
- /app/index.html - /app/index.js - /assets/style.css - /assets/jsonqb/Chemistry 2025 QB merged.json - /assets/jsonqb/Physics 2025 QB merged.json - /assets/jsonqb/Biology 2025 QB merged.json
1785 lines
No EOL
4.5 MiB
1785 lines
No EOL
4.5 MiB
[
|
||
{
|
||
"question_id": "19M.3.SL.TZ1.2",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Powdered zinc was reacted with 25.00 cm<sup>3</sup> of 1.000 mol dm<sup>−3</sup> copper(II) sulfate solution in an </span><span style=\"background-color: #ffffff;\">insulated beaker. Temperature was plotted against time.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"384\" src=\"\" style=\"margin-right: auto; margin-left: auto; display: block;\" width=\"458\"/></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Estimate the time at which the powdered zinc was placed in the beaker.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">State what point <strong>Y</strong> on the graph represents.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The maximum temperature used to calculate the enthalpy of reaction was chosen at a point on the extrapolated (dotted) line.</span></p>\n<p><span style=\"background-color: #ffffff;\">State the maximum temperature which should be used and outline <strong>one</strong> assumption made in choosing this temperature on the extrapolated line. </span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\">Maximum temperature:</span></p>\n<p><span style=\"background-color: #ffffff;\">Assumption:</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">To determine the enthalpy of reaction the experiment was carried out five times. The same volume and concentration of copper(II) sulfate was used but the mass of zinc was different each time. Suggest, with a reason, if zinc or copper(II) sulfate should be in excess for each trial.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The formula <em>q = mcΔT</em> was used to calculate the energy released. The values used in the calculation were <em>m</em> = 25.00 g, <em>c</em> = 4.18 J g<sup>−1</sup> K<sup>−1</sup>.</span></p>\n<p><span style=\"background-color: #ffffff;\">State an assumption made when using these values for <em>m</em> and <em>c</em>.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"246\" src=\"\" width=\"666\"/></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Predict, giving a reason, how the final enthalpy of reaction calculated from this experiment would compare with the theoretical value.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(iv).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">100 «s» <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note:</strong> Accept 90 to 100 s.</span></em></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">highest recorded temperature<br/><em><strong>OR</strong></em><br/>when rate of heat production equals rate of heat loss <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note:</strong> Accept “maximum temperature”.</span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept “completion/end point of reaction”.</span></em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Maximum temperature:</em><br/>73 «°C» <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\"><em>Assumption</em>:<br/>«temperature reached if» reaction instantaneous<br/><em><strong>OR</strong></em><br/>«temperature reached if reaction occurred» without heat loss <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note:</strong> Accept “rate of heat loss is constant” <strong>OR</strong> “rate of temperature decrease is constant”.</span></em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Any one of:</em><br/>copper(II) sulfate <em><strong>AND</strong> </em>mass/amount of zinc is independent variable/being changed.<br/><em><strong>OR</strong></em><br/>copper(II) sulfate <em><strong>AND</strong> </em>with zinc in excess there is no independent variable «as amount of copper(II) sulfate is fixed» <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">copper(II) sulfate <em><strong>AND</strong> </em>having excess zinc will not yield different results in each trial <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">zinc <em><strong>AND</strong> </em>results can be used to see if amount of zinc affects temperature rise «so this can be allowed for» <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">zinc <em><strong>AND</strong> </em>reduces variables/keeps the amount reacting constant <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"283\" src=\"\" width=\"510\"/></p>\n<p> </p>\n<p><strong><em>Note: </em></strong><em><span style=\"background-color: #ffffff;\">Accept “copper(II) sulfate/zinc sulfate” for “solution”.</span></em></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">lower/less exothermic/less negative <em><strong>AND</strong> </em>heat loss/some heat not accounted for<br/><em><strong>OR</strong></em><br/>lower/less exothermic/less negative <em><strong>AND</strong> </em>mass of reaction mixture greater than 25.00 g<br/><em><strong>OR</strong> <br/></em>greater/more exothermic /more negative <em><strong>AND</strong> </em>specific heat of solution less than water <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong> Note:</strong> Accept “temperature is lower” instead of “heat loss”. </span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept “similar to theoretical value </span><span style=\"background-color: #ffffff;\"><strong>AND</strong></span> <span style=\"background-color: #ffffff;\">heat losses have been compensated for”. </span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept “greater/more exothermic/more negative <strong>AND</strong> linear extrapolation overestimates heat loss”.</span></em></p>\n<div class=\"question_part_label\">b(iv).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Almost all candidates identified 100 s as the time at which the reaction was initiated.</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many students gained this mark through stating this was the highest temperature recorded, though even more took advantage of the acceptance of the completion of the reaction, expressed in many different ways. Very few answered that it was when heat loss equalled heat production.</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Even though almost all students recognised 100 seconds as the start time of the reaction less than 50% chose the extrapolated temperature at this time. Predictably the most common answer was the maximum of the graph, followed closely by the intercept with the y-axis. With regard to reasons, again relatively few gained the mark, though most who did wrote “no loss of heat”, even though it was rare to find this preceded by “the temperature that would have been attained if …”.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The correct answer depended on whether students considered the object of the additional trials was to investigate the effect of a new independent variable (excess copper(II) sulphate) or to obtain additional values of the same enthalpy change so they could be averaged (excess zinc). Answers that gave adequate reasons were rare.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Again relatively few gained these marks for stating that it was assumed the density and specific heat of the solution were the same as water.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Only about a third of the students correctly deduced that loss of heat to the environment means that the experimental value is lower than the theoretical one, though other answers, such as “higher because linear extrapolation over-compensates for the heat losses” were also accepted.</p>\n<div class=\"question_part_label\">b(iv).</div>\n</div>",
|
||
"topics": [
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"tool-2-technology",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.HL.TZ1.1",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Xylene is a derivative of benzene. One isomer is 1,4-dimethylbenzene.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img alt=\"\" src=\"../assets/uploads/tinymce_asset/asset/5942/1.PNG\"/></span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Xylene, like benzene, can be nitrated.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Bromine reacts with alkanes.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">State the number of <sup>1</sup>H NMR signals for this isomer of xylene and the ratio in which they appear.</span></p>\n<p> </p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Draw the structure of one other isomer of xylene which retains the benzene ring.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Write the equation for the production of the active nitrating agent from concentrated sulfuric and nitric acids.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Explain the mechanism for the nitration of benzene, using curly arrows to indicate the movement of electron pairs.</span></p>\n<div class=\"marks\">[4]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Identify the initiation step of the reaction and its conditions.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">1,4-dimethylbenzene reacts as a substituted alkane. Draw the structures of the two products of the overall reaction when one molecule of bromine reacts with one molecule of 1,4-dimethylbenzene.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The organic product is not optically active. Discuss whether or not the organic product is a racemic mixture.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Number of signals</em>: 2 <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[</strong><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">✔</span><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><em>Ratio</em>:</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">3 : 2 </span></span></p>\n<p><em><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">OR </span></span></em></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">6 : 4 <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[</strong><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">✔</span><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">]</strong> </span></span></p>\n<p><em><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><strong>Note</strong>: Accept any correct integer or fractional ratio. Accept ratios in reverse order.</span></span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img alt=\"\" height=\"223\" src=\"../assets/uploads/tinymce_asset/asset/5943/1a_m.PNG\" width=\"527\"/> <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[</strong><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">✔</span><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">]</strong></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">2H<sub>2</sub>SO<sub>4</sub> + HNO<sub>3</sub> ⇌ NO<sub>2</sub><sup>+</sup> + 2HSO<sub>4</sub></span><span style=\"background-color: #ffffff;\"><sup>−</sup> + H<sub>3</sub>O<sup>+ </sup></span><strong>[</strong>✔<strong>]</strong></p>\n<p><em><strong>Note</strong>: <span style=\"background-color: #ffffff;\">Accept a single arrow instead of an equilibrium sign.<br/>Accept “H<sub>2</sub>SO<sub>4</sub> + HNO<sub>3</sub> ⇌ NO<sub>2</sub><sup>+</sup> + HSO<sub>4</sub><sup>−</sup> + H<sub>2</sub>O”.<br/>Accept “H<sub>2</sub>SO<sub>4</sub> + HNO<sub>3</sub> ⇌ H<sub>2</sub>NO<sub>3</sub><sup>+</sup> + HSO<sub>4</sub><sup>−</sup>”.<br/>Accept equivalent two step reactions in which sulfuric acid first behaves as a strong acid and protonates the nitric acid, before behaving as a dehydrating agent removing water from it.</span></em></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img alt=\"\" height=\"285\" src=\"../assets/uploads/tinymce_asset/asset/5945/1cii.PNG\" width=\"469\"/></p>\n<p><span style=\"background-color: #ffffff;\">curly arrow going from benzene ring to N «of <sup>+</sup>NO<sub>2</sub>/NO<sub>2</sub><sup>+</sup>» <strong>[</strong>✔<strong>]</strong><br/>carbocation with correct formula and positive charge on ring <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[</strong>✔<strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">]</strong><br/>curly arrow going from C–H bond to benzene ring of cation <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[</strong>✔<strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">]</strong><br/>formation of organic product nitrobenzene <em><strong>AND</strong> </em>H<sup>+ </sup><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[</strong>✔<strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">Note: </strong>Accept mechanism with corresponding Kekulé structures.<br/>Do <strong>not</strong> accept a circle in M2 or M3.<br/>Accept first arrow starting either inside the circle or on the circle.<br/>If Kekulé structure used, first arrow must start on the double bond.<br/>M2 may be awarded from correct diagram for M3.<br/>M4: Accept “C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub>” if HSO<sub>4</sub><sup>−</sup> used in M3.</span></em></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Br<sub>2</sub> 2Br• <strong>[</strong>✔<strong>]</strong><br/></span></p>\n<p><span style=\"background-color: #ffffff;\">«sun»light/UV/<em>hv</em><br/><em><strong>OR</strong></em><br/>high temperature <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[</strong>✔<strong>]</strong></span></p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Do not penalize missing radical symbol on Br.<br/>Accept “homolytic fission of bromine” for M1.</span></em></p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img alt=\"\" height=\"111\" src=\"../assets/uploads/tinymce_asset/asset/5946/1dii_m.PNG\" width=\"302\"/><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[</strong><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">✔</span><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">]</strong></p>\n<p><span style=\"background-color: #ffffff;\">HBr <strong>[</strong>✔<strong>]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept condensed formulae, such as CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>Br.</span></em></p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">no <em><strong>AND</strong> </em>there is no chiral carbon</span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>OR</strong></em></span></p>\n<p><span style=\"background-color: #ffffff;\">no <em><strong>AND</strong> </em>there is no carbon with four different substituents/groups <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept “no <strong>AND</strong> no asymmetric carbon<br/>atom”.</span></em></p>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many identified two correct peaks but quite a few less the correct ratio.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Generally well done, although some candidates repeated the formula of the 1,4-isomer structure or drew the wrong bond, <em>e.g.</em> benzene ring to H rather than C on CH<sub>3</sub>.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The production of NO<sub>3</sub><sup>−</sup> was a common answer.</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Performance was fairly good by schools covering the topic while others had no idea. There were many careless steps, such as omission or misplacement of + sign.</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Very well done, with a few making reference to a catalyst.</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Some candidates lost one mark for the bond originated from H in CH<sub>3</sub> instead of C. Some teachers thought the use of the word “substituted alkane” made the question more difficult than it should have been.</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>One of the most poorly answered questions on the exam with only 10 % of candidates earning this mark. Some candidates just answered ‘yes’ or ‘no’ on whether the organic product is a racemic mix and very few mentioned the absence of a chiral carbon. One teacher though the use of benzene in this question made it unnecessarily tough, stating “the optical activity of benzene has not been covered due to the limited chemistry of benzene included in the specification. An aliphatic compound here would test the understanding of enantiomers without the confusion of adding benzene”. Candidates should recognize that carbon in benzene cannot be the centre of optical activity and look for chiral carbons in the substitution chains.</p>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-3-3-electron-sharing-reactions",
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.HL.TZ1.2",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Benzoic acid, C<sub>6</sub>H<sub>5</sub>COOH, is another derivative of benzene.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Identify the wavenumber of one peak in the IR spectrum of benzoic acid, using section 26 of the data booklet.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Identify the spectroscopic technique that is used to measure the bond lengths in solid benzoic acid.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Outline <strong>one</strong> piece of physical evidence for the structure of the benzene ring.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Draw the structure of the conjugate base of benzoic acid showing <strong>all</strong> the atoms and <strong>all</strong> the bonds.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Outline why both C to O bonds in the conjugate base are the same length and suggest a value for them. Use section 10 of the data booklet.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">e.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The pH of an aqueous solution of benzoic acid at 298 K is 2.95. Determine the concentration of hydroxide ions in the solution, using section 2 of the data booklet.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">f(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Formulate the equation for the complete combustion of benzoic acid in oxygen using only integer coefficients.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">f(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The combustion reaction in (f)(ii) can also be classed as redox. Identify the atom that is oxidized and the atom that is reduced.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">g.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Suggest how benzoic acid, <em>M<sub>r</sub></em> = 122.13, forms an apparent dimer, <em>M<sub>r</sub></em> = 244.26, when dissolved in a non-polar solvent such as hexane.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">h.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">State the reagent used to convert benzoic acid to phenylmethanol (benzyl alcohol), C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>OH.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">i.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Any wavenumber in the following ranges:<br/>2500−3000 «cm<sup>−1</sup>» </span><strong>[✔]</strong><span style=\"background-color: #ffffff;\"><br/>1700−1750 «cm<sup>−1</sup>» </span><strong>[✔]</strong><span style=\"background-color: #ffffff;\"><br/>2850−3090 «cm<sup>−1</sup>» </span><strong>[✔]</strong></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">X-ray «crystallography/spectroscopy» <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Any one of:</em></span></p>\n<p><span style=\"background-color: #ffffff;\">«regular» hexagon</span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>OR</strong></em></span></p>\n<p><span style=\"background-color: #ffffff;\">all «H–C–C/C-C-C» angles equal/120º <strong>[✔]</strong><br/>all C–C bond lengths equal/intermediate between double and single</span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>OR</strong></em></span></p>\n<p><span style=\"background-color: #ffffff;\">bond order 1.5 <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img alt=\"\" height=\"158\" src=\"../assets/uploads/tinymce_asset/asset/5947/2d.PNG\" width=\"482\"/> <strong>[<span style=\"background-color: #ffffff;\">✔</span>]</strong></p>\n<p> </p>\n<p><em><strong>Note: </strong><span style=\"background-color: #ffffff;\">Accept Kekulé structures.<br/>Negative sign must be shown in correct position.</span></em></p>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">electrons delocalized «across the O–C–O system»</span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>OR</strong></em></span></p>\n<p><span style=\"background-color: #ffffff;\">resonance occurs <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">122 «pm» < C–O < 143 «pm» <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\"><em><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">Note: </strong>Accept “delocalized π-bond”.</em><br/><em>Accept “bond intermediate between single and double bond” or “bond order 1.5” for M1.</em><br/><em>Accept any answer in range 123 to 142 pm</em>.</span></p>\n<div class=\"question_part_label\">e.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em><strong>ALTERNATIVE 1:</strong></em><br/>[H<sup>+</sup>] «= 10<sup>−2.95</sup>» = 1.122 × 10<sup>−3</sup> «mol dm<sup>−3</sup>» <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\"><br/>«[OH<sup>−</sup>] = <span class=\"mjpage\"><math alttext=\"\\frac{{1.00 \\times {{10}^{ - 14}}{\\text{ mo}}{{\\text{l}}^2}{\\text{ d}}{{\\text{m}}^{ - 6}}}}{{1.22 \\times {{10}^{ - 3}}{\\text{ mol d}}{{\\text{m}}^{ - 3}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mn>1.00</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo>−</mo>\n<mn>14</mn>\n</mrow>\n</msup>\n</mrow>\n<mrow>\n<mtext> mo</mtext>\n</mrow>\n<mrow>\n<msup>\n<mrow>\n<mtext>l</mtext>\n</mrow>\n<mn>2</mn>\n</msup>\n</mrow>\n<mrow>\n<mtext> d</mtext>\n</mrow>\n<mrow>\n<msup>\n<mrow>\n<mtext>m</mtext>\n</mrow>\n<mrow>\n<mo>−</mo>\n<mn>6</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>1.22</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo>−</mo>\n<mn>3</mn>\n</mrow>\n</msup>\n</mrow>\n<mrow>\n<mtext> mol d</mtext>\n</mrow>\n<mrow>\n<msup>\n<mrow>\n<mtext>m</mtext>\n</mrow>\n<mrow>\n<mo>−</mo>\n<mn>3</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n</math></span> =» 8.91 × 10<sup>−12</sup> «mol dm<sup>−3</sup>» <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>ALTERNATIVE 2:</strong></em><br/>pOH = «14 − 2.95 =» 11.05 <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong><br/>«[OH<sup>−</sup>] = 10<sup>−11.05</sup> =» 8.91 × 10<sup>−12</sup> «mol dm<sup>−3</sup>» <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note</strong>: Award <strong>[2]</strong> for correct final answer.<br/>Accept other methods.</span></em></p>\n<div class=\"question_part_label\">f(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">2C<sub>6</sub>H<sub>5</sub>COOH (s) + 15O<sub>2</sub> (g) → 14CO<sub>2</sub> (g) + 6H<sub>2</sub>O (l)<br/>correct products </span><strong>[✔]</strong><span style=\"background-color: #ffffff;\"><br/>correct balancing </span><strong>[✔]</strong></p>\n<div class=\"question_part_label\">f(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Oxidized</em>:</span></p>\n<p><span style=\"background-color: #ffffff;\">C/carbon «in C<sub>6</sub>H<sub>5</sub>COOH»</span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>AND</strong></em></span></p>\n<p><span style=\"background-color: #ffffff;\"><em>Reduced</em>:</span></p>\n<p><span style=\"background-color: #ffffff;\">O/oxygen «in O<sub>2</sub>» <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">g.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«intermolecular» hydrogen bonding <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept diagram showing hydrogen bonding.</span></em></p>\n<div class=\"question_part_label\">h.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">lithium aluminium hydride/LiAlH<sub>4</sub> <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">i.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates could identify a wavenumber or range of wavenumbers in the IR spectrum of benzoic acid.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Less than half the candidates identified x-ray crystallography as a technique used to measure bond lengths. There were many stating IR spectroscopy and quite a few random guesses.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Again less than half the candidates could accurately give a physical piece of evidence for the structure of benzene. Many missed the mark by not being specific, stating ‘all bonds in benzene with same length’ rather than ‘all C-C bonds in benzene have the same length’.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Very poorly answered with only 1 in 5 getting this question correct. Many did not show <strong>all</strong> the bonds and <strong>all</strong> the atoms or either forgot or misplaced the negative sign on the conjugate base.</p>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was a challenge. Candidates were not able to explain the intermediate bond length and the majority suggested the value of either the bond length of C to O single bond or double bond.</p>\n<div class=\"question_part_label\">e.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Generally well done with a few calculating the pOH rather than the concentration of hydroxide ion asked for.</p>\n<div class=\"question_part_label\">f(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most earned at least one mark by correctly stating the products of the reaction.</p>\n<div class=\"question_part_label\">f(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Another question where not reading correctly was a concern. Instead of identifying the atom that is oxidized and the atom that is reduced, answers included formulas of molecules or the atoms were reversed for the redox processes.</p>\n<div class=\"question_part_label\">g.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The other question where only 10 % of the candidates earned a mark. Few identified hydrogen bonding as the reason for carboxylic acids forming dimers. There were many G2 forms stating that the use of the word “dimer” is not in the syllabus, however the candidates were given that a dimer has double the molar mass and the majority seemed to understand that the two molecules joined together somehow but could not identify hydrogen bonding as the cause.</p>\n<div class=\"question_part_label\">h.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Very few candidates answered this part correctly and scored the mark. Common answers were H<sub>2</sub>SO<sub>4</sub>, HCl & Sn, H<sub>2</sub>O<sub>2</sub>. In general, strongest candidates gained the mark.</p>\n<div class=\"question_part_label\">i.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-2-models-of-bonding-and-structure"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-3-energy-from-fuels",
