-decay"
]
},
{
"question_id": "SPM.2.SL.TZ0.5",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Show that the surface temperature of\n <em>\n δ\n </em>\n Vel A is about 9000K.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n correct substitution into\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n λ\n </mi>\n <mtext>\n max\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mi>\n T\n </mi>\n </mfrac>\n </math>\n OR 9350K ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n correct substitution into\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n λ\n </mi>\n <mtext>\n max\n </mtext>\n </msub>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 9\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mi>\n T\n </mi>\n </mfrac>\n </math>\n OR 9350K ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-1-thermal-energy-transfers"
]
},
{
"question_id": "SPM.2.SL.TZ0.6",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the theoretical equilibrium temperature of the mixture.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </mfenced>\n <mo>\n +\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 220\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n <mo>\n +\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 13\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n <mfenced>\n <mrow>\n <mi>\n T\n </mi>\n <mo>\n -\n </mo>\n <mn>\n 47\n </mn>\n </mrow>\n </mfenced>\n </math>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 150\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 13\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n <mfenced>\n <mrow>\n <mn>\n 240\n </mn>\n <mo>\n -\n </mo>\n <mi>\n T\n </mi>\n </mrow>\n </mfenced>\n </math>\n </p>\n <p>\n One heat capacity term correctly substituted ✓\n </p>\n <p>\n latent heat correctly substituted\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 220\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 190\n </mn>\n </math>\n «°C» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n </mrow>\n </mfenced>\n <mo>\n +\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 220\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n <mo>\n +\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 13\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n <mfenced>\n <mrow>\n <mi>\n T\n </mi>\n <mo>\n -\n </mo>\n <mn>\n 47\n </mn>\n </mrow>\n </mfenced>\n </math>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n =\n </mo>\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 150\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 13\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n <mfenced>\n <mrow>\n <mn>\n 240\n </mn>\n <mo>\n -\n </mo>\n <mi>\n T\n </mi>\n </mrow>\n </mfenced>\n </math>\n </p>\n <p>\n One heat capacity term correctly substituted ✓\n </p>\n <p>\n latent heat correctly substituted\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfenced>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 030\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 220\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n </mfenced>\n </math>\n ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n T\n </mi>\n <mo>\n =\n </mo>\n <mn>\n 190\n </mn>\n </math>\n «°C» ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"b-the-particulate-nature-of-matter"
],
"subtopics": [
"b-1-thermal-energy-transfers"
]
},
{
"question_id": "SPM.2.SL.TZ0.7",
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw the electric field lines due to the charged plates.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw the electric field lines due to the charged plates.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n equally spaced arrows «by eye» all pointing down ✓\n </p>\n <p>\n edge effects also shown with arrows ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n equally spaced arrows «by eye» all pointing down ✓\n </p>\n <p>\n edge effects also shown with arrows ✓\n </p>\n</div>\n",
"Examiners report": "None",
"topics": [
"d-fields"
],
"subtopics": [
"d-2-electric-and-magnetic-fields"
]
}
]