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"structure-2-2-the-covalent-model"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.HL.TZ1.25",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Identify the chiral carbon atom using an asterisk, *.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Enantiomers can be identified using a polarimeter. Outline how this instrument differentiates the enantiomers.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <img height=\"177\" src=\"\" width=\"221\"/>\n <strong>\n [\n <span style=\"background-color:#ffffff;\">\n ✔]\n </span>\n </strong>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n «plane-»polarized light passed through sample\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <br/>\n analyser/second polarizer determines angle of rotation of plane of plane-polarized light\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n each enantiomer rotates plane «of plane-polarized light» in opposite directions «by the same angle»\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Some candidates had difficulty identifying the chiral carbon in a methadone structure, with quite a few varied answers. However, many managed to mark the correct carbon.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Very poorly answered. Few scored any marks at all when outlining how a polarimeter can be used to differentiate between enantiomers. Many referred to the light or the enantiomers themselves being rotated.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.HL.TZ1.4",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">This question is about the decomposition of hydrogen peroxide.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Hydrogen peroxide decomposes to water and oxygen when a catalyst such as potassium iodide, KI, is added.</span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\"><br/>2H<sub>2</sub>O<sub>2</sub> (aq) <span class=\"mjpage\"><math alttext=\"\\xrightarrow{{{\\text{KI (aq)}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mover>\n<mo>→</mo>\n<mpadded lspace=\"0.278em\" voffset=\".15em\" width=\"+0.611em\">\n<mrow>\n<mrow>\n<mtext>KI (aq)</mtext>\n</mrow>\n</mrow>\n</mpadded>\n</mover>\n</math></span> O<sub>2</sub> (g) + 2H<sub>2</sub>O (l)</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Suggest why many chemicals, including hydrogen peroxide, are kept in brown bottles instead of clear colourless bottles.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">In a laboratory experiment solutions of potassium iodide and hydrogen peroxide were mixed and the volume of oxygen generated was recorded. The volume was adjusted to 0 at t = 0.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img alt=\"\" height=\"250\" src=\"../assets/uploads/tinymce_asset/asset/5958/4bi_1.PNG\" width=\"427\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The data for the first trial is given below.</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><img alt=\"\" height=\"220\" src=\"../assets/uploads/tinymce_asset/asset/5959/4bi_2.PNG\" width=\"398\"/></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Plot a graph on the axes below and from it determine the average rate of<br/>formation of oxygen gas in cm<sup>3</sup> O<sub>2</sub> (g) s<sup>−1</sup>.</span></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><img alt=\"\" height=\"614\" src=\"../assets/uploads/tinymce_asset/asset/5960/4bi_3.PNG\" width=\"388\"/></span></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Average rate of reaction:</span></span></span></span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Two more trials (2 and 3) were carried out. The results are given below.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Determine the rate equation for the reaction and its overall order, using your answer from (b)(i).</span></span></p>\n<p>Rate equation: </p>\n<p>Overall order: </p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Additional experiments were carried out at an elevated temperature. On the axes below, sketch Maxwell–Boltzmann energy distribution curves at two temperatures T<sub>1</sub> and T<sub>2</sub>, where T<sub>2</sub> > T<sub>1</sub>.</span></p>\n<p><img alt=\"\" height=\"382\" src=\"../assets/uploads/tinymce_asset/asset/5963/4biii.PNG\" width=\"583\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Apart from a greater frequency of collisions, explain, by annotating your graphs in (b)(iii), why an increased temperature causes the rate of reaction to increase.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">MnO<sub>2</sub> is another possible catalyst for the reaction. State the IUPAC name for MnO<sub>2</sub>.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.</span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\">H<sub>2</sub>O<sub>2</sub> (aq) + CH<sub>3</sub>COOH (aq) ⇌ CH<sub>3</sub>COOOH (aq) + H<sub>2</sub>O (l)</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Sodium percarbonate, 2Na<sub>2</sub>CO<sub>3</sub>•3H<sub>2</sub>O<sub>2</sub>, is an adduct of sodium carbonate and hydrogen peroxide and is used as a cleaning agent.</span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\">M<sub>r</sub> (2Na<sub>2</sub>CO<sub>3</sub>•3H<sub>2</sub>O<sub>2</sub>) = 314.04</span></p>\n<p><span style=\"background-color: #ffffff;\">Calculate the percentage by mass of hydrogen peroxide in sodium percarbonate, giving your answer to two decimal places.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">decomposes in light <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept “sensitive to light”.</span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img alt=\"\" height=\"659\" src=\"../assets/uploads/tinymce_asset/asset/5961/4bi_m.PNG\" width=\"407\"/></p>\n<p><span style=\"background-color: #ffffff;\">points correctly plotted <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">best fit line <em><strong>AND</strong> </em>extended through (to) the origin <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><em>Average rate of reaction:</em><br/>«slope (gradient) of line =» 0.022 «cm<sup>3</sup> O<sub>2</sub> (g) s<sup>−1</sup>» <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</span></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note</strong>: Accept range 0.020–0.024cm<sup>3</sup> O<sub>2</sub> (g) s<sup>−1</sup>.</span></em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Rate equation</em>:<br/>Rate = <em>k</em>[H<sub>2</sub>O<sub>2</sub>] × [KI] <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</span><br/></span></p>\n<p><span style=\"background-color: #ffffff;\"><em>Overall order</em>:<br/>2 <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Rate constant must be included.</span></em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><img alt=\"\" height=\"333\" src=\"../assets/uploads/tinymce_asset/asset/5964/4biii_m.PNG\" width=\"507\"/></span></p>\n<p><span style=\"background-color: #ffffff;\">peak of T<sub>2</sub> to right of <em><strong>AND</strong></em> lower than T<sub>1</sub> <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">lines begin at origin <em><strong>AND</strong></em> T<sub>2</sub> must finish above T<sub>1</sub> <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">E<sub>a</sub> marked on graph <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">explanation in terms of more “particles” with E ≥ E<sub>a</sub></span></p>\n<p><em><strong><span style=\"background-color: #ffffff;\">OR</span></strong></em></p>\n<p><span style=\"background-color: #ffffff;\">greater area under curve to the right of E<sub>a</sub> in T<sub>2</sub> <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<div class=\"question_part_label\">b(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">manganese(IV) oxide</span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>OR</strong></em></span></p>\n<p><span style=\"background-color: #ffffff;\">manganese dioxide <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept “manganese(IV) dioxide”.</span></em></p>\n<div class=\"question_part_label\">b(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">moves «position of» equilibrium to right/products <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept “reactants are always present as the reaction is in equilibrium”.</span></em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">M( H<sub>2</sub>O<sub>2</sub>) «= 2 × 1.01 + 2 × 16.00» = 34.02 «g» <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">«% H<sub>2</sub>O<sub>2</sub> = 3 × <span class=\"mjpage\"><math alttext=\"\\frac{{34.02}}{{314.04}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mn>34.02</mn>\n</mrow>\n<mrow>\n<mn>314.04</mn>\n</mrow>\n</mfrac>\n</math></span> × 100 =» 32.50 «%» <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</span></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note</strong>: Award <strong>[2]</strong> for correct final answer.</span></em></p>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>There were a couple of comments claiming that this NOS question on “why to store hydrogen peroxide in brown bottles” is not the syllabus. Most candidates were quite capable of reasoning this out.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates could plot a best fit line and find the slope to calculate an average rate of reaction.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Good performance but with answers that either typically included only [H<sub>2</sub>O<sub>2</sub>] with first or second order equation or even suggesting zero order rate equation.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Fair performance; errors including not starting the two curves at the origin, drawing peak for T2 above T1, T2 finishing below T1 or curves crossing the x-axis.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The majority of candidates earned at least one mark, many both marks. Errors included not annotating the graph with <em>E</em><sub>a</sub> and referring to increase of kinetic energy as reason for higher rate at T2.</p>\n<div class=\"question_part_label\">b(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>A well answered question. Very few candidates had problem with nomenclature.</p>\n<div class=\"question_part_label\">b(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>One teacher suggested that “stored” would have been better than “sold” for this question. There were a lot of irrelevant answers with many believing the back reaction was an acid dissociation.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>It is recommended that candidates use the relative atomic masses given in the periodic table.</p>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"structure-1-4-counting-particles-by-mass-the-mole",
|
||
"structure-2-4-from-models-to-materials",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds",
|
||
"tool-1-experimental-techniques",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.HL.TZ1.7",
|
||
"Question": "<div class=\"question\">\n<p><span style=\"background-color: #ffffff;\">An aqueous solution of silver nitrate, AgNO<sub>3</sub> (aq), can be electrolysed using platinum electrodes.</span></p>\n<p><span style=\"background-color: #ffffff;\">Formulate the half-equations for the reaction at each electrode during electrolysis.</span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Cathode (negative electrode):</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Anode (positive electrode):</span></span></span></p>\n</div>",
|
||
"Markscheme": "<div class=\"question\">\n<p><span style=\"background-color: #ffffff;\"><em>Cathode (negative electrode):</em><br/>Ag<sup>+</sup> (aq) + e<sup>−</sup> → Ag (s) <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\"><br/><em>Anode (positive electrode):</em><br/>2H<sub>2</sub>O(l) → O<sub>2</sub> (g) + 4H<sup>+</sup> (aq) + 4e<sup>−</sup> <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept 4OH<sup>−</sup> (aq) → O<sub>2</sub> (g) + 2H<sub>2</sub>O(l) + 4e<sup>−</sup></span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept multiple or fractional coefficients in both half-equations.</span></em></p>\n</div>",
|
||
"Examiners report": "<div class=\"question\">\n<p>Very few answers were correct, even for stronger candidates. Many failed to formulate the correct half equation for the reaction at the anode and used the nitrate ion instead of oxidation of H<sub>2</sub>O. Some candidates lost one of the marks for using equilibrium arrows in an electrolysis equation.</p>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-2-models-of-bonding-and-structure"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-4-entropy-and-spontaneity",
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"structure-2-4-from-models-to-materials"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.HL.TZ1.8",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Draw the structure of the repeating unit of starch and state the type of linkage formed between these units.\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <img height=\"142\" src=\"\" width=\"229\"/>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n Type of linkage:\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Formulate the equation for the complete hydrolysis of a starch molecule, (C\n <sub>\n 6\n </sub>\n H\n <sub>\n 10\n </sub>\n O\n <sub>\n 5\n </sub>\n )\n <sub>\n n\n </sub>\n .\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <img height=\"221\" src=\"\" width=\"229\"/>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n continuation bonds\n <em>\n <strong>\n AND\n </strong>\n </em>\n −O attached to just one end\n <em>\n <strong>\n AND\n </strong>\n </em>\n both H atoms on end carbons must be on the same side\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <br/>\n <em>\n Type of linkage:\n </em>\n <br/>\n glycosidic\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n <strong>\n Note:\n </strong>\n Square brackets not required.\n </span>\n </em>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n Ignore “n” if given.\n </span>\n </em>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n Mark may be awarded if a polymer is shown but with the repeating unit clearly identified.\n </span>\n </em>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n Accept “ether”.\n </span>\n </em>\n </p>\n <p>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n (C\n </span>\n <sub style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:11.6px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n 6\n </sub>\n <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n H\n </span>\n <sub style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:11.6px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n 10\n </sub>\n <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n O\n </span>\n <sub style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:11.6px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n 5\n </sub>\n <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n )\n </span>\n <sub style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:11.6px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n n\n </sub>\n <span style=\"background-color:#ffffff;\">\n (s) +\n <em>\n n\n </em>\n H\n <sub>\n 2\n </sub>\n O (l) →\n <em>\n n\n </em>\n C\n <sub>\n 6\n </sub>\n H\n <sub>\n 12\n </sub>\n O\n <sub>\n 6\n </sub>\n (aq)\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <strong>\n Note:\n </strong>\n Accept “(n-1)H\n <sub>\n 2\n </sub>\n O”.\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n Do\n <strong>\n not\n </strong>\n award mark if “n” not included.\n </span>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Candidates were required to draw the structure of the repeating unit of starch given the ring structure as a starting point. This proved extremely difficult with very few candidates scoring a mark. Commonly, the structure of\n <span class=\"mjpage\">\n <math alttext=\"a\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n a\n </mi>\n </math>\n </span>\n -glucose was given, or an attempt was made to draw a polymer. Naming the type of linkage formed was answered well.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Also proved challenging, with many candidates unable to write an equation for the hydrolysis of a starch molecule (C\n <sub>\n 6\n </sub>\n H\n <sub>\n 10\n </sub>\n O\n <sub>\n 5\n </sub>\n )\n <sub>\n n\n </sub>\n . The n was often omitted from otherwise correct equations or the product was incorrectly given as (C\n <sub>\n 6\n </sub>\n H\n <sub>\n 12\n </sub>\n O\n <sub>\n 6\n </sub>\n )\n <sub>\n n\n </sub>\n .\n </p>\n</div>\n",
|
||
"topics": [
|
||
"structure-2-models-of-bonding-and-structure"
|
||
],
|
||
"subtopics": [
|
||
"structure-2-4-from-models-to-materials"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.HL.TZ2.2",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">The thermal decomposition of dinitrogen monoxide occurs according to the equation:</span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\">2N<sub>2</sub>O (g) → 2N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>\n<p><span style=\"background-color: #ffffff;\">The reaction can be followed by measuring the change in total pressure, at constant temperature, with time.</span></p>\n<p><span style=\"background-color: #ffffff;\">The <em>x</em>-axis and <em>y</em>-axis are shown with arbitrary units.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img alt=\"\" height=\"283\" src=\"../assets/uploads/tinymce_asset/asset/5982/2.PNG\" width=\"564\"/></span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">This decomposition obeys the rate expression:</span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\"><span class=\"mjpage\"><math alttext=\" - \\frac{{d[{{\\text{N}}_2}{\\text{O]}}}}{{dt}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo>−<!-- − --></mo>\n<mfrac>\n<mrow>\n<mi>d</mi>\n<mo stretchy=\"false\">[</mo>\n<mrow>\n<msub>\n<mrow>\n<mtext>N</mtext>\n</mrow>\n<mn>2</mn>\n</msub>\n</mrow>\n<mrow>\n<mtext>O]</mtext>\n</mrow>\n</mrow>\n<mrow>\n<mi>d</mi>\n<mi>t</mi>\n</mrow>\n</mfrac>\n</math></span> = <em>k</em>[N<sub>2</sub>O]</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Explain why, as the reaction proceeds, the pressure increases by the amount shown.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Outline, in terms of collision theory, how a decrease in pressure would affect the rate of reaction.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Deduce how the rate of reaction at <em>t</em> = 2 would compare to the initial rate.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">It has been suggested that the reaction occurs as a two-step process:</span></p>\n<p><span style=\"background-color: #ffffff;\">Step 1: N<sub>2</sub>O (g) → N<sub>2</sub> (g) + O (g)</span></p>\n<p><span style=\"background-color: #ffffff;\">Step 2: N<sub>2</sub>O (g) + O (g) → N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>\n<p><span style=\"background-color: #ffffff;\">Explain how this could support the observed rate expression.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The experiment is repeated using the same amount of dinitrogen monoxide in the same apparatus, but at a lower temperature.</span></p>\n<p><span style=\"background-color: #ffffff;\">Sketch, on the axes in question 2, the graph that you would expect.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The experiment gave an error in the rate because the pressure gauge was inaccurate.</span></p>\n<p><span style=\"background-color: #ffffff;\">Outline whether repeating the experiment, using the same apparatus, and averaging the results would reduce the error.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The graph below shows the Maxwell–Boltzmann distribution of molecular energies at a particular temperature.</span></p>\n<p><img alt=\"\" height=\"309\" src=\"../assets/uploads/tinymce_asset/asset/5983/2f.PNG\" width=\"637\"/></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The rate at which dinitrogen monoxide decomposes is significantly increased by a metal oxide catalyst.</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Annotate and use the graph to outline why a catalyst has this effect.</span></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">f.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Determine the standard entropy change, in J K−1, for the decomposition of dinitrogen monoxide. </span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\">2N<sub>2</sub>O (g) → 2N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\"><img alt=\"\" height=\"154\" src=\"../assets/uploads/tinymce_asset/asset/5984/2gi.PNG\" width=\"325\"/></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">g(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Dinitrogen monoxide has a positive standard enthalpy of formation, Δ<em>H</em><sub>f</sub></span><sup>θ</sup><span style=\"background-color: #ffffff;\">.</span></p>\n<p><span style=\"background-color: #ffffff;\">Deduce, giving reasons, whether altering the temperature would change the </span><span style=\"background-color: #ffffff;\">spontaneity of the <strong>decomposition</strong> reaction.</span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">g(ii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">increase in the amount/number of moles/molecules «of gas» <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">from 2 to 3/by 50 % <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«rate of reaction decreases»<br/>concentration/number of molecules in a given volume decreases<br/><em><strong>OR</strong></em><br/>more space between molecules <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">collision rate/frequency decreases<br/><em><strong>OR</strong></em><br/>fewer collisions per unit time <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note</strong>: Do <strong>not</strong> accept just “larger space/volume” for M1.</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">half «of the initial rate» <strong>[✔]</strong></span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\"><strong>Note: </strong><em>Accept “lower/slower «than initial rate»”.</em></span></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">1 slower than 2<br/><em><strong>OR</strong></em><br/>1 rate determinant step/RDS <strong>[✔]</strong></span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\">1 is unimolecular/involves just one molecule so it must be first order<br/><em><strong>OR</strong></em><br/>if 1 faster/2 RDS, second order in N<sub>2</sub>O<br/><em><strong>OR</strong></em><br/>if 1 faster/2 RDS, first order in O <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</span></span></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"253\" src=\"\" width=\"541\"/></p>\n<p><span style=\"background-color: #ffffff;\">smaller initial gradient <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">initial pressure is lower <em><strong>AND</strong> </em>final pressure of gas lower «by similar factor» <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[</span><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">✔]</span></span></p>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">no <em><strong>AND</strong> </em>it is a systematic error/not a random error</span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>OR</strong></em></span></p>\n<p><span style=\"background-color: #ffffff;\">no <em><strong>AND</strong> </em>«a similar magnitude» error would occur every time <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">e.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"419\" src=\"\" width=\"635\"/></p>\n<p><span style=\"background-color: #ffffff;\">catalysed and uncatalysed E<sub>a</sub> marked on graph <em><strong>AND</strong> </em>with the catalysed being at lower energy <strong>[✔]</strong><br/></span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\">«for catalysed reaction» greater proportion of/more molecules have E ≥ E<sub>a</sub> / E > E<sub>a</sub><br/><em><strong>OR</strong></em><br/>«for catalysed reaction» greater area under curve to the right of the E<sub>a</sub> <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept “more molecules have the activation energy”.</span></em></p>\n<div class=\"question_part_label\">f.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Δ<span style=\"background-color: #ffffff;\">S<sup>θ</sup> = 2(S<sup>θ</sup>(N<sub>2</sub>)) + S<sup>θ</sup>(O<sub>2</sub>) – 2(S<span style=\"font-size: 14px;\"><sup><span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\">θ</span></sup></span>(N<sub>2</sub>O))<br/></span><span style=\"background-color: #ffffff;\"><em><strong>OR<br/></strong></em></span>Δ<span style=\"background-color: #ffffff;\">S<span style=\"font-size: 14px;\"><sup><span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\">θ</span></sup></span> = 2 × 193 «J mol<sup>-1</sup> K<sup>-1</sup>» + 205 «J mol<sup>-1</sup> K<sup>-1</sup>» – 2 × 220 «J mol<sup>-1</sup> K<sup>-1</sup>» <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">«ΔS<span style=\"font-size: 14px;\"><sup><span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\">θ</span></sup></span> = +»151 «J K<sup>-1</sup>» <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Award <strong>[2]</strong> for correct final answer.</span></em></p>\n<div class=\"question_part_label\">g(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">exothermic decomposition<br/><em><strong>OR</strong></em><br/>Δ<em>H</em><sub>(decomposition)</sub> < 0 <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\"><em>TΔS</em><sup>θ</sup> > Δ<em>H</em><span style=\"font-size: 14px;\"><sup><span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\">θ<br/></span></sup></span></span><span style=\"background-color: #ffffff;\"><em><strong>OR<br/></strong></em></span><span style=\"background-color: #ffffff;\">Δ<em>G</em><span style=\"font-size: 14px;\"><sup><span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\">θ</span></sup></span> «= Δ<em>H</em><span style=\"font-size: 14px;\"><sup><span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\">θ</span></sup></span> – <em>TΔS</em><span style=\"font-size: 14px;\"><sup><span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\">θ</span></sup></span>» < 0 «at all temperatures» <strong>[</strong><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">✔]</span></span></p>\n<p><span style=\"background-color: #ffffff;\">reaction spontaneous at all temperatures <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[</strong><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">✔]</span></span></p>\n<div class=\"question_part_label\">g(ii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Students were able in general to relate more moles of gas to increase in pressure.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Few students were able to relate the effect of reduced pressure at constant volume with a decrease in concentration of gas molecules and mostly did not even refer to this, but rather concentrated on lower rate of reaction and frequency of collisions. Many candidates lost a mark by failing to explain rate as collisions per unit time, frequency, <em>etc</em>.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Though the differential equation was considered to be misleading by teachers, most candidates attempted to answer this question, and more than half did so correctly, considering they had the graph to visualize the gradient.</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most students were able to identity step 1 as the RDS/slow but few mentioned unimolecularity or referred vaguely to NO<sub>2</sub> as the only reagent (which was obvious) and got only 1 mark.</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many students drew a lower initial gradient, but most did not reflect the effect of lower temperature on pressure at constant volume and started and finished the curve at the same pressure as the original one.</p>\n<p> </p>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Almost all candidates identified the inaccurate pressure gauge as a systematic error, thus relating accuracy to this type of error.</p>\n<div class=\"question_part_label\">e.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The graph was generally well done, but in quite a few cases, candidates did not mention that increase of rate in the catalyzed reaction was due to <em>E</em> (particles) > <em>E</em><sub>a</sub> or did so too vaguely.</p>\n<div class=\"question_part_label\">f.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Candidates were able to calculate the ΔS of the reaction, though in some cases they failed to multiply by the number of moles.</p>\n<div class=\"question_part_label\">g(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Though the question asked for decomposition (in bold), most candidates ignored this and worked on the basis of a the Δ<em>H</em> of formation. However, many did write a sound explanation for that situation. On the other hand, in quite a number of cases, they did not state the sign of the Δ<em>H</em> (probably taking it for granted) nor explicitly relate Δ<em>G</em> and spontaneity, which left the examiner with no possibility of evaluating their reasoning.</p>\n<div class=\"question_part_label\">g(ii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-4-entropy-and-spontaneity",
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"structure-1-5-ideal-gases",
|
||
"tool-2-technology",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.HL.TZ2.3",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Dinitrogen monoxide, N<sub>2</sub>O, causes depletion of ozone in the stratosphere.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Different sources of N<sub>2</sub>O have different ratios of <sup>14</sup>N : <sup>15</sup>N.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">The Lewis (electron dot) structure of the dinitrogen monoxide molecule can be represented as:</span></p>\n<p><span style=\"background-color: #ffffff;\"><img alt=\"\" height=\"54\" src=\"../assets/uploads/tinymce_asset/asset/5985/3d.PNG\" style=\"margin-right: auto; margin-left: auto; display: block;\" width=\"373\"/></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Outline why ozone in the stratosphere is important.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Dinitrogen monoxide in the stratosphere is converted to nitrogen monoxide, NO (g).</span></p>\n<p><span style=\"background-color: #ffffff;\">Write <strong>two</strong> equations to show how NO (g) catalyses the decomposition of ozone.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">State <strong>one</strong> analytical technique that could be used to determine the ratio of <sup>14</sup>N : <sup>15</sup>N.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">A sample of gas was enriched to contain 2 % by mass of <sup>15</sup>N with the remainder being <sup>14</sup>N.</span></p>\n<p><span style=\"background-color: #ffffff;\">Calculate the relative molecular mass of the resulting N<sub>2</sub>O.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Predict, giving <strong>two</strong> reasons, how the first ionization energy of <sup>15</sup>N compares with that of <sup>14</sup>N.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Explain why the first ionization energy of nitrogen is greater than both carbon and oxygen.</span></p>\n<p><span style=\"background-color: #ffffff;\">Nitrogen and carbon:</span></p>\n<p><span style=\"background-color: #ffffff;\">Nitrogen and oxygen:</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">State what the presence of alternative Lewis structures shows about the nature of the bonding in the molecule.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">State, giving a reason, the shape of the dinitrogen monoxide molecule.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Deduce the hybridization of the central nitrogen atom in the molecule.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(iii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">absorbs <span style=\"text-decoration: underline;\">UV/ultraviolet</span> light «of longer wavelength than absorbed by O<sub>2</sub>» <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">NO (g) + O<sub>3</sub> (g) → NO<sub>2</sub> (g) + O<sub>2</sub> (g) <strong>[✔]</strong><br/>NO<sub>2</sub> (g) + O<sub>3</sub> (g) <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">→</span> NO (g) + 2O<sub>2</sub> (g) <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note</strong>: Ignore radical signs.</span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept equilibrium arrows.</span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Award <strong>[1 max]</strong> for NO<sub>2</sub> (g) + O (g) <span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline;white-space: normal;float: none;background-color: #ffffff;\">→</span> NO (g) + O<sub>2</sub> (g).</span></em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">mass spectrometry/MS </span><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">« <span class=\"mjpage\"><math alttext=\"\\frac{{(98 \\times 14) + (2 \\times 15)}}{{100}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mo stretchy=\"false\">(</mo>\n<mn>98</mn>\n<mo>×</mo>\n<mn>14</mn>\n<mo stretchy=\"false\">)</mo>\n<mo>+</mo>\n<mo stretchy=\"false\">(</mo>\n<mn>2</mn>\n<mo>×</mo>\n<mn>15</mn>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n<mrow>\n<mn>100</mn>\n</mrow>\n</mfrac>\n</math></span> =» 14.02 <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">«M<sub>r</sub> = (14.02 × 2) + 16.00 =» 44.04 <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Any two</em>:</span></p>\n<p><span style=\"background-color: #ffffff;\">same <em><strong>AND</strong> </em>have same nuclear charge /number of protons/Z<sup><sub>eff</sub></sup> <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">same <em><strong>AND</strong> </em>neutrons do not affect attraction/ionization energy/Z<sup><sub>eff</sub></sup><br/><em><strong>OR</strong></em><br/>same <em><strong>AND</strong> </em>neutrons have no charge <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</span></span></p>\n<p><span style=\"background-color: #ffffff;\">same <em><strong>AND</strong> </em>same attraction for «outer» electrons <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</span></span></p>\n<p><span style=\"background-color: #ffffff;\">same <em><strong>AND</strong> </em>have same electronic configuration/shielding <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</span></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: bold;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\">Note: </span>Accept “almost the same”.</span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">“Same” only needs to be stated once.</span></em></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Nitrogen and carbon:</em></span></p>\n<p><span style=\"background-color: #ffffff;\">N has greater nuclear charge/«one» more proton «and electrons both lost from singly filled p-orbitals» <strong>[✔]</strong><br/></span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\"><em>Nitrogen and oxygen:</em></span></p>\n<p><span style=\"background-color: #ffffff;\">O has a doubly filled «p-»orbital<br/><em><strong>OR</strong></em><br/>N has only singly occupied «p-»orbitals <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">Note: </strong>Accept “greater e– <sup>-</sup> e<sup>-</sup> repulsion in O” or “lower <span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\">e– </span><sup style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">-</sup><span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\"> e</span><sup style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">-</sup> repulsion in N”.</span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept box annotation of electrons for M2.</span></em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">delocalization</span></p>\n<p><span style=\"background-color: #ffffff;\">OR</span></p>\n<p><span style=\"background-color: #ffffff;\">delocalized <em>π</em>-electrons <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept “resonance”.</span></em></p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">linear <em><strong>AND</strong> </em>2 electron domains</span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>OR</strong></em></span></p>\n<p><span style=\"background-color: #ffffff;\">linear <em><strong>AND</strong> </em>2 regions of electron density <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept “two bonds </span><span style=\"background-color: #ffffff;\"><strong>AND</strong></span> <span style=\"background-color: #ffffff;\">no lone pairs” for reason.</span></em></p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">sp <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">d(iii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Candidates sometimes failed to identify how ozone works in chemical terms, referring to protects/deflects, <em>i.e.</em>, the consequence rather than the mechanism.</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates recalled the first equation for NO catalyzed decomposition of ozone only. Some considered other radical species.</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>All candidates, with very few exceptions, answered this correctly.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates were able to calculate the accurate mass of N<sub>2</sub>O, though quite a few candidates just calculated the mass of N and didn’t apply it to N<sub>2</sub>O, losing an accessible mark.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many students realized that neutrons had no charge and could not affect IE significantly, but many others struggled a lot with this question since they considered that <sup>15</sup>N would have a higher IE because they considered the greater mass of the nucleus would result in an increase of attraction of the electrons.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Mixed responses here; the explanation of higher IE for N with respect to C was less well explained, though it should have been the easiest. It was good to see that most candidates could explain the difference in IE of N and O, either mentioning paired/unpaired electrons or drawing box diagrams.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates identified resonance for this given Lewis representation.</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Though quite a number of candidates suggested a linear shape correctly, they often failed to give a complete correct explanation, just mentioning the absence of lone pairs but not two bonds, instead of referring to electron domains.</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Hybridisation of the N atom was correct in most cases.</p>\n<div class=\"question_part_label\">d(iii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-4-entropy-and-spontaneity",
|
||
"structure-1-2-the-nuclear-atom",
|
||
"structure-1-3-electron-configurations",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-3-1-the-periodic-table-classification-of-elements",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.HL.TZ2.4",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Rhenium, Re, was the last element with a stable isotope to be isolated.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Before its isolation, scientists predicted the existence of rhenium and some of its properties.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">One chloride of rhenium has the empirical formula ReCl<sub>3</sub>.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Rhenium forms salts containing the perrhenate(VII) ion, ReO<sub>4</sub><sup>−</sup>.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The stable isotope of rhenium contains 110 neutrons.</span></p>\n<p><span style=\"background-color: #ffffff;\">State the nuclear symbol notation <span class=\"mjpage\"><math alttext=\"{}_{\\text{Z}}^{\\text{A}}{\\text{X}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<msubsup>\n<mrow>\n</mrow>\n<mrow>\n<mtext>Z</mtext>\n</mrow>\n<mrow>\n<mtext>A</mtext>\n</mrow>\n</msubsup>\n<mrow>\n<mtext>X</mtext>\n</mrow>\n</math></span> for this isotope.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Suggest the basis of these predictions.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">A scientist wants to investigate the catalytic properties of a thin layer of rhenium </span><span style=\"background-color: #ffffff;\">metal on a graphite surface.<br/></span></p>\n<p><span style=\"background-color: #ffffff;\">Describe an electrochemical process to produce a layer of rhenium on graphite.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Predict <strong>two</strong> other chemical properties you would expect rhenium to have, given its position in the periodic table.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Describe how the relative reactivity of rhenium, compared to silver, zinc, and copper, can be established using pieces of rhenium and solutions of these metal sulfates.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">State the name of this compound, applying IUPAC rules.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate the percentage, by mass, of rhenium in ReCl<sub>3</sub>.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Suggest why the existence of salts containing an ion with this formula could be predicted. Refer to section 6 of the data booklet.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Deduce the coefficients required to complete the half-equation.</span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">ReO<sub>4</sub><sup>−</sup> (aq) + ____H<sup>+</sup> (aq) + ____e<sup>−</sup> ⇌ [Re(OH)<sub>2</sub>]<sup>2+</sup> (aq) + ____H<sub>2</sub>O (l) E<sup>θ</sup> = +0.36 V</span></span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Predict, giving a reason, whether the reduction of ReO<sub>4</sub><sup>−</sup> to [Re(OH)<sub>2</sub>]<sup>2+</sup> would oxidize Fe<sup>2+</sup> to Fe<sup>3+</sup> in aqueous solution. Use section 24 of the data booklet.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e(iii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><span class=\"mjpage\"><math alttext=\"{}_{{\\text{75}}}^{{\\text{185}}}{\\text{Re}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<msubsup>\n<mrow>\n</mrow>\n<mrow>\n<mrow>\n<mtext>75</mtext>\n</mrow>\n</mrow>\n<mrow>\n<mrow>\n<mtext>185</mtext>\n</mrow>\n</mrow>\n</msubsup>\n<mrow>\n<mtext>Re</mtext>\n</mrow>\n</math></span> <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">gap in the periodic table<br/><em><strong>OR</strong></em><br/>element with atomic number «75» unknown<br/><em><strong>OR</strong></em><br/>break/irregularity in periodic trends <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">«periodic table shows» regular/periodic trends «in properties» <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">electrolyze «a solution of /molten» rhenium salt/Re<sup>n+</sup> <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">graphite as cathode/negative electrode<br/>OR<br/>rhenium forms at cathode/negative electrode <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept “using rhenium anode” for M1.</span></em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Any two of:</em><br/>variable oxidation states<span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> </span><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">forms complex ions/compounds<span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> </span><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">coloured compounds/ions<span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> </span><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">«para»magnetic compounds/ions <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept other valid responses related to its <strong>chemical</strong> metallic properties.</span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Do <strong>not</strong> accept “catalytic properties”.</span></em></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">place «pieces of» Re into each solution <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">if Re reacts/is coated with metal, that metal is less reactive «than Re» <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept other valid observations such as “colour of solution fades” or “solid/metal appears” for “reacts”.</span></em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">rhenium(III) chloride<br/><em><strong>OR</strong></em><br/>rhenium trichloride <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«M<sub>r</sub> ReCl<sub>3</sub> = 186.21 + (3 × 35.45) =» 292.56 <strong>[✔]</strong><br/>«100 × <span class=\"mjpage\"><math alttext=\"\\frac{{186.21}}{{292.56}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mn>186.21</mn>\n</mrow>\n<mrow>\n<mn>292.56</mn>\n</mrow>\n</mfrac>\n</math></span> =» 63.648 «%» <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> </span><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">same group as Mn «which forms M</span>n<span style=\"background-color: #ffffff;\">O<sub>4</sub><sup>-</sup>»<br/><em><strong>OR</strong></em><br/>in group 7/has 7 valence electrons, so its «highest» oxidation state is +7 <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">ReO</span><sub style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">4</sub><sup style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">−</sup><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> (aq) + 6H</span><sup style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">+</sup><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> (aq) + 3e</span><sup style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">−</sup> <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">⇌</span><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> [Re(OH)</span><sub style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">2</sub><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">]</span><sup style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">2+</sup><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> (aq) + 2H</span><sub style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">2</sub><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">O (l) <strong>[<span style=\"background-color: #ffffff;\">✔]</span></strong></span></p>\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">no <em><strong>AND</strong> <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">ReO</span><sub style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">4</sub><sup style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">−</sup></em> is a weaker oxidizing agent than Fe<sup>3+</sup><br/><em><strong>OR</strong></em><br/>no <em><strong>AND</strong> </em>Fe<sup>3+</sup> is a stronger oxidizing agent than <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">ReO</span><sub style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">4</sub><sup style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">−</sup><br/><em><strong>OR</strong></em><br/>no <em><strong>AND</strong> </em>Fe<sup>2+</sup> is a weaker reducing agent than <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[Re(OH)</span><sub style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">2</sub><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">]</span><sup style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">2+</sup><br/><em><strong>OR</strong></em><br/>no <em><strong>AND</strong> <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[Re(OH)</span><sub style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">2</sub><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">]</span><sup style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">2+</sup></em> is a stronger reducing agent than Fe<sup>2+</sup><br/><em><strong>OR</strong></em><br/>no <em><strong>AND</strong> </em>cell emf would be negative/–0.41 V <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">e(iii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>It was expected that this question would be answered correctly by all HL candidates. However, many confused the A-Z positions or calculated very unusual numbers for A, sometimes even with decimals.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This is a NOS question which required some reflection on the full meaning of the periodic table and the wealth of information contained in it. But very few candidates understood that they were being asked to explain periodicity and the concept behind the periodic table, which they actually apply all the time. Some were able to explain the “gap” idea and other based predictions on properties of nearby elements instead of thinking of periodic trends. A fair number of students listed properties of transition metals in general.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Generally well done; most described the cell identifying the two electrodes correctly and a few did mention the need for Re salt/ion electrolyte.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Generally well answered though some students suggested physical properties rather than chemical ones.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates chose to set up voltaic cells and in other cases failed to explain the actual experimental set up of Re being placed in solutions of other metal salts or the reaction they could expect to see.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Almost all candidates were able to name the compound according to IUPAC.</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates were able to answer this stoichiometric question correctly.</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This should have been a relatively easy question but many candidates sometimes failed to see the connection with Mn or the amount of electrons in its outer shell.</p>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Surprisingly, a great number of students were unable to balance this simple half-equation that was given to them to avoid difficulties in recall of reactants/products.</p>\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many students understood that the oxidation of Fe<sup>2+</sup> was not viable but were unable to explain why in terms of oxidizing and reducing power; many students simply gave numerical values for <em>E</em><sup>Θ</sup> often failing to realise that the oxidation of Fe<sup>2+</sup> would have the inverse sign to the reduction reaction.</p>\n<div class=\"question_part_label\">e(iii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-3-classification-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"structure-1-2-the-nuclear-atom",
|
||
"structure-1-4-counting-particles-by-mass-the-mole",
|
||
"structure-3-1-the-periodic-table-classification-of-elements",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds",
|
||
"tool-1-experimental-techniques"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.HL.TZ2.5",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Carbonated water is produced when carbon dioxide is dissolved in water under pressure. The following equilibria are established.</span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Equilibrium (1) CO<sub>2</sub> (g) <img alt=\"\" height=\"25\" src=\"../assets/uploads/tinymce_asset/asset/5986/5.PNG\" width=\"64\"/> CO<sub>2</sub> (aq)</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Equilibrium (2) CO<sub>2</sub> (aq) + H<sub>2</sub>O (l) <img height=\"14\" src=\"\" width=\"49\"/> H<sup>+</sup> (aq) + HCO<sub>3</sub><sup>−</sup> (aq)</span></span></span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Carbon dioxide acts as a weak acid.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Soda water has sodium hydrogencarbonate, NaHCO<sub>3</sub>, dissolved in the carbonated water.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Distinguish between a weak and strong acid.</span></p>\n<p><span style=\"background-color: #ffffff;\">Weak acid: </span></p>\n<p><span style=\"background-color: #ffffff;\">Strong acid: </span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The hydrogencarbonate ion, produced in Equilibrium (2), can also act as an acid.</span></p>\n<p><span style=\"background-color: #ffffff;\">State the formula of its conjugate base.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">When a bottle of carbonated water is opened, these equilibria are disturbed.</span></p>\n<p><span style=\"background-color: #ffffff;\">State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">At 298 K the concentration of aqueous carbon dioxide in carbonated water is 0.200 mol dm<sup>−3</sup> and the pK<sub>a</sub> for Equilibrium (2) is 6.36.</span></p>\n<p><span style=\"background-color: #ffffff;\">Calculate the pH of carbonated water.</span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Identify the type of bonding in sodium hydrogencarbonate.</span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Between sodium and hydrogencarbonate:</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Between hydrogen and oxygen in hydrogencarbonate:</span></span></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">100.0cm<sup>3</sup> of soda water contains 3.0 × 10<sup>−2</sup>g NaHCO<sub>3</sub>.</span></p>\n<p><span style=\"background-color: #ffffff;\">Calculate the concentration of NaHCO<sub>3</sub> in mol dm<sup>−3</sup>.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The uncertainty of the 100.0cm<sup>3</sup> volumetric flask used to make the solution was ±0.6cm<sup>3</sup>.</span></p>\n<p><span style=\"background-color: #ffffff;\">Calculate the maximum percentage uncertainty in the mass of NaHCO<sub>3</sub> so that the concentration of the solution is correct to ±1.0 %.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The reaction of the hydroxide ion with carbon dioxide and with the hydrogencarbonate ion can be represented by Equations 3 and 4.</span></p>\n<p><span style=\"background-color: #ffffff;\">Equation (3) OH<sup>−</sup> (aq) + CO<sub>2</sub> (g) → HCO<sub>3</sub><sup>−</sup> (aq)<br/>Equation (4) OH<sup>−</sup> (aq) + HCO</span><sub>3</sub><sup>−</sup><span style=\"background-color: #ffffff;\"> (aq) → H<sub>2</sub>O (l) + CO<sub>3</sub><sup>2−</sup> (aq)<br/></span></p>\n<p><span style=\"background-color: #ffffff;\">Discuss how these equations show the difference between a Lewis base and a Brønsted–Lowry base.</span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\">Equation (3):</span></p>\n<p><span style=\"background-color: #ffffff;\">Equation (4):</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">e.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Aqueous sodium hydrogencarbonate has a pH of approximately 7 at 298 K.</span></p>\n<p><span style=\"background-color: #ffffff;\">Sketch a graph of pH against volume when 25.0cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> NaOH (aq) is gradually added to 10.0cm<sup>3</sup> of 0.0500 mol dm<sup>−3</sup> NaHCO<sub>3</sub> (aq).</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"344\" src=\"\" width=\"569\"/></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">f.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Weak acid:</em> partially dissociated/ionized «in aqueous solution/water»<br/><em><strong>AND</strong></em><br/><em>Strong acid</em>: «assumed to be almost» completely/100 % dissociated/ionized «in aqueous solution/water» <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">CO<sub>3</sub><sup>2-</sup> <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">shifts to left/reactants <em><strong>AND</strong> </em>to increase amount/number of moles/molecules of gas/CO<sub>2</sub> (g) <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept “shifts to left/reactants <strong>AND</strong> to increase pressure”.</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«K<sub>a</sub> =» 10<sup>–6.36</sup>/4.37 × 10<sup>–7</sup> = <span class=\"mjpage\"><math alttext=\"\\frac{{{{[{{\\text{H}}^ + }]}^2}}}{{[{\\text{C}}{{\\text{O}}_2}]}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mrow>\n<msup>\n<mrow>\n<mo stretchy=\"false\">[</mo>\n<mrow>\n<msup>\n<mrow>\n<mtext>H</mtext>\n</mrow>\n<mo>+</mo>\n</msup>\n</mrow>\n<mo stretchy=\"false\">]</mo>\n</mrow>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mo stretchy=\"false\">[</mo>\n<mrow>\n<mtext>C</mtext>\n</mrow>\n<mrow>\n<msub>\n<mrow>\n<mtext>O</mtext>\n</mrow>\n<mn>2</mn>\n</msub>\n</mrow>\n<mo stretchy=\"false\">]</mo>\n</mrow>\n</mfrac>\n</math></span><br/><em><strong>OR</strong></em><br/>«K<sub>a</sub> =» 10<sup>–6.36</sup>/4.37 × 10<sup>–7</sup> = <span class=\"mjpage\"><math alttext=\"\\frac{{{{[{{\\text{H}}^ + }]}^2}}}{{0.200}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mrow>\n<msup>\n<mrow>\n<mo stretchy=\"false\">[</mo>\n<mrow>\n<msup>\n<mrow>\n<mtext>H</mtext>\n</mrow>\n<mo>+</mo>\n</msup>\n</mrow>\n<mo stretchy=\"false\">]</mo>\n</mrow>\n<mn>2</mn>\n</msup>\n</mrow>\n</mrow>\n<mrow>\n<mn>0.200</mn>\n</mrow>\n</mfrac>\n</math></span> <strong>[✔]</strong></span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\">[H<sup>+</sup>] « <span class=\"mjpage\"><math alttext=\"\\sqrt {0.200 \\times 4.37 \\times {{10}^{ - 7}}} \" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<msqrt>\n<mn>0.200</mn>\n<mo>×</mo>\n<mn>4.37</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo>−</mo>\n<mn>7</mn>\n</mrow>\n</msup>\n</mrow>\n</msqrt>\n</math></span> » = 2.95 × 10<sup>–4</sup> «mol dm<sup>–3</sup>» <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> </span><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong><br/>«pH =» 3.53 <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> </span><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">Note: </strong>Award <strong>[3]</strong> for correct final answer.</span></em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Between sodium and hydrogencarbonate:</em><br/>ionic <strong>[✔]</strong><br/></span></p>\n<p><span style=\"background-color: #ffffff;\"><em>Between hydrogen and oxygen in hydrogencarbonate:</em><br/>«polar» covalent <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«additional HCO<sub>3</sub><sup>-</sup>» shifts position of equilibrium to left <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">pH increases <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">Note: </strong>Do <strong>not</strong> award M2 without any justification in terms of equilibrium shift in M1.</span></em></p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«molar mass of NaHCO<sub>3</sub> =» 84.01 «g mol<sup>-1</sup>» <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">«concentration = <span class=\"mjpage\"><math alttext=\"\\frac{{3.0 \\times {{10}^{ - 2}}{\\text{g}}}}{{84.01{\\text{ g mo}}{{\\text{l}}^{ - 1}}}} \\times \\frac{1}{{0.100{\\text{ d}}{{\\text{m}}^3}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mn>3.0</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo>−</mo>\n<mn>2</mn>\n</mrow>\n</msup>\n</mrow>\n<mrow>\n<mtext>g</mtext>\n</mrow>\n</mrow>\n<mrow>\n<mn>84.01</mn>\n<mrow>\n<mtext> g mo</mtext>\n</mrow>\n<mrow>\n<msup>\n<mrow>\n<mtext>l</mtext>\n</mrow>\n<mrow>\n<mo>−</mo>\n<mn>1</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n<mo>×</mo>\n<mfrac>\n<mn>1</mn>\n<mrow>\n<mn>0.100</mn>\n<mrow>\n<mtext> d</mtext>\n</mrow>\n<mrow>\n<msup>\n<mrow>\n<mtext>m</mtext>\n</mrow>\n<mn>3</mn>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n</math></span> =» 3.6 × 10<sup>–3</sup> «mol dm<sup>-3</sup>» <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Award <strong>[2]</strong> for correct final answer.</span></em></p>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«1.0 – 0.6 = ± » 0.4 «%» <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">d(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Equation (3):</em><br/>OH<sup>-</sup> donates an electron pair <em><strong>AND</strong> </em>acts as a Lewis base <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\"><em>Equation (4):</em><br/>OH<sup>-</sup> accepts a proton/H<sup>+</sup>/hydrogen ion <em><strong>AND</strong> </em>acts as a Brønsted–Lowry base <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> </span><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<div class=\"question_part_label\">e.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"358\" src=\"\" width=\"579\"/></p>\n<p><span style=\"background-color: #ffffff;\">S-shaped curve from ~7 to between 12 and 14 <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">equivalence point at 5 cm<sup>3</sup> <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept starting point >6~7.</span></em></p>\n<div class=\"question_part_label\">f.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>As expected, many candidates were able to distinguish between strong and weak acids; some candidates referred to “dissolve” rather than dissociate.</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>More than half the candidates were able to deduce that carbonate was the conjugate base but a significant proportion of those that did, wrote the carbonate ion with an incorrect charge.</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many students gave generic responses referring to a correct shift without conveying the idea of compensation or restoration of pressure or moles of gas. This generic reply reflects the difficulty in applying a theoretical concept to the practical situation described in the question.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates calculated the pH of the aqueous CO<sub>2</sub>. Some candidates attempted to use the Henderson-Hasselback equation and others used the quadratic expression to calculate [H<sup>+</sup>] (these two options were very common in the Spanish scripts) getting incorrect solutions. These answers usually ended in pH of approx. 1 which candidates should realize cannot be correct for soda water.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was an easy question, especially the identification of the type of bond between H and O, yet some candidates interpreted that the question referred to intermolecular bonding.</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>A significant number of candidates omitted the “equilibrium” involved in the dissolution of a weak base.</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This is another stoichiometry question that most candidates were able to solve well, with occasional errors when calculating <em>M</em><sub>r</sub> of hydrogen carbonate.</p>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Mixed responses, more attention should be given to this simple calculation which is straightforward and should be easy as required for IA reports.</p>\n<div class=\"question_part_label\">d(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was a good way to test this topic because answers showed that, while candidates usually knew the topic in theory, they could not apply this to identify the Lewis and Bronsted-Lowry bases in the context of a reaction that was given to them. In some cases, they failed to specify the base, OH<sup>-</sup> or also lost marks referring just to electrons, an electron or H instead of hydrogen ions or H<sup>+</sup> for example.</p>\n<div class=\"question_part_label\">e.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most students that got 1mark for this titration curve was for the general shape, because few realized they had the data to calculate the equivalence point. There were also some difficulties in establishing the starting point even if it was specified in the stem.</p>\n<div class=\"question_part_label\">f.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"structure-1-4-counting-particles-by-mass-the-mole",
|
||
"structure-2-1-the-ionic-model",
|
||
"structure-2-2-the-covalent-model",
|
||
"tool-2-technology",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.HL.TZ2.6",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Phenylethene can be polymerized to form polyphenylethene (polystyrene, PS).</span></p>\n<p><span style=\"background-color: #ffffff;\"><img alt=\"\" height=\"190\" src=\"../assets/uploads/tinymce_asset/asset/5990/6.PNG\" width=\"187\"/></span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">The major product of the reaction with hydrogen bromide is C<sub>6</sub>H<sub>5</sub>–CHBr–CH<sub>3</sub> and the minor product is C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Draw the repeating unit of polyphenylethene.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Phenylethene is manufactured from benzene and ethene in a two-stage process. The overall reaction can be represented as follows with ΔG<sup>θ</sup> = +10.0 kJ mol<sup>−1</sup> at 298 K.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img alt=\"\" height=\"174\" src=\"../assets/uploads/tinymce_asset/asset/5991/6b.PNG\" width=\"593\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Calculate the equilibrium constant for the overall conversion at 298 K, using section 1 of the data booklet.</span></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The benzene ring of phenylethene reacts with the nitronium ion, NO<sub>2</sub><sup>+</sup>, and the C=C double bond reacts with hydrogen bromide, HBr.</span></p>\n<p><span style=\"background-color: #ffffff;\">Compare and contrast these two reactions in terms of their reaction mechanisms.</span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\">Similarity: </span></p>\n<p><span style=\"background-color: #ffffff;\">Difference:</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Outline why the major product, C<sub>6</sub>H<sub>5</sub>–CHBr–CH<sub>3</sub>, can exist in two forms and state the relationship between these forms.</span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\">Two forms: </span></p>\n<p><span style=\"background-color: #ffffff;\">Relationship:</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The minor product, C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br, can exist in different conformational forms (isomers).</span></p>\n<p><span style=\"background-color: #ffffff;\">Outline what this means.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The minor product, C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br, can be directly converted to an intermediate compound, <strong>X</strong>, which can then be directly converted to the acid C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–COOH.</span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\">C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br → <strong>X</strong> → C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–COOH</span></p>\n<p><span style=\"background-color: #ffffff;\">Identify <strong>X</strong>.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"187\" src=\"\" width=\"286\"/> <strong>[<span style=\"background-color: #ffffff;\">✔]</span></strong></p>\n<p> </p>\n<p><em><strong><span style=\"background-color: #ffffff;\">Note: </span></strong><span style=\"background-color: #ffffff;\">Do <strong>not</strong> penalize the use of brackets and “n”. </span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Do <strong>not</strong> award the mark if the continuation bonds are missing.</span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">ln<em> k</em> «= <span class=\"mjpage\"><math alttext=\" - \\frac{{10000}}{{8.31 \\times 298}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo>−</mo>\n<mfrac>\n<mrow>\n<mn>10000</mn>\n</mrow>\n<mrow>\n<mn>8.31</mn>\n<mo>×</mo>\n<mn>298</mn>\n</mrow>\n</mfrac>\n</math></span> » = –4.04 <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\"><em>k</em> = 0.0176 <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> </span><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong> </span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note</strong>: Award<strong> [2]</strong> for correct final answer.</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Similarity: </em><br/>«both» involve an electrophile<br/><em><strong>OR</strong></em><br/>«both» electrophilic <strong>[✔]</strong><br/></span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\"><em>Difference</em>:<br/>first/reaction of ring/with NO<sub>2</sub><sup>+</sup> is substitution/S<sub>«E»</sub> <em><strong>AND</strong> </em>second/reaction of C=C/with HBr is addition/A<sub>«E»</sub> <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> </span><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">Note: </strong>Answer must state which is substitution and which is addition for M2.</span></em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Two forms:</em><br/>chiral/asymmetric carbon<br/><em><strong>OR</strong></em><br/>carbon atom attached to 4 different groups <strong>[✔]</strong><br/></span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\"><em>Relationship</em>:<br/>mirror images<br/><em><strong>OR</strong></em><br/>enantiomers/optical isomers <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept appropriate diagrams for either or both marking points.</span></em></p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">benzene ring «of the C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>» and the bromine «on the CH<sub>2</sub>–Br» can take up different relative positions by rotating about the «C–C, <em>σ</em>–»bond <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept “different parts of the molecule can rotate relative to each other”.<br/></span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept “rotation around σ<span style=\"text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;\">–</span>bond”.</span></em></p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>OH <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates were able to draw the monomer correctly. Some candidates made careless mistakes writing C<sub>6</sub>H<sub>6</sub>.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Another calculation which most candidates were able to work out, though some failed to convert Δ<em>G</em> given value in kJ mol<sup>-1</sup> to J mol<sup>-1</sup> or forgot the negative sign. Some used an inappropriate expression of <em>R</em>.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The strong candidates were generally able to see the similarity between the two reactions but unexpectedly some could not identify “electrophilic” as a similarity even if they referred to the differences as electrophilic substitution/addition, so probably were unable to understand what was being asked.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Candidates were given the products of the addition reaction and asked about the major product. Perhaps they were put off by the term “forms” and thus failed to “see” the chiral C that allowed the existence of enantiomers. There was some confusion with the type of isomerism and some even suggested cis/trans isomers.</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>If candidates seemed rather confused in the previous question, they seemed more so in this one. Most simply referred to isomers in general, not seeming to be slightly aware of what conformational isomerism is, even if it is in the curriculum.</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Quite well answered though some candidates suggested an aldehyde rather than the alcohol, or forgot that C has two hydrogens apart from the -OH. In other cases, they left a Br there.</p>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-2-4-from-models-to-materials",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.SL.TZ1.1",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Xylene is a derivative of benzene. One isomer is 1,4-dimethylbenzene.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"124\" src=\"\" style=\"margin-right: auto; margin-left: auto; display: block;\" width=\"314\"/></span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Bromine reacts with alkanes.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">State the number of 1H NMR signals for this isomer of xylene and the ratio in which they appear.</span></p>\n<p><span style=\"background-color: #ffffff;\">Number of signals:</span><span style=\"background-color: #ffffff;\"><br/></span></p>\n<p><span style=\"background-color: #ffffff;\">Ratio:</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Draw the structure of one other isomer of xylene which retains the benzene ring.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Identify the initiation step of the reaction and its conditions.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">1,4-dimethylbenzene reacts as a substituted alkane. Draw the structures of the two products of the overall reaction when one molecule of bromine reacts with one molecule of 1,4-dimethylbenzene.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Number of signals:<br/>2 <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">Ratio:<br/>3 : 2<br/><em><strong>OR</strong></em><br/>6 : 4 <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">Note: </strong>Accept any correct integer or fractional ratio. </span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept ratios in reverse order.</span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"134\" src=\"\" width=\"322\"/> <strong>[<span style=\"background-color: #ffffff;\">✔]</span></strong></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Br2 → 2Br• <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">«sun»light/UV/hv<br/><em><strong>OR</strong></em><br/>high temperature <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong> Note:</strong> Do <strong>not</strong> penalize missing radical symbol on Br.</span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept “homolytic fission of bromine” for M1.</span></em></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"62\" src=\"\" width=\"178\"/> <strong>[</strong><span style=\"background-color: #ffffff;\"><strong>✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">HBr <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note:</strong> Accept condensed formulae, such as CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>Br.</span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept skeletal structures.</span></em></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most students gained M1 but very few gained M2, suggesting that the correct answer of 2 signals may have been a guess.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Another isomer of xylene was generally correctly drawn, but some candidates drew the original compound.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Drawing or describing the homolytic fission of bromine was generally done well.</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Very few students gained 2 marks finding hard to apply their knowledge of free radical substitution to a benzene containing compound. Many thought that the bromine will attach to the benzene ring or would substitute the alkyl group twice and not produce HBr.</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-3-3-electron-sharing-reactions",
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.SL.TZ1.10",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Ascorbic acid and retinol are two important vitamins.\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n Explain why ascorbic acid is soluble in water and retinol is not. Use section 35 of the data booklet.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n The melting points of cocoa butter and coconut oil are 34 °C and 25 °C respectively.\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n Explain this in terms of their saturated fatty acid composition.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><br><div style=\"height: 2px; background-color: black; width: 100%;\"></div><br><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n ascorbic acid:\n </em>\n many hydroxyl/OH groups\n <em>\n <strong>\n AND\n </strong>\n retinol\n </em>\n : few/one hydroxyl/OH group\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n <em>\n ascorbic acid\n </em>\n : many hydroxyl/OH groups\n <em>\n <strong>\n AND\n </strong>\n retinol\n </em>\n : long hydrocarbon chain\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n ascorbic acid\n </em>\n : «many» H-bond with water\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n <em>\n retinol\n </em>\n : cannot «sufficiently» H-bond with water\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n <strong>\n Note:\n </strong>\n Do\n <strong>\n not\n </strong>\n accept “OH\n <sup>\n −\n </sup>\n /hydroxide”.\n </span>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n coconut oil has higher content of lauric/short-chain «saturated» fatty acids\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n cocoa butter has higher content of stearic/palmitic/longer chain «saturated» fatty acids\n <strong>\n [\n </strong>\n ✔\n <strong>\n ]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n longer chain fatty acids have greater surface area/larger electron cloud\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n stronger London/dispersion/instantaneous dipole-induced dipole forces «between triglycerides of longer chain saturated fatty acids»\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n <strong>\n Note:\n </strong>\n Do\n <strong>\n not\n </strong>\n accept arguments that relate to melting points of saturated and unsaturated fats.\n </span>\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><br><div style=\"height: 2px; background-color: black; width: 100%;\"></div><br><div class=\"card-body\">\n <p>\n Another instance where candidates insist on discussing water solubility in terms of polarity or hydrophilicity rather than its fundamental dependence on the presence of sufficient groups that can form hydrogen bonds to water. A few however gained a mark through pointing out the significance of the –OH groups in ascorbic acid and the long hydrocarbon chain in retinol.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Candidates had difficulty explaining the melting points of fats in terms of length of carbon chain, and referred instead to an explanation of saturated and unsaturated fat structures.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.SL.TZ1.13",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Show that, for combustion of equal masses of fuel, ethanol (\n <em>\n M\n <sub>\n r\n </sub>\n </em>\n = 46 g mol\n <sup>\n −1\n </sup>\n ) has a lower carbon footprint than octane (\n <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:italic;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n M\n </span>\n <sub style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:11.6px;font-style:italic;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n r\n </sub>\n = 114 g mol\n <sup>\n −1\n </sup>\n ).\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Biodiesel containing ethanol can be made from renewable resources.\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n Suggest\n <strong>\n one\n </strong>\n environmental disadvantage of producing biodiesel from renewable resources.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n <strong>\n Alternative 1\n </strong>\n </em>\n <br/>\n C\n <sub>\n 2\n </sub>\n H\n <sub>\n 5\n </sub>\n OH (l) + 3O\n <sub>\n 2\n </sub>\n (g) → 2CO\n <sub>\n 2\n </sub>\n (g) + 3H\n <sub>\n 2\n </sub>\n O (l) / 1 mol ethanol produces 2 mol CO\n <sub>\n 2\n </sub>\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n C\n <sub>\n 8\n </sub>\n H18 (l) + 12.5O\n <sub>\n 2\n </sub>\n (g) → 8CO\n <sub>\n 2\n </sub>\n (g) + 9H\n <sub>\n 2\n </sub>\n O (l) / 1 mol octane produces 8 mol CO\n <sub>\n 2\n </sub>\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <br/>\n For 1 g of fuel:\n <br/>\n «\n <span class=\"mjpage\">\n <math alttext=\"\\frac{{{\\text{1g}}}}{{{\\text{46 g mo}}{{\\text{l}}^{ - 1}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mrow>\n <mtext>\n 1g\n </mtext>\n </mrow>\n </mrow>\n <mrow>\n <mrow>\n <mtext>\n 46 g mo\n </mtext>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mtext>\n l\n </mtext>\n </mrow>\n <mrow>\n <mo>\n −\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </mfrac>\n </math>\n </span>\n × 2 mol CO\n <sub>\n 2\n </sub>\n (g) =» 0.04 «mol CO\n <sub>\n 2\n </sub>\n (g)» from ethanol\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n «\n <span class=\"mjpage\">\n <math alttext=\"\\frac{{{\\text{1g}}}}{{{\\text{114 g mo}}{{\\text{l}}^{ - 1}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mrow>\n <mtext>\n 1g\n </mtext>\n </mrow>\n </mrow>\n <mrow>\n <mrow>\n <mtext>\n 114 g mo\n </mtext>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mtext>\n l\n </mtext>\n </mrow>\n <mrow>\n <mo>\n −\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </mfrac>\n </math>\n </span>\n × 8 mol CO\n <sub>\n 2\n </sub>\n (g) =» 0.07 «mol CO\n <sub>\n 2\n </sub>\n (g)» from octane\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n <strong>\n Alternative 2\n </strong>\n </em>\n <br/>\n ratio of C in ethanol:octane is 2:8, so ratio in carbon dioxide produced per mole will be 1:4\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n ratio amount of fuel in 1 g =\n <span class=\"mjpage\">\n <math alttext=\"\\frac{1}{{46}}:\\frac{1}{{114}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mn>\n 1\n </mn>\n <mrow>\n <mn>\n 46\n </mn>\n </mrow>\n </mfrac>\n <mo>\n :\n </mo>\n <mfrac>\n <mn>\n 1\n </mn>\n <mrow>\n <mn>\n 114\n </mn>\n </mrow>\n </mfrac>\n </math>\n </span>\n = 2.5:1\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n 4 > 2.5 so octane produces more carbon dioxide\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n ratio of amount of carbon dioxide = 2.5:4 = 1:1.61 so octane produces more «for combustion of same mass»\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n use of «farm» land «for production»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n deforestation «for crop production for fuel»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n can release more NO\n <sub>\n x\n </sub>\n «than normal fuel on combustion»\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n <strong>\n Note:\n </strong>\n Ignore any reference to cost.\n </span>\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n A question that gave the opportunity for a variety of different approaches. This challenge was beyond all but the best students, though there were a number of well argued responses.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Many students did not take into account “production from renewable resources” and answered in terms of the combustion of biodiesel, though about a third correctly identified the area of land biofuel crops require.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-3-energy-from-fuels"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.SL.TZ1.4",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">This question is about peroxides.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Hydrogen peroxide decomposes to water and oxygen when a catalyst such as potassium iodide, KI, is added.</span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\">2H<sub>2</sub>O<sub>2</sub> (aq) <span class=\"mjpage\"><math alttext=\"\\xrightarrow{{{\\text{KI (aq)}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mover>\n<mo>→</mo>\n<mpadded lspace=\"0.278em\" voffset=\".15em\" width=\"+0.611em\">\n<mrow>\n<mrow>\n<mtext>KI (aq)</mtext>\n</mrow>\n</mrow>\n</mpadded>\n</mover>\n</math></span> O<sub>2</sub> (g) + 2H<sub>2</sub>O (l)</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Suggest why many chemicals, including hydrogen peroxide, are kept in brown bottles instead of clear colourless bottles.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">In a laboratory experiment solutions of potassium iodide and hydrogen peroxide were mixed and the volume of oxygen generated was recorded. The volume was adjusted to 0 at t = 0.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"159\" src=\"\" width=\"268\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The data for the first trial is given below.</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><img height=\"143\" src=\"\" width=\"260\"/></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Plot a graph on the axes below and from it determine the average rate of formation of oxygen gas in cm<sup>3</sup> O<sub>2</sub> (g) s<sup>−1</sup>.</span></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><img height=\"601\" src=\"\" width=\"371\"/></span></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Average rate of reaction:</span></span></span></span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Additional experiments were carried out at an elevated temperature. On the axes below, sketch Maxwell–Boltzmann energy distribution curves at two temperatures T<sub>1</sub> and T<sub>2</sub>, where T<sub>2</sub> > T<sub>1</sub>.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"257\" src=\"\" width=\"393\"/></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Apart from a greater frequency of collisions, explain, by annotating your graphs in (b)(ii), why an increased temperature causes the rate of reaction to increase.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">MnO<sub>2</sub> is another possible catalyst for the reaction. State the IUPAC name for MnO<sub>2</sub>.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Comment on why peracetic acid, CH<sub>3</sub>COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.</span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\">H<sub>2</sub>O<sub>2</sub> (aq) + CH<sub>3</sub>COOH (aq) <span class=\"mjpage\"><math alttext=\" \\rightleftharpoons \" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo stretchy=\"false\">⇌</mo>\n</math></span> CH<sub>3</sub>COOOH (aq) + H<sub>2</sub>O (l)</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Sodium percarbonate, 2Na<sub>2</sub>CO<sub>3</sub>•3H<sub>2</sub>O<sub>2</sub>, is an adduct of sodium carbonate and hydrogen peroxide and is used as a cleaning agent.</span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\"><em>M</em><sub>r</sub> (2Na<sub>2</sub>CO<sub>3</sub>•3H<sub>2</sub>O<sub>2</sub>) = 314.04</span></p>\n<p><span style=\"background-color: #ffffff;\">Calculate the percentage by mass of hydrogen peroxide in sodium percarbonate, giving your answer to two decimal places.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">decomposes in light <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note:</strong> Accept “sensitive to light”.</span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"612\" src=\"\" width=\"381\"/></p>\n<p><span style=\"background-color: #ffffff;\">points correctly plotted <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">best fit line <em><strong>AND</strong> </em>extended through (to) the origin <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\"><em>Average rate of reaction:</em><br/>«slope (gradient) of line =» 0.022 «cm<sup>3</sup> O<sub>2</sub> (g) s<sup>−1</sup>» <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note:</strong> Accept range 0.020–0.024cm<sup>3</sup> O<sub>2</sub> (g) s<sup>−1</sup>.</span></em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"247\" src=\"\" width=\"394\"/></p>\n<p><span style=\"background-color: #ffffff;\">peak of T<sub>2</sub> to right of <em><strong>AND</strong> </em>lower than T<sub>1</sub> <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">lines begin at origin <em><strong>AND</strong> </em>T<sub>2</sub> must finish above T<sub>1</sub> <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>E<sub>a</sub></em> marked on graph <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">explanation in terms of more “particles” with <em>E ≥ E<sub>a</sub></em><br/><em><strong>OR</strong></em><br/>greater area under curve to the right of <em>E<sub>a</sub></em> in T<sub>2</sub> <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">manganese(IV) oxide<br/><em><strong>OR</strong></em><br/>manganese dioxide <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note:</strong> Accept “manganese(IV) dioxide”.</span></em></p>\n<div class=\"question_part_label\">b(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">move «position of» equilibrium to right/products <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong> Note:</strong> Accept “reactants are always present as the reaction is in equilibrium”.</span></em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">M (H<sub>2</sub>O<sub>2</sub>) «= 2 × 1.01 + 2 × 16.00» = 34.02 «g» <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">«% H<sub>2</sub>O<sub>2</sub> = 3 × <span class=\"mjpage\"><math alttext=\"\\frac{{34.02}}{{314.04}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mn>34.02</mn>\n</mrow>\n<mrow>\n<mn>314.04</mn>\n</mrow>\n</mfrac>\n</math></span> × 100 =» 32.50 «%» <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong> Note:</strong> Award <strong>[2]</strong> for correct final answer.</span></em></p>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>The explanation that the brown bottle prevented light causing a decomposition of the chemical was well answered but some incorrectly suggested it helped to stop mixing up of chemicals <em>e.g.</em> acid/water/peroxide.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The graphing was disappointing with a surprising number of students missing at least one mark for failing to draw a straight line or for failing to draw the line passing through the origin. Also some were unable to calculate the gradient.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The drawing of the two curves at T1 and T2 was generally poorly done.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Explaining why temperature increase caused an increase in reaction rate was generally incorrectly answered with most students failing to mention “activation energy” in their answer or failing to annotate the graph.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many could correctly name manganese(IV)oxide, but there were answers of magnesium(IV) oxide or manganese(II) oxide.</p>\n<div class=\"question_part_label\">b(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Suggesting why peractic acid was sold in solution was very poorly answered and only a few students mentioned equilibrium and, if they did, they thought it would move to the left to restore equilibrium.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Calculating the % by mass was generally well answered although some candidates started by using rounded values of atomic masses which made their final answer unprecise.</p>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"structure-1-4-counting-particles-by-mass-the-mole",
|
||
"structure-2-4-from-models-to-materials",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds",
|
||
"tool-1-experimental-techniques",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.SL.TZ1.5",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Both vinegar (a dilute aqueous solution of ethanoic acid) and bleach are used as cleaning agents.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Bleach reacts with ammonia, also used as a cleaning agent, to produce the poisonous compound chloramine, NH<sub>2</sub>Cl.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Outline why ethanoic acid is classified as a weak acid.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">A solution of bleach can be made by reacting chlorine gas with a sodium hydroxide solution.</span></p>\n<p><span style=\"background-color: #ffffff;\">Cl2 (g) + 2NaOH (aq) <span class=\"mjpage\"><math alttext=\" \\rightleftharpoons \" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo stretchy=\"false\">⇌</mo>\n</math></span> NaOCl (aq) + NaCl (aq) + H<sub>2</sub>O (l)</span></p>\n<p><span style=\"background-color: #ffffff;\">Suggest, with reference to Le Châtelier’s principle, why it is dangerous to mix vinegar and bleach together as cleaners.</span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Draw a Lewis (electron dot) structure of chloramine.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Deduce the molecular geometry of chloramine and estimate its H–N–H bond angle. </span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\">Molecular geometry:</span></p>\n<p><span style=\"background-color: #ffffff;\">H–N–H bond angle:</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">partial dissociation «in aqueous solution» <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">ethanoic acid/vinegar reacts with NaOH <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">moves equilibrium to left/reactant side <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">releases Cl<sub>2</sub> (g)/chlorine gas<br/><em><strong>OR</strong></em><br/>Cl<sub>2</sub> (g)/chlorine <span style=\"text-decoration: underline;\">gas</span> is toxic <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note:</strong> Accept “ethanoic acid produces H<sup>+</sup> ions”.</span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept “ethanoic acid/vinegar reacts with NaOCl”.</span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Do <strong>not</strong> accept “2CH<sub>3</sub>COOH + NaOCl + NaCl → 2CH<sub>3</sub>COONa + Cl<sub>2</sub> + H<sub>2</sub>O” as it </span></em><em><span style=\"background-color: #ffffff;\">does not refer to equilibrium.<br/></span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept suitable molecular or ionic equations for M1 and M3.</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/> <strong>[<span style=\"background-color: #ffffff;\">✔</span>]</strong></p>\n<p> </p>\n<p><em><strong>Note:</strong> <span style=\"background-color: #ffffff;\">Accept any combination of dots/crosses or lines to represent electron pairs.</span></em></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Molecular geometry:</em><br/>«trigonal» pyramidal <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\"><em>H–N–H bond angle:</em><br/>107° <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong> Note:</strong> Accept angles in the range of 100–109.</span></em></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>The definition of a weak acid was generally correct.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Explaining why it was dangerous to mix chlorine with vinegar was not well answered but most students gained at least one mark for stating that “chlorine gas will be produced”, but couldn’t link it to equilibrium ideas.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The Lewis structure of chloramine was correct for strong candidates, but many made the mistake of omitting electron pairs on N and Cl.</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The molecular geometry and bond angles often did not correspond to each other with quite a few candidates stating trigonal planar and then 107 for the angle.</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-2-models-of-bonding-and-structure"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"structure-2-2-the-covalent-model"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.SL.TZ1.6",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">This question is about iron.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">State the nuclear symbol notation, <span class=\"mjpage\"><math alttext=\"{}_{\\text{Z}}^{\\text{A}}{\\text{X}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<msubsup>\n<mrow>\n</mrow>\n<mrow>\n<mtext>Z</mtext>\n</mrow>\n<mrow>\n<mtext>A</mtext>\n</mrow>\n</msubsup>\n<mrow>\n<mtext>X</mtext>\n</mrow>\n</math></span>, for iron-54.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Mass spectrometry analysis of a sample of iron gave the following results:</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"136\" src=\"\" style=\"margin-right:auto;margin-left:auto;display: block;\" width=\"190\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Calculate the relative atomic mass, A<sub>r</sub>, of this sample of iron to two decimal places.</span></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">An iron nail and a copper nail are inserted into a lemon.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"204\" src=\"\" width=\"312\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Explain why a potential is detected when the nails are connected through a voltmeter.</span></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><span class=\"mjpage\"><math alttext=\"{}_{{\\text{26}}}^{{\\text{54}}}{\\text{Fe}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<msubsup>\n<mrow>\n</mrow>\n<mrow>\n<mrow>\n<mtext>26</mtext>\n</mrow>\n</mrow>\n<mrow>\n<mrow>\n<mtext>54</mtext>\n</mrow>\n</mrow>\n</msubsup>\n<mrow>\n<mtext>Fe</mtext>\n</mrow>\n</math></span></span> <strong>[<span style=\"background-color: #ffffff;\">✔</span>]</strong></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«<span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">A</span><sub style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">r</sub> =» 54 × 0.0584 + 56 <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">×</span> 0.9168 + 57 <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">×</span> 0.0217 + 58 <span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">×</span> 0.0031<br/><em><strong>OR</strong></em><br/>«<span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">A</span><sub style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">r</sub> =» 55.9111 <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">«<span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">A</span><sub style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">r</sub> =» 55.91 <strong>[✔]</strong></span></p>\n<p><em><span style=\"background-color: #ffffff;\">Notes:</span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Award [2] for correct final answer.<br/>Do not accept data booklet value (55.85).</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">lemon juice is the electrolyte<br/><em><strong>OR</strong></em><br/>lemon juice allows flow of ions<br/><em><strong>OR</strong></em><br/>each nail/metal forms a half-cell with the lemon juice <strong>[✔]</strong></span></p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note: </strong>Accept “lemon juice acts as a salt bridge”.</span></em></p>\n<p><span style=\"background-color: #ffffff;\"><em>Any one of</em>:<br/>iron is higher than copper in the activity series<br/><em><strong>OR</strong></em><br/>each half-cell/metal has a different redox/electrode potential <strong>[✔]</strong></span></p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note:</strong> Accept “iron is more reactive than copper”.</span></em></p>\n<p><span style=\"background-color: #ffffff;\">iron is oxidized<br/><em><strong>OR</strong></em><br/>Fe → Fe<sup>2+</sup> + 2e<sup>–</sup><br/><em><strong>OR</strong></em><br/>Fe → Fe<sup>3+</sup> + 3e<sup>−</sup><br/><em><strong>OR</strong></em><br/>iron is anode/negative electrode of cell <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">copper is cathode/positive electrode of cell<br/><em><strong>OR</strong></em><br/>reduction occurs at the cathode<br/><em><strong>OR</strong></em><br/>2H<sup>+</sup> + 2e<sup>−</sup> → H<sub>2</sub> <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">electrons flow from iron to copper <strong>[✔]</strong></span></p>\n<p><em><strong> </strong></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Notes:<br/>Accept “lemon juice acts as a salt bridge”.<br/>Accept “iron is more reactive than copper”.</span></em></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>The nuclear symbol notation was generally correct. However, some students swapped atomic and mass numbers and hence lost the mark.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Calculation of RAM was generally correctly calculated, but some candidates did not give their answer to two decimal places while they should use the provided periodic table.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Very few students gained the 2 marks available for explaining the potential generated in the lemon as they didn’t realise it was the lemon that acted as the electrolyte and allowed ions to flow. Some were able to gain a mark for explaining that electrons moved from iron to copper as iron is more reactive.</p>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"structure-1-2-the-nuclear-atom"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.SL.TZ1.8",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Draw a circle around the functional group formed between the amino acids and state its name.\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <img height=\"171\" src=\"\" width=\"327\"/>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n Name:\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Calculate the energy released, in kJ g\n <sup>\n −1\n </sup>\n , when 3.49 g of starch are completely combusted in a calorimeter, increasing the temperature of 975 g of water from 21.0 °C to 36.0 °C. Use section 1 of the data booklet.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <img height=\"178\" src=\"\" width=\"322\"/>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n Name\n </em>\n :\n <br/>\n amide/amido/carboxamide\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n <strong>\n Note:\n </strong>\n Accept “peptide bond/linkage”.\n </span>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n q\n </em>\n = «\n <em>\n mc\n </em>\n ΔT = 975 g × 4.18 J g\n <sup>\n –1\n </sup>\n K\n <sup>\n –1\n </sup>\n × 15.0 K =» 61 100 «J» / 61.1 «kJ»\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n «heat per gram =\n <span class=\"mjpage\">\n <math alttext=\"\\frac{{61.1{\\text{ kJ}}}}{{3.49{\\text{ g}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 61.1\n </mn>\n <mrow>\n <mtext>\n kJ\n </mtext>\n </mrow>\n </mrow>\n <mrow>\n <mn>\n 3.49\n </mn>\n <mrow>\n <mtext>\n g\n </mtext>\n </mrow>\n </mrow>\n </mfrac>\n </math>\n </span>\n <em>\n =\n </em>\n » 17.5 «kJ g\n <sup>\n –1\n </sup>\n »\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n <strong>\n Note:\n </strong>\n Award\n <strong>\n [2]\n </strong>\n for correct final answer.\n </span>\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Many candidates correctly circled the bond between the amino acid residues, though in some cases their circle missed out key atoms. Many correctly identified it as a peptide or amide linkage.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n The incorrect mass was frequently used when calculating energy released from combustion of starch in a calorimeter. Those who used the mass of water correctly frequently stopped when energy in kJ or J was calculated, and did not seem to notice that the question asked for the energy to be calculated in kJg\n <sup>\n −1\n </sup>\n so a further calculation was required.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"structure-3-classification-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-1-measuring-enthalpy-changes",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds",
|
||
"tool-1-experimental-techniques"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.SL.TZ2.13",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n State\n <strong>\n one\n </strong>\n greenhouse gas, other than carbon dioxide.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Outline\n <strong>\n one\n </strong>\n approach to controlling industrial emissions of carbon dioxide.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n Any one of:\n </em>\n <br/>\n methane, water, nitrous oxide/nitrogen(I) oxide, ozone, CFCs, sulfur hexafluoride\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n <strong>\n Note:\n </strong>\n Accept formulas.\n </span>\n </em>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n Do\n <strong>\n not\n </strong>\n accept “NO\n <sub>\n 2\n </sub>\n ”, “NO\n <sub>\n x\n </sub>\n ”, “oxides of sulfur”.\n </span>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n Any one of:\n </em>\n <br/>\n capture where produced «and stored»\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n use scrubbers to remove\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n use as feedstock for synthesizing other chemicals\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n carbon credit/tax/economic incentive/fines/country specific action\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n <br/>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n use alternative energy\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n stop/reduce use of fossil fuels for producing energy\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n use carbon reduced fuels «such as methane»\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n increase efficiency/reduce energy use\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n </span>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n This question was well answered.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n This question was reasonably answered although there were many students who gave vague answers that did not receive marks. Carbon cannot be “filtered out” and the process of “carbon capture or scrubbing” is different from filtering.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-3-energy-from-fuels"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.SL.TZ2.2",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">The thermal decomposition of dinitrogen monoxide occurs according to the equation:</span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\">2N<sub>2</sub>O (g) → 2N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>\n<p><span style=\"background-color: #ffffff;\">The reaction can be followed by measuring the change in total pressure, at constant temperature, with time.</span></p>\n<p><span style=\"background-color: #ffffff;\">The x-axis and y-axis are shown with arbitrary units.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"342\" src=\"\" style=\"margin-right: auto; margin-left: auto; display: block;\" width=\"704\"/></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Explain why, as the reaction proceeds, the pressure increases by the amount shown.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Outline, in terms of collision theory, how a decrease in pressure would affect the rate of reaction.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The experiment is repeated using the same amount of dinitrogen monoxide in the same apparatus, but at a lower temperature.</span></p>\n<p><span style=\"background-color: #ffffff;\">Sketch, on the axes in question 2, the graph that you would expect.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The experiment gave an error in the rate because the pressure gauge was inaccurate. Outline whether repeating the experiment, using the same apparatus, and averaging the results would reduce the error.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The graph below shows the Maxwell–Boltzmann distribution of molecular energies at a particular temperature.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"259\" src=\"\" width=\"400\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The rate at which dinitrogen monoxide decomposes is significantly increased by a metal oxide catalyst.</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Annotate and use the graph to outline why a catalyst has this effect.</span></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">increase in the amount/number of moles/molecules «of gas» <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">from 2 to 3/by 50 % <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«rate of reaction decreases»<br/>concentration/number of molecules in a given volume decreases<br/><em><strong>OR</strong></em><br/>more space between molecules <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">collision rate/frequency decreases<br/><em><strong>OR</strong></em><br/>fewer collisions per second/unit time <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note:</strong> Do <strong>not</strong> accept just “larger space/volume” for M1.</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"253\" src=\"\" width=\"538\"/></p>\n<p><span style=\"background-color: #ffffff;\">smaller initial gradient <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">initial pressure is lower <em><strong>AND</strong> </em>final pressure of gas lower «by similar factor» <strong>[✔]</strong></span></p>\n<p> </p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">no <em><strong>AND</strong> </em>it is a systematic error/not a random error<br/><em><strong>OR</strong></em><br/>no <em><strong>AND</strong></em> «a similar magnitude» error would occur every time <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"278\" src=\"\" width=\"426\"/></p>\n<p><span style=\"background-color: #ffffff;\">catalysed and uncatalysed Ea marked on graph AND with the catalysed being at lower energy <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">«for catalysed reaction» greater proportion of/more molecules have E ≥ E<sub>a</sub> / E > E<sub>a</sub><br/><em><strong>OR</strong></em><br/>«for catalysed reaction» greater area under curve to the right of the E<sub>a</sub> <strong>[✔]</strong></span></p>\n<p><em><span style=\"background-color: #ffffff;\"><strong>Note:</strong> Accept “more molecules have the activation energy”.</span></em></p>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>About a quarter of the candidates gave the full answer. Some only gained the first marking point (M1) by recognizing the increase in the number of moles of gas. Some candidates wrote vague answers that did not receive credit such as “pressure increases as more gaseous products form” without explicitly recognizing that the reactants have fewer moles of gas than the products. Some candidates mistook it for a system at equilibrium when the pressure stops changing (although a straight arrow is shown in the equation). A teacher commented that the wording of the question was rather vague “not clear if question is asking about stoichiometry (<em>i.e.</em> how 200 & 300 connect to coefficients) or rates (<em>i.e.</em> explain graph shape)”. We did not see a discussion of the slope of the graph with time and most candidates understood the question as it was intended.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>More than half of the candidates obtained the mark allocated for “less frequent collisions” at lower pressure, but only strong candidates explained that this was due to the lower concentration or increased spacing between molecules. Some candidates talked about a decrease in kinetic energy and they did not show a good understanding of collision theory. Some candidates lost M1 for stating “fewer collisions” without reference to time or probability.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was a challenging question. Candidates usually obtained only one of the two marks allocated for the answer. Most of them scored the mark for a lower initial slope at low temperature, while others scored a mark for sketching their curve below the original curve as all pressures (initial and final) will be lower at the lower temperature. A teacher commented that the wording was unclear “sketch on the axes in question 2”, and it would have been better to label the graph instead.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was well answered by nearly 70 % of the candidates reflecting a good understanding of the impact of systematic errors. Some students did not gain the mark because of an incomplete answer. The question raised much debate among teachers. They worried if the error was clearly a systematic one. However, a high proportion of candidates had very clear and definite answers. In Spanish and French, the wording was a bit ambiguous which caused the markscheme in these languages to be more opened.</p>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question discriminated very well between high-scoring and low-scoring candidates. About half of the candidates annotated the Maxwell-Boltzmann distribution to show the effect of the catalyst. Some left it blank and some sketched a new distribution that would be obtained at a higher temperature instead. The majority of candidates knew that the catalyst provided an alternative route with lower <em>E</em><sub>a</sub> but only stronger candidates related it to the annotation of the graph and used the accurate language needed to score M2. A common mistake was stating that molecules have higher kinetic energy when a catalyst is added.</p>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"structure-1-5-ideal-gases",
|
||
"tool-1-experimental-techniques",
|
||
"tool-2-technology",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.SL.TZ2.3",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Dinitrogen monoxide, N<sub>2</sub>O, causes depletion of ozone in the stratosphere.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Different sources of N<sub>2</sub>O have different ratios of <sup>14</sup>N:<sup>15</sup>N.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Outline why ozone in the stratosphere is important.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">State one analytical technique that could be used to determine the ratio of <sup>14</sup>N:<sup>15</sup>N.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">A sample of gas was enriched to contain 2 % by mass of <sup>15</sup>N with the remainder being <sup>14</sup>N.</span></p>\n<p><span style=\"background-color: #ffffff;\">Calculate the relative molecular mass of the resulting N<sub>2</sub>O.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Predict, giving <strong>two</strong> reasons, how the first ionization energy of <sup>15</sup>N compares with that of <sup>14</sup>N.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Suggest why it is surprising that dinitrogen monoxide dissolves in water to give a neutral solution.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">absorbs <span style=\"text-decoration: underline;\">UV/ultraviolet</span> light «of longer wavelength than absorbed by O<sub>2</sub>» <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">mass spectrometry/MS <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">« <span class=\"mjpage\"><math alttext=\"\\frac{{(98 \\times 14) + (2 \\times 15)}}{{100}} = \" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mo stretchy=\"false\">(</mo>\n<mn>98</mn>\n<mo>×</mo>\n<mn>14</mn>\n<mo stretchy=\"false\">)</mo>\n<mo>+</mo>\n<mo stretchy=\"false\">(</mo>\n<mn>2</mn>\n<mo>×</mo>\n<mn>15</mn>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n<mrow>\n<mn>100</mn>\n</mrow>\n</mfrac>\n<mo>=</mo>\n</math></span>» 14.02 <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">«<em>M<sub>r</sub></em> = (14.02 × 2) + 16.00 =» 44.04 <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Any two</em>:<br/>same <em><strong>AND</strong> </em>have same nuclear charge/number of protons/Z<sub>eff</sub> <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">same <em><strong>AND</strong> </em>neutrons do not affect attraction/ionization energy/Z<sub>eff</sub><br/><em><strong>OR</strong></em><br/>same <em><strong>AND</strong> </em>neutrons have no charge <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">same <em><strong>AND</strong> </em>same attraction for «outer» electrons <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">same <em><strong>AND</strong> </em>have same electronic configuration/shielding <strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">[✔]</strong></span></p>\n<p> </p>\n<p><span style=\"font-size: 14px;\"><em><span style=\"background-color: #ffffff;\"><strong style=\"color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\"> Note:</strong> Accept “almost the same”.<br/>“same” only needs to be stated once.</span></em></span></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">oxides of nitrogen/non-metals are «usually» acidic <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>60 % of the candidates were aware that ozone in the atmosphere absorbs UV light. Some candidates did not gain the mark for not specifying the type of radiation absorbed.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Well answered. More than half of the candidates stated mass spectrometry is used to determine the ratio of the isotopes.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates successfully calculated the relative atomic mass of nitrogen in the sample. M2 was awarded independently of M1, so candidates who calculated the relative molecular mass using the <em>A</em><sub>r</sub> of nitrogen in the data booklet (14.01) were awarded M2. Many candidates scored both marks.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was a challenging question for many candidates, while stronger candidates often showed clarity of thinking and were able to conclude that the ionization energies of the two isotopes must be the same and to provide two different reasons for this. Some candidates did realize that the ionization energies are similar but did not give the best reasons to support their answer. Many candidates thought the ionization energies would be different because the size of the nucleus was different. Some teachers commented that the question was difficult while others liked it because it made students apply their knowledge in an unfamiliar situation. The question had a good discrimination index.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Only a quarter of the candidates answered correctly. Some simply stated that N<sub>2</sub>O forms HNO<sub>3</sub> with water which did not gain the mark.</p>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"topics": [
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"structure-1-2-the-nuclear-atom",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-3-1-the-periodic-table-classification-of-elements",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.SL.TZ2.4",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Rhenium, Re, was the last element with a stable isotope to be isolated.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">One chloride of rhenium has the empirical formula ReCl<sub>3</sub>.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Before its isolation, scientists predicted the existence of rhenium and some of its properties.</span></p>\n<p><span style=\"background-color: #ffffff;\">Suggest the basis of these predictions.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Describe how the relative reactivity of rhenium, compared to silver, zinc, and copper, can be established using pieces of rhenium and solutions of these metal sulfates.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">State the name of this compound, applying IUPAC rules.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate the percentage, by mass, of rhenium in ReCl<sub>3</sub>.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">gap in the periodic table<br/><em><strong>OR</strong></em><br/>element with atomic number «75» unknown<br/><em><strong>OR</strong></em><br/>break/irregularity in periodic trends <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">«periodic table shows» regular/periodic trends «in properties» <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">place «pieces of» Re into each solution <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">if Re reacts/is coated with metal, that metal is less reactive «than Re» <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong> Note:</strong> Accept other valid observations such as “colour of solution fades” or “solid/metal appears” for “reacts”.</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">rhenium(III) chloride<br/><em><strong>OR</strong></em><br/>rhenium trichloride <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«<em>M<sub>r</sub></em> ReCl<sub>3</sub> = 186.21 + (3 × 35.45) =» 292.56 <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">«100 × <span class=\"mjpage\"><math alttext=\"\\frac{{186.21}}{{292.56}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mn>186.21</mn>\n</mrow>\n<mrow>\n<mn>292.56</mn>\n</mrow>\n</mfrac>\n</math></span>=» 63.648 «%» <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>This nature of science question generated a lot of discussion among teachers. Some in support of such questions and others concerned that it takes a lot of time for candidates to know how to answer. Some teachers thought it was unclear what the question was asking. It is pleasing that about a quarter of the candidates answered both parts successfully and many candidates gained one mark usually for “periodic trends”. However, some candidates only focused on one part of the question. Quite a few candidates discussed isotopes, probably thrown off by the stem. A teacher was concerned that since transition metals are not part of the SL syllabus that Re was a bad choice, however, the question did not really require any transition metal chemistry to be answered.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question was a good discriminator between high-scoring and low-scoring candidates. It was well answered by more than half of the candidates who had obviously carried out such displacement reactions and interpreted the outcomes during the course. Some candidates did not state the obvious of dipping the metal into the sulfates.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>More than half of the candidates named ReCl<sub>3</sub> correctly. Common mistakes included “rhenium chloride” and “trichlororhenium”.</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The majority of candidates calculated the percentage, by mass, of rhenium in ReCl<sub>3</sub> correctly. Some rounding errors were seen that students should be more careful with.</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"structure-1-2-the-nuclear-atom",
|
||
"structure-1-4-counting-particles-by-mass-the-mole",
|
||
"structure-2-4-from-models-to-materials",
|
||
"structure-3-1-the-periodic-table-classification-of-elements",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds",
|
||
"tool-1-experimental-techniques"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.SL.TZ2.5",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Carbonated water is produced when carbon dioxide is dissolved in water under pressure.</span></p>\n<p><span style=\"background-color: #ffffff;\">The following equilibria are established.</span></p>\n<p><img height=\"87\" src=\"\" width=\"517\"/></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Carbon dioxide acts as a weak acid.</span></p>\n</div><div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Soda water has sodium hydrogencarbonate, NaHCO<sub>3</sub>, dissolved in the carbonated water.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Distinguish between a weak and strong acid.</span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\">Weak acid: </span></p>\n<p><span style=\"background-color: #ffffff;\">Strong acid:</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The hydrogencarbonate ion, produced in Equilibrium (2), can also act as an acid.</span></p>\n<p><span style=\"background-color: #ffffff;\">State the formula of its conjugate base.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">When a bottle of carbonated water is opened, these equilibria are disturbed.</span></p>\n<p><span style=\"background-color: #ffffff;\">State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">100.0 cm<sup>3</sup> of soda water contains 3.0 × 10<sup>−2</sup> g NaHCO<sub>3</sub>.</span></p>\n<p><span style=\"background-color: #ffffff;\">Calculate the concentration of NaHCO<sub>3</sub> in mol dm<sup>−3</sup>.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Identify the type of bonding in sodium hydrogencarbonate.</span></p>\n<p> </p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Between sodium and hydrogencarbonate:</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Between hydrogen and oxygen in hydrogencarbonate:</span></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Weak acid</em>: partially dissociated/ionized «in solution/water»<br/><em><strong>AND</strong></em><br/><em>Strong acid</em>: «assumed to be almost» completely/100 % dissociated/ionized «in solution/water» <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">CO<sub>3</sub><sup>2–</sup> <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">shifts to left/reactants <em><strong>AND</strong> </em>to increase amount/number of moles/molecules of gas/CO<sub>2</sub> (g) <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«additional HCO<sub>3</sub><sup>–</sup>» shifts position of equilibrium to left <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">pH increases <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong> Note:</strong></span></em><span style=\"background-color: #ffffff;\"><strong> <em> </em></strong><em>Do <strong>not</strong> award M2 without any justification in terms of equilibrium shift in M1.</em></span></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«molar mass of NaHCO<sub>3</sub> =» 84.01 «g mol<sup>–1</sup>» <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\">«concentration = <span class=\"mjpage\"><math alttext=\"\\frac{{3.0 \\times {{10}^{ - 2}}{\\text{ g}}}}{{84.01{\\text{ g mo}}{{\\text{l}}^{ - 1}}}} \\times \\frac{1}{{0.100{\\text{ d}}{{\\text{m}}^3}}} = \" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mfrac>\n<mrow>\n<mn>3.0</mn>\n<mo>×</mo>\n<mrow>\n<msup>\n<mrow>\n<mn>10</mn>\n</mrow>\n<mrow>\n<mo>−</mo>\n<mn>2</mn>\n</mrow>\n</msup>\n</mrow>\n<mrow>\n<mtext> g</mtext>\n</mrow>\n</mrow>\n<mrow>\n<mn>84.01</mn>\n<mrow>\n<mtext> g mo</mtext>\n</mrow>\n<mrow>\n<msup>\n<mrow>\n<mtext>l</mtext>\n</mrow>\n<mrow>\n<mo>−</mo>\n<mn>1</mn>\n</mrow>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n<mo>×</mo>\n<mfrac>\n<mn>1</mn>\n<mrow>\n<mn>0.100</mn>\n<mrow>\n<mtext> d</mtext>\n</mrow>\n<mrow>\n<msup>\n<mrow>\n<mtext>m</mtext>\n</mrow>\n<mn>3</mn>\n</msup>\n</mrow>\n</mrow>\n</mfrac>\n<mo>=</mo>\n</math></span>» 3.6 × 10<sup>–3</sup> «mol dm<sup>–3</sup>» <strong>[✔]</strong></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\"><strong> Note:</strong> Award <strong>[2]</strong> for correct final answer.</span></em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Between sodium and hydrogencarbonate:</em><br/>ionic <strong>[✔]</strong></span></p>\n<p><span style=\"background-color: #ffffff;\"><em>Between hydrogen and oxygen in hydrogencarbonate:</em><br/>«polar» covalent <strong>[✔]</strong></span></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>It was rather disappointing that less than 70 % of the candidates could distinguish between weak and strong acids. Many candidates referred to pH differences.</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>A poorly answered question, though it discriminated very well between high-scoring and low-scoring candidates. Less than 40 % of the candidates were able to deduce the formula of the conjugate base of HCO<sub>3</sub><sup>-</sup>. Wrong answers included water, the hydroxide ion and carbon dioxide.</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was a relatively challenging question. Only about a quarter of the candidates explained how a decrease in pressure affected the equilibrium. Some candidates stated there was no shift in the equilibrium as the number of moles is the same on both sides of the equation, not acknowledging that only gaseous substances need to be considered when deciding the direction of shift in equilibrium due to a change in pressure. Some candidates wrote that the equilibrium shifts right because the gas escapes.</p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was one of the most challenging questions on the paper that required application of Le Chatelier’s Principle in an unfamiliar situation. Most candidates did not refer to equilibrium (2), as directed by the question, and hence could not gain any marks. Some candidates stated that NaHCO<sub>3</sub> was an acid and decreased pH. Some answers had contradictions that showed poor understanding of the pH concept.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Very well answered. Most candidates calculated the molar concentration correctly.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates identified the bonding between sodium and hydrogencarbonate as ionic. A much smaller proportion of candidates identified the bonding between hydrogen and oxygen in hydrogencarbonate as covalent. The most common mistake was “hydrogen bonding”.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"structure-1-4-counting-particles-by-mass-the-mole",
|
||
"structure-2-1-the-ionic-model",
|
||
"structure-2-2-the-covalent-model",
|
||
"tool-2-technology",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.SL.TZ2.6",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Draw the repeating unit of polyphenylethene.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Determine the density of calcium, in g cm\n <sup>\n −3\n </sup>\n , using section 2 of the data booklet.\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n Ar = 40.08; metallic radius (r) = 1.97 × 10\n <sup>\n −10\n </sup>\n m\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c(i))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Suggest\n <strong>\n two\n </strong>\n reasons why oil decomposes faster at the surface of the ocean than at greater depth.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Oil spills can be treated with an enzyme mixture to speed up decomposition.\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n Outline\n <strong>\n one\n </strong>\n factor to be considered when assessing the greenness of an enzyme mixture.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (e)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n The minor product, C\n <sub>\n 6\n </sub>\n H\n <sub>\n 5\n </sub>\n –CH\n <sub>\n 2\n </sub>\n –CH\n <sub>\n 2\n </sub>\n Br, can be directly converted to an intermediate compound,\n <strong>\n X\n </strong>\n , which can then be directly converted to the acid C\n <sub>\n 6\n </sub>\n H\n <sub>\n 5\n </sub>\n –CH\n <sub>\n 2\n </sub>\n –COOH.\n </span>\n </p>\n <p style=\"text-align:center;\">\n <span style=\"background-color:#ffffff;\">\n C\n <sub>\n 6\n </sub>\n H\n <sub>\n 5\n </sub>\n –CH\n <sub>\n 2\n </sub>\n –CH\n <sub>\n 2\n </sub>\n Br →\n <strong>\n X\n </strong>\n → C\n <sub>\n 6\n </sub>\n H\n <sub>\n 5\n </sub>\n –CH\n <sub>\n 2\n </sub>\n –COOH\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n Identify\n <strong>\n X\n </strong>\n .\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <img height=\"187\" src=\"\" width=\"286\"/>\n <strong>\n [\n <span style=\"background-color:#ffffff;\">\n ✔]\n </span>\n </strong>\n </p>\n <p>\n </p>\n <p>\n <em>\n <strong>\n <span style=\"background-color:#ffffff;\">\n Note:\n </span>\n </strong>\n <span style=\"background-color:#ffffff;\">\n Do\n <strong>\n not\n </strong>\n penalize the use of brackets and “n”.\n </span>\n </em>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n Do\n <strong>\n not\n </strong>\n award the mark if the continuation bonds are missing.\n </span>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n a\n </em>\n = «\n <span class=\"mjpage\">\n <math alttext=\"\\frac{{4r}}{{\\sqrt 2 }} = \\frac{{4 \\times 1.97 \\times {{10}^{ - 10}}{\\text{m}}}}{{\\sqrt 2 }}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 4\n </mn>\n <mi>\n r\n </mi>\n </mrow>\n <mrow>\n <msqrt>\n <mn>\n 2\n </mn>\n </msqrt>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 4\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 1.97\n </mn>\n <mo>\n ×\n </mo>\n <mrow>\n <msup>\n <mrow>\n <mn>\n 10\n </mn>\n </mrow>\n <mrow>\n <mo>\n −\n </mo>\n <mn>\n 10\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mtext>\n m\n </mtext>\n </mrow>\n </mrow>\n <mrow>\n <msqrt>\n <mn>\n 2\n </mn>\n </msqrt>\n </mrow>\n </mfrac>\n </math>\n </span>\n =» 5.572 × 10\n <sup>\n –10\n </sup>\n «m»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n volume of unit cell = «(5.572 × 10\n <sup>\n –10\n </sup>\n m)\n <sup>\n 3\n </sup>\n × 10\n <sup>\n 6\n </sup>\n =» 1.73 × 10\n <sup>\n –22\n </sup>\n «cm\n <sup>\n 3\n </sup>\n »\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n mass of unit cell =«\n <span class=\"mjpage\">\n <math alttext=\"\\frac{{40.08{\\text{ g mo}}{{\\text{l}}^{ - 1}} \\times 4}}{{6.02 \\times {{10}^{23}}{\\text{mo}}{{\\text{l}}^{ - 1}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 40.08\n </mn>\n <mrow>\n <mtext>\n g mo\n </mtext>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mtext>\n l\n </mtext>\n </mrow>\n <mrow>\n <mo>\n −\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mo>\n ×\n </mo>\n <mn>\n 4\n </mn>\n </mrow>\n <mrow>\n <mn>\n 6.02\n </mn>\n <mo>\n ×\n </mo>\n <mrow>\n <msup>\n <mrow>\n <mn>\n 10\n </mn>\n </mrow>\n <mrow>\n <mn>\n 23\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mtext>\n mo\n </mtext>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mtext>\n l\n </mtext>\n </mrow>\n <mrow>\n <mo>\n −\n </mo>\n <mn>\n 1\n </mn>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </mfrac>\n </math>\n </span>\n =» 2.66 × 10\n <sup>\n –22\n </sup>\n «g»\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n density = «\n <span class=\"mjpage\">\n <math alttext=\"\\frac{{2.66 \\times {{10}^{ - 22}}{\\text{g}}}}{{{{(5.572 \\times {{10}^{ - 10}})}^3} \\times {{10}^6}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 2.66\n </mn>\n <mo>\n ×\n </mo>\n <mrow>\n <msup>\n <mrow>\n <mn>\n 10\n </mn>\n </mrow>\n <mrow>\n <mo>\n −\n </mo>\n <mn>\n 22\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mtext>\n g\n </mtext>\n </mrow>\n </mrow>\n <mrow>\n <mrow>\n <msup>\n <mrow>\n <mo stretchy=\"false\">\n (\n </mo>\n <mn>\n 5.572\n </mn>\n <mo>\n ×\n </mo>\n <mrow>\n <msup>\n <mrow>\n <mn>\n 10\n </mn>\n </mrow>\n <mrow>\n <mo>\n −\n </mo>\n <mn>\n 10\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mo stretchy=\"false\">\n )\n </mo>\n </mrow>\n <mn>\n 3\n </mn>\n </msup>\n </mrow>\n <mo>\n ×\n </mo>\n <mrow>\n <msup>\n <mrow>\n <mn>\n 10\n </mn>\n </mrow>\n <mn>\n 6\n </mn>\n </msup>\n </mrow>\n </mrow>\n </mfrac>\n </math>\n </span>\n » 1.54 «g cm\n <sup>\n –3\n </sup>\n »\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n <strong>\n Note:\n </strong>\n Award\n <strong>\n [3]\n </strong>\n for correct final answer.\n </span>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c(i))\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n Any two of:\n </em>\n <br/>\n surface water is warmer «so faster reaction rate»/more light/energy from the sun\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n more oxygen «for aerobic bacteria/oxidation of oil»\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n greater surface area\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n </span>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c(ii))\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n Any one of:\n </em>\n <br/>\n non-hazardous/toxic to the environment/living organisms\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n energy requirements «during production»\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n quantity/type of waste produced «during production»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n atom economy\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n safety of process\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n <strong>\n Note:\n </strong>\n Accept “use of solvents/toxic materials «during production»”.\n </span>\n </em>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n Do\n <strong>\n not\n </strong>\n accept “more steps involved”.\n </span>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n C\n <sub>\n 6\n </sub>\n H\n <sub>\n 5\n </sub>\n –CH\n <sub>\n 2\n </sub>\n –CH\n <sub>\n 2\n </sub>\n OH\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Most candidates were able to draw the monomer correctly. Some candidates made careless mistakes writing C\n <sub>\n 6\n </sub>\n H\n <sub>\n 6\n </sub>\n .\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Majority of the candidates managed to get three marks in determining the density of the calcium.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c(i))\n </div><div class=\"card-body\">\n <p>\n While many candidates did receive two marks for this question some candidates only suggested one reason or repeated the same reason (for example - heat and energy from the sun) even though the question clearly asked for two reasons.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c(ii))\n </div><div class=\"card-body\">\n <p>\n Students tend to struggle with these questions and end up giving journalistic or vague answers that cannot be awarded marks. It is important for teachers to instruct students to give more specific answers directly related to the topics presented.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e)\n </div><div class=\"card-body\">\n <p>\n Quite well answered though some candidates suggested an aldehyde rather than the alcohol, or forgot that C has two hydrogens apart from the -OH. In other cases, they left a Br there.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"structure-2-3-the-metallic-model",
|
||
"structure-2-4-from-models-to-materials",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19M.2.SL.TZ2.9",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n The regular rise and fall of sea levels, known as tides, can be used to generate energy.\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n State\n <strong>\n one\n </strong>\n advantage, other than limiting greenhouse gas emissions, and one disadvantage of tidal power.\n </span>\n </p>\n <p>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n Advantage:\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n Disadvantage:\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d(i))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Suggest\n <strong>\n two\n </strong>\n reasons why oil decomposes faster at the surface of the ocean than at greater depth.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Oil spills can be treated with an enzyme mixture to speed up decomposition.\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n Outline\n <strong>\n one\n </strong>\n factor to be considered when assessing the greenness of an enzyme mixture.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><br><div style=\"height: 2px; background-color: black; width: 100%;\"></div><br><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n <strong>\n Advantage\n </strong>\n </em>\n <br/>\n <em>\n Any one of:\n </em>\n <br/>\n renewable\n <strong>\n [✔]\n </strong>\n <br/>\n predictable supply\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n <br/>\n tidal barrage may prevent flooding\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n <br/>\n effective at low speeds\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n <br/>\n long life-span\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n <br/>\n low cost to run\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <br/>\n <em>\n <strong>\n Disadvantage\n </strong>\n </em>\n <br/>\n <em>\n Any one of:\n </em>\n <br/>\n cost of construction\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n <br/>\n changes/unknown effects on marine life\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n <br/>\n changes circulation of tides in the area\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n <br/>\n power output is variable\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n <br/>\n limited locations where feasible\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n <br/>\n equipment maintenance can be challenging\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n <br/>\n difficult to store energy\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n <strong>\n Note\n </strong>\n : Do\n <strong>\n not\n </strong>\n accept vague generalizations.\n </span>\n </em>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n Do\n <strong>\n not\n </strong>\n accept economic issues for both advantage and disadvantage.\n </span>\n </em>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n Do\n <strong>\n not\n </strong>\n accept sustainable.\n </span>\n </em>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n Accept “energy” or “electricity” for “power”.\n </span>\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(i))\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n Any two of:\n </em>\n <br/>\n surface water is warmer «so faster reaction rate»/more light/energy from the sun\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n more oxygen «for aerobic bacteria/oxidation of oil»\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n greater surface area\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n </span>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(ii))\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n Any one of:\n </em>\n <br/>\n non-hazardous/toxic to the environment/living organisms\n <strong>\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n energy requirements «during production»\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n quantity/type of waste produced «during production»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n atom economy\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n safety of process\n <strong style=\"color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:normal;font-variant:normal;font-weight:bold;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n [✔]\n </strong>\n </span>\n </p>\n <p>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n <strong>\n Note\n </strong>\n : Accept “use of solvents/toxic materials «during production»”.\n </span>\n </em>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n Do\n <strong>\n not\n </strong>\n accept “more steps involved”.\n </span>\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><br><div style=\"height: 2px; background-color: black; width: 100%;\"></div><br><div class=\"card-body\">\n <p>\n Many candidates performed well on this question especially when identifying an advantage of tidal power. The students who struggled tended to either give vague or journalistic answers especially for the disadvantage of tidal power.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(i))\n </div><div class=\"card-body\">\n <p>\n Many candidates received two marks for this part while some candidates only suggested one reason or repeated the same reason (for example - heat and energy from the sun) even though the question clearly asked for two reasons.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(ii))\n </div><div class=\"card-body\">\n <p>\n The candidates struggled with this part and gave journalistic or vague answers that cannot be awarded marks. Atom economy was mentioned correctly by a few candidates.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-2-how-much-how-fast-and-how-far"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-3-energy-from-fuels",
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19N.3.SL.TZ0.1",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">A student investigated how the type of acid in acid deposition affects limestone, a building material mainly composed of calcium carbonate.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"173\" src=\"\" style=\"margin-right: auto; margin-left: auto; display: block;\" width=\"389\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The student monitored the mass of six similarly sized pieces of limestone. Three were placed in beakers containing 200.0 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> nitric acid, HNO<sub>3</sub> (aq), and the other three in 200.0 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> sulfuric acid, H<sub>2</sub>SO<sub>4</sub> (aq).</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><img height=\"361\" src=\"\" style=\"margin-right: auto; margin-left: auto; display: block;\" width=\"556\"/></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The limestone was removed from the acid, washed, dried with a paper towel and weighed every day at the same time and then replaced in the beakers.</span></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The student plotted the mass of one of the pieces of limestone placed in nitric acid against time.</span></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><img height=\"507\" src=\"\" style=\"margin-right: auto; margin-left: auto; display: block;\" width=\"547\"/></span></span></span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">[Source: © International Baccalaureate Organization 2019]</span></span></span></p>\n</div><div class=\"specification\">\n<p>The student hypothesized that sulfuric acid would cause a larger mass loss than nitric acid.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Draw a best-fit line on the graph.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Determine the initial rate of reaction of limestone with nitric acid from the graph.</span></p>\n<p><span style=\"background-color: #ffffff;\">Show your working on the graph and include the units of the initial rate.</span></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Explain why the rate of reaction of limestone with nitric acid decreases and reaches zero over the period of five days.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Suggest a source of error in the procedure, assuming no human errors occurred and the balance was accurate.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Justify this hypothesis.</span></span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The student obtained the following total mass losses.</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><img height=\"98\" src=\"\" width=\"546\"/></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">She concluded that nitric acid caused more mass loss than sulfuric acid, which did not support her hypothesis.</span></span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Suggest an explanation for the data, assuming that no errors were made by the student.</span></span></span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">best-fit smooth curve ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Do <strong>not</strong> accept a series of connected lines that pass through all points <strong>OR</strong> any straight line representation. </span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">tangent drawn at time zero ✔<br/>g day<sup>−1</sup> ✔<br/>0.16 ✔</span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Accept other reasonable units for initial rate eg, mol dm<sup>−3</sup> s<sup>−1</sup>, mol dm<sup>−3</sup> min<sup>−1</sup>, g s<sup>−1</sup> <strong>OR</strong> g min<sup>−1</sup>.</span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">M3 can only be awarded if the value corresponds to the correct unit given in M2.<br/>Accept values for the initial rate for M3 in the range: 0.13 − 0.20 g day<sup>−1</sup> <strong>OR</strong> 1.5 × 10<sup>−6</sup> g s<sup>−1</sup> − 2.3 × 10<sup>−6</sup> g s<sup>−1</sup> <strong>OR</strong> 7.5 × 10<sup>−8</sup> − 1.2 × 10<sup>−7</sup> mol dm<sup>−3</sup> s<sup>−1</sup> <strong>OR </strong>4.5 × 10<sup>−6</sup> − 6.9 × 10<sup>−6</sup> mol dm<sup>−3</sup> min<sup>−1</sup> <strong>OR</strong> 9.0 × 10<sup>−5</sup> − 1.4 × 10<sup>−4</sup> g min<sup>−1</sup> <strong>OR </strong>a range based on any other reasonable unit for rate.</span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Ignore any negative rate value.<br/>Award<strong> [2 max]</strong> for answers such as 0.12/0.11 g day<sup>−1</sup>, incorrectly obtained by using the first two points on the graph (the average rate between t = 0 and 1 day).<br/>Award<strong> [1 max]</strong> for correctly calculating any other average rate.</span></em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">acid used up<br/><strong>OR</strong><br/>acid is the limiting reactant ✔</span></p>\n<p><span style=\"background-color: #ffffff;\">concentration of acid decreases<br/><strong>OR</strong><br/>less frequent collisions ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Award<strong> [1 max]</strong> for \"surface area decreases\" if the idea that CaCO<sub>3</sub> is used up/acts as the limiting reactant” is conveyed for M1. </span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Do <strong>not</strong> accept “reaction reaches equilibrium” for M2.</span></em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">surface area not uniform<br/></span><span style=\"background-color: #ffffff;\"><em>NOTE: Accept “acids impure.</em><br/></span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>OR</strong></em><br/>limestone pieces do not have same composition/source<br/><em>NOTE: Accept “«limestone» contains impurities”.</em></span><span style=\"background-color: #ffffff;\"><br/></span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>OR</strong></em><br/>limestone absorbed water «which increased mass»</span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>OR</strong></em><br/>acid removed from solution when limestone removed<br/><em>NOTE: Accept “loss of limestone when dried\" <strong>OR</strong> \"loss of limestone due to crumbling when removed from beaker”.</em><br/></span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>OR</strong></em><br/>«some» calcium sulfate deposited on limestone lost</span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>OR</strong></em><br/>pieces of paper towel may have stuck to limestone</span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>OR</strong></em><br/>beakers not covered/evaporation</span></p>\n<p><span style=\"background-color: #ffffff;\"><em><strong>OR</strong></em><br/>temperature was not controlled ✔</span></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">sulfuric acid is diprotic/contains two H<sup>+</sup> «while nitric acid contains one H<sup>+</sup>»/releases more H<sup>+</sup> «so reacts with more limestone» <br/><em><strong>OR</strong> <br/></em>higher concentration of protons/H<sup>+</sup> ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\"> NOTE: Ignore any reference to the relative strengths of sulfuric acid and nitric acid. <br/>Accept “sulfuric acid has two hydrogens «whereas nitric has one»”. <br/>Accept \"dibasic\" for \"diprotic\".</span></em></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">calcium sulfate remained/deposited on limestone «in sulfuric acid»<br/><em><strong>OR</strong></em><br/>reaction prevented/stopped by slightly soluble/deposited/layer of calcium sulfate ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\"> NOTE: Answer must refer to calcium sulfate.</span></em></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(ii).</div>\n</div>",
|
||
"topics": [
|
||
"empty-topic",
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"tool-1-experimental-techniques",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19N.3.SL.TZ0.2",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Ethanol was electrolysed at different voltages. The products at the anode, ethanoic acid, ethanal and carbon dioxide, were collected and analysed.</span></p>\n<p><span style=\"background-color: #ffffff;\">The percentages of products obtained using three different catalysts mounted on a carbon anode, platinum (Pt/C), platinum and ruthenium alloy (PtRu/C) and platinum and tin alloy (PtSn/C) are shown.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"413\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"799\"/></span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Chemical yields of ethanoic acid, ethanal and carbon dioxide as a function of voltage for<br/>oxidation of 0.100 mol dm<sup>−3</sup> ethanol at Pt/C, PtRu/C and PtSn/C anodes at 80°C.</span></span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><br/>[Source: Product Distributions and Efficiencies for Ethanol Oxidation in a Proton Exchange Membrane Electrolysis Cell, Rakan M. Altarawneh and Peter G. Pickup, <em>Journal of the Electrochemical Society</em>, 2017, volume <strong>164</strong>, issue 7, http://jes.ecsdl.org/. Distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/)]</span></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Describe the effect of increasing the voltage on the chemical yield of:</span></p>\n<p><span style=\"background-color: #ffffff;\">Ethanal using Pt/C:</span></p>\n<p><span style=\"background-color: #ffffff;\">Carbon dioxide using PtRu/C:</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Determine the change in the average oxidation state of carbon. </span></p>\n<p><span style=\"background-color: #ffffff;\">From ethanol to ethanal:</span></p>\n<p><span style=\"background-color: #ffffff;\">From ethanol to carbon dioxide:</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">List the three products at the anode from the least to the most oxidized.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Deduce, giving your reason, which catalyst is most effective at fully oxidizing ethanol.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Ethanal using Pt/C:</em> <br/>decreases ✔</span></p>\n<p><span style=\"background-color: #ffffff;\"><em>Carbon dioxide using PtRu/C</em>: <br/>«generally» increases <em><strong>AND</strong> </em>then decreases ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\"> NOTE: Accept “no clear trend/pattern” <strong>OR</strong> “increases and decreases” <strong>OR</strong> “increases, reaches a plateau and «then» decreases” for M2.</span></em></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>From ethanol to ethanal:</em><br/>−2 to −1<br/><em><strong>OR</strong></em><br/>+1/increases by 1 ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Do <strong>not</strong> accept “2− to 1−”.</span></em></p>\n<p><span style=\"background-color: #ffffff;\"><em>From ethanol to carbon dioxide:</em><br/>−2 to +4<br/><em><strong>OR</strong></em><br/>+6/increases by 6 ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Do <strong>not</strong> accept “2− to 4+”.<br/></span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Do <strong>not</strong> penalize incorrect notation twice.</span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Penalize incorrect oxidation state value of carbon in ethanol once only.</span></em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">ethanal < ethanoic acid < carbon dioxide ✔</span></p>\n<p><span style=\"background-color: #ffffff;\"><em>NOTE: Accept formulas.</em><br/><em>No ECF from 2aii calculations.</em></span></p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Pt/platinum/PtC <em><strong>AND</strong> </em>highest yield of CO<sub>2</sub> «at all voltages» ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: ECF from 2aiii.</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"topics": [
|
||
"empty-topic",
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-3-energy-from-fuels",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19N.2.HL.TZ0.4",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">A molecule of citric acid, C<sub>6</sub>H<sub>8</sub>O<sub>7</sub>, is shown.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"123\" src=\"\" style=\"margin-right: auto; margin-left: auto; display: block;\" width=\"215\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The equation for the first dissociation of citric acid in water is</span></span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">C<sub>6</sub>H<sub>8</sub>O<sub>7</sub> (aq) + H<sub>2</sub>O (l) <span class=\"mjpage\"><math alttext=\" \\rightleftharpoons \" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo stretchy=\"false\">⇌<!-- ⇌ --></mo>\n</math></span> C<sub>6</sub>H<sub>7</sub>O<sub>7</sub><sup>−</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq)</span></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Identify a conjugate acid–base pair in the equation.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The value of <em>K</em><sub>a</sub> at 298 K for the first dissociation is 5.01 × 10<sup>−4</sup>.</span></p>\n<p><span style=\"background-color: #ffffff;\">State, giving a reason, the strength of citric acid.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H<sup>+</sup>], and on K<sub>a</sub>, of increasing the temperature.</span></p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate the standard Gibbs free energy change, <math alttext=\"\\Delta {G^\\theta }\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Δ</mi><msup><mi>G</mi><mtext>θ</mtext></msup></math>, in kJ mol<sup>−1</sup>, for the first dissociation of citric acid at 298 K, using section 1 of the data booklet.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Comment on the spontaneity of the reaction at 298 K.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Outline <strong>two</strong> laboratory methods of distinguishing between solutions of citric acid and hydrochloric acid of equal concentration, stating the expected observations.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">C<sub>6</sub>H<sub>8</sub>O<sub>7</sub> <em><strong>AND</strong> </em>C<sub>6</sub>H<sub>7</sub>O<sub>7</sub><sup>−</sup><br/><em><strong>OR</strong></em><br/>H<sub>2</sub>O <em><strong>AND</strong> </em>H<sub>3</sub>O<sup>+</sup> ✔</span></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">weak acid <em><strong>AND</strong> </em>partially dissociated<br/><em><strong>OR</strong></em><br/>weak acid <em><strong>AND</strong> </em>equilibrium lies to left<br/><em><strong>OR</strong></em><br/>weak acid <em><strong>AND</strong> K</em><sub>a</sub> < 1 ✔</span></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><span style=\"display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;\">«</span><span class=\"mjpage\"><math alttext=\"\\Delta {G^\\theta }\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Δ</mi><msup><mi>G</mi><mtext>θ</mtext></msup></math></span> = −<em>RT</em> ln <em>K</em> = −8.31 J K<sup>–1</sup> mol<sup>–1</sup> × 298 K × ln(5.01 × 10<sup>–4</sup>) ÷ 1000 =» 18.8 «kJ mol<sup>–1</sup>» ✔</span></p>\n<div class=\"question_part_label\">a(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">non-spontaneous <em><strong>AND</strong></em> <span class=\"mjpage\"><math alttext=\"\\Delta {G^\\theta }\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Δ</mi><msup><mi>G</mi><mtext>θ</mtext></msup></math></span> positive ✔</span></p>\n<div class=\"question_part_label\">a(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Any two of:</em><br/></span></p>\n<p><span style=\"background-color: #ffffff;\">«electrical» conductivity <em><strong>AND</strong> </em>HCl greater ✔<br/></span></p>\n<p><span style=\"background-color: #ffffff;\">pH <em><strong>AND</strong> </em>citric acid higher ✔<br/></span></p>\n<p><span style=\"background-color: #ffffff;\">titrate with strong base <em><strong>AND</strong> </em>pH at equivalence higher for citric acid ✔<br/></span></p>\n<p><span style=\"background-color: #ffffff;\">add reactive metal/carbonate/hydrogen carbonate <em><strong>AND</strong> </em>stronger effervescence/faster reaction with HCl ✔<br/></span></p>\n<p><span style=\"background-color: #ffffff;\">titration <em><strong>AND</strong> </em>volume of alkali for complete neutralisation greater for citric acid ✔<br/></span></p>\n<p><span style=\"background-color: #ffffff;\">titrate with strong base <em><strong>AND</strong> </em>more than one equivalence point for complete neutralisation of citric acid ✔<br/></span></p>\n<p><span style=\"background-color: #ffffff;\">titrate with strong base <em><strong>AND</strong> </em>buffer zone with citric acid ✔<br/></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Accept “add universal indicator </span></em><span style=\"background-color: #ffffff;\"><strong>AND</strong></span> <em><span style=\"background-color: #ffffff;\">HCl more red/pink” for M2. </span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept any acid reaction </span></em><span style=\"background-color: #ffffff;\"><strong>AND</strong></span> <em><span style=\"background-color: #ffffff;\">HCl greater rise in temperature. </span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept specific examples throughout. </span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Do <strong>not</strong> accept “smell” or “taste”.</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-4-entropy-and-spontaneity",
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"tool-2-technology"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19N.2.HL.TZ0.5",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Another common acid found in food is ethanoic acid.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">A sample of ethanoic acid was titrated with sodium hydroxide solution, and the following pH curve obtained.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img src=\"\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">Annotate the graph to show the buffer region and the volume of sodium hydroxide at the equivalence point.</span></span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Identify the most suitable indicator for the titration using section 22 of the data booklet.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Describe, using a suitable equation, how the buffer solution formed during the titration resists pH changes when a small amount of acid is added.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p><span style=\"background-color: #ffffff;\">buffer region on graph ✔<br/>equivalence point/V<sub>eq</sub> on graph ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\"> NOTE: Construction lines not required.</span></em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">phenolphthalein ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Accept phenol red.</span></em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em><strong>ALTERNATIVE 1:</strong></em><br/>H<sup>+</sup> (aq) + CH<sub>3</sub>COO<sup>–</sup> (aq) → CH<sub>3</sub>COOH (aq) ✔</span></p>\n<p><span style=\"background-color: #ffffff;\">added acid neutralised by ethanoate ions<br/><em><strong>OR</strong></em><br/>«weak» CH<sub>3</sub>COOH (aq)/ethanoic acid replaces H<sup>+</sup> (aq)<br/><em><strong>OR</strong></em><br/>CH<sub>3</sub>COOH/CH<sub>3</sub>COO<sup>–</sup> ratio virtually/mostly unchanged ✔</span></p>\n<p><span style=\"background-color: #ffffff;\"><br/><em><strong>ALTERNATIVE 2:</strong></em><br/>CH<sub>3</sub>COOH (aq) <span class=\"mjpage\"><math alttext=\" \\rightleftharpoons \" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mo stretchy=\"false\">⇌</mo> </math></span> H<sup>+</sup> (aq) + CH<sub>3</sub>COO<sup>–</sup> (aq) ✔</span></p>\n<p><span style=\"background-color: #ffffff;\">equilibrium shifts to the ethanoic acid side<br/><em><strong>OR</strong></em><br/>CH<sub>3</sub>COOH/CH<sub>3</sub>COO<sup>−</sup> ratio virtually/mostly unchanged ✔</span></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-3-1-proton-transfer-reactions"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19N.2.SL.TZ0.1",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">The equations show steps in the formation and decomposition of ozone in the stratosphere, some of which absorb ultraviolet light.</span></p>\n<p><span style=\"background-color: #ffffff;\"><br/>Step 1 O<sub>2</sub> → 2O•</span></p>\n<p><span style=\"background-color: #ffffff;\">Step 2 O• + O<sub>2</sub> → O<sub>3</sub></span></p>\n<p><span style=\"background-color: #ffffff;\">Step 3 O<sub>3</sub> → O• + O<sub>2</sub></span></p>\n<p><span style=\"background-color: #ffffff;\">Step 4 O• + O<sub>3</sub> → 2O<sub>2</sub></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Draw the Lewis structures of oxygen, O<sub>2</sub>, and ozone, O<sub>3</sub>.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Outline why both bonds in the ozone molecule are the same length and predict the bond length in the ozone molecule. Refer to section 10 of the data booklet.</span></p>\n<p><span style=\"background-color: #ffffff;\">Reason: </span></p>\n<p><span style=\"background-color: #ffffff;\">Length:</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Distinguish ultraviolet light from visible light in terms of wavelength and energy.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Discuss how the different bond strengths between the oxygen atoms in O<sub>2</sub> and O<sub>3</sub> in the ozone layer affect radiation reaching the Earth’s surface.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p><em>NOTES: Coordinate bond may be represented by an arrow.</em></p>\n<p><em>Do <strong>not</strong> accept delocalized structure for ozone.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">resonance «structures»<br/><em><strong>OR</strong></em><br/>delocalization of «the double/pi bond» electrons ✔<br/>121 «pm» < length < 148 «pm» ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Accept any length between these two values.</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«UV» shorter wavelength <em><strong>AND</strong> </em>higher energy «than visible» ✔</span></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«bond» in O<sub>2</sub> stronger than in O<sub>3</sub> ✔</p>\n<p><br/>ozone absorbs lower frequency/energy «radiation than oxygen»<br/><strong>OR</strong><br/>ozone absorbs longer wavelength «radiation than oxygen» ✔</p>\n<p> </p>\n<p><em>NOTE: Accept ozone «layer» absorbs a range of frequencies.</em></p>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"topics": [
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure"
|
||
],
|
||
"subtopics": [
|
||
"structure-1-3-electron-configurations",
|
||
"structure-2-2-the-covalent-model"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19N.2.SL.TZ0.16",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Discuss the data.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span style=\"background-color:#ffffff;\">\n Outline what is meant by the degradation of energy.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n «similar specific energy and» pentane has «much» larger energy density ✔\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n <em>\n Any two for\n <strong>\n [2 max]\n </strong>\n :\n </em>\n <br/>\n similar number of bonds/«C and H» atoms in 1 kg «leading to similar specific energy»\n <br/>\n <em>\n <strong>\n OR\n <br/>\n </strong>\n </em>\n only one carbon difference in structure «leading to similar specific energy» ✔\n <br/>\n <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:italic;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n NOTE:\n </span>\n <span style=\"display:inline !important;float:none;background-color:#ffffff;color:#000000;font-family:Verdana , Arial , Helvetica , sans-serif;font-size:14px;font-style:italic;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;white-space:normal;\">\n Accept “both are alkanes” for M2.\n </span>\n <br/>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n pentane is a liquid\n <em>\n <strong>\n AND\n </strong>\n </em>\n butane is a gas «at STP» ✔\n <br/>\n <em>\n NOTE: Accept “pentane would be easier to transport”.\n </em>\n <br/>\n </span>\n </p>\n <p>\n <span style=\"background-color:#ffffff;\">\n 1 m\n <sup>\n 3\n </sup>\n of pentane contains greater amount/mass than 1 m\n <sup>\n 3\n </sup>\n of butane ✔\n <br/>\n <em>\n NOTE: Accept “same volume” for “1 m\n <sup>\n 3\n </sup>\n ” and “more moles” for “greater amount” for M4.\n </em>\n <br/>\n </span>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <span style=\"background-color:#ffffff;\">\n energy converted to heat\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n energy converted to less useful/dispersed forms\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n energy converted to forms that have lower potential to do work\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n heat transferred to the surroundings ✔\n </span>\n </p>\n <p>\n <em>\n <span style=\"background-color:#ffffff;\">\n NOTE: Reference to energy conversion/transfer required. Do\n <strong>\n not\n </strong>\n accept reference to loss of energy.\n </span>\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-3-energy-from-fuels"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19N.2.SL.TZ0.2",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">The biochemical oxygen demand of a water sample can be determined by the following series of reactions. The final step is titration of the sample with sodium thiosulfate solution, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (aq).</span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">2Mn<sup>2+</sup> (aq) + O<sub>2</sub> (aq) + 4OH<sup>−</sup> (aq) → 2MnO<sub>2</sub> (s) + 2H<sub>2</sub>O (l)</span></span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">MnO<sub>2</sub> (s) + 2I<sup>−</sup> (aq) + 4H<sup>+</sup> (aq) → Mn<sup>2+</sup> (aq) + I<sub>2</sub> (aq) + 2H<sub>2</sub>O (l)<br/></span></span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">2S<sub>2</sub>O<sub>3</sub><sup>2−</sup> (aq) + I<sub>2</sub> (aq) → 2I<sup>−</sup> (aq) + S<sub>4</sub>O<sub>6</sub><sup>2−</sup> (aq)</span></span></p>\n<p style=\"text-align: left;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">A student analysed two 300.0 cm<sup>3</sup> samples of water taken from the school pond: one immediately (day 0), and the other after leaving it sealed in a dark cupboard for five days (day 5). The following results were obtained for the titration of the samples with 0.0100 mol dm<sup>−3</sup> Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (aq).</span></span></span></p>\n<p style=\"text-align: left;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><img height=\"120\" src=\"\" style=\"margin-right: auto; margin-left: auto; display: block;\" width=\"279\"/></span></span></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Determine the mole ratio of S<sub>2</sub>O<sub>3</sub><sup>2−</sup> to O<sub>2</sub>, using the balanced equations.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate the number of moles of oxygen in the day 0 sample.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The day 5 sample contained 5.03 × 10<sup>−5</sup> moles of oxygen.<br/></span></p>\n<p><span style=\"background-color: #ffffff;\">Determine the 5-day biochemical oxygen demand of the pond, in mg dm<sup>−3</sup> (“parts per million”, ppm).</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate the percentage uncertainty of the day 5 titre.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Suggest a modification to the procedure that would make the results more reliable.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">4 : 1 ✔</span></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><span class=\"mjpage\"><math alttext=\"{{\\text{n}}_{{{\\text{s}}_2}{{\\text{o}}_3}^{2 - }}} = «0.0258{\\text{ d}}{{\\text{m}}^3} \\times 0.010{\\text{ mol d}}{{\\text{m}}^{ - 3}} =» 2.58 \\times {10^{ - 4}}{\\text{«mol»}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mtext>n</mtext><mrow><msub><mtext>s</mtext><mn>2</mn></msub><msup><msub><mtext>o</mtext><mn>3</mn></msub><mrow><mn>2</mn><mo>−</mo></mrow></msup></mrow></msub><mo>=</mo><mo>«</mo><mn>0.0258</mn><mtext> d</mtext><msup><mtext>m</mtext><mn>3</mn></msup><mo>×</mo><mn>0.010</mn><mtext> mol d</mtext><msup><mtext>m</mtext><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>=</mo><mo>»</mo><mo> </mo><mn>2.58</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><mtext>«mol»</mtext></math></span> ✔</span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">«<span class=\"mjpage\"><math alttext=\"\\frac{{2.58 \\times {{10}^{ - 4}}{\\text{mol}}}}{4} =» 6.45 \\times {10^{ - 5}}{\\text{«mol»}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>2.58</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><mtext>mol</mtext></mrow><mn>4</mn></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>6.45</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup><mtext>«mol»</mtext></math></span> ✔</span></span></p>\n<p><em><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"> NOTE: Award<strong> [2]</strong> for correct final answer.</span></span></em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«difference in moles per dm<sup>3</sup> = (6.45 × 10<sup>−5</sup> − 5.03 × 10<sup>−5</sup>) × <span class=\"mjpage\"><math alttext=\"\\frac{{1000}}{{300.0}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mfrac> <mrow> <mn>1000</mn> </mrow> <mrow> <mn>300.0</mn> </mrow> </mfrac> </math></span> =»</span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">4.73 × 10<sup>−5</sup> «mol dm<sup>−3</sup>» ✔</span></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">«convert to mg per dm<sup>3</sup>: 4.73 × 10<sup>−5</sup> mol dm<sup>−3</sup> × 32.00 g mol<sup>−1</sup> × 1000 mg g<sup>–1</sup> = » 1.51 «ppm/mg dm<sup>−3</sup>» ✔</span></span></span></p>\n<p><em><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">NOTE: Award <strong>[2]</strong> for correct final answer.</span></span></span></em></p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«<span class=\"mjpage\"><math alttext=\"\\frac{{100 \\times 0.1{\\text{c}}{{\\text{m}}^3}}}{{20.1{\\text{c}}{{\\text{m}}^3}}} =» 0.5 \" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>100</mn><mo>×</mo><mn>0.1</mn><mo> </mo><mtext>c</mtext><msup><mtext>m</mtext><mn>3</mn></msup></mrow><mrow><mn>20.1</mn><mo> </mo><mtext>c</mtext><msup><mtext>m</mtext><mn>3</mn></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0.5</mn></math></span> «%»✔</span></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">repetition / take several samples «and average» ✔</span></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"tool-1-experimental-techniques",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19N.2.SL.TZ0.4",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">A molecule of citric acid, C<sub>6</sub>H<sub>8</sub>O<sub>7</sub>, is shown.</span></p>\n<p><span style=\"background-color: #ffffff;\"><img height=\"123\" src=\"\" style=\"margin-right: auto; margin-left: auto; display: block;\" width=\"215\"/></span></p>\n<p><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">The equation for the first dissociation of citric acid in water is</span></span></p>\n<p style=\"text-align: center;\"><span style=\"background-color: #ffffff;\"><span style=\"background-color: #ffffff;\">C<sub>6</sub>H<sub>8</sub>O<sub>7</sub> (aq) + H<sub>2</sub>O (l) <span class=\"mjpage\"><math alttext=\" \\rightleftharpoons \" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo stretchy=\"false\">⇌<!-- ⇌ --></mo>\n</math></span> C<sub>6</sub>H<sub>7</sub>O<sub>7</sub><sup>−</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq)</span></span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Identify a conjugate acid–base pair in the equation.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The value of the equilibrium constant for the first dissociation at 298 K is 5.01 × 10<sup>−4</sup>.</span></p>\n<p><span style=\"background-color: #ffffff;\">State, giving a reason, the strength of citric acid.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H<sup>+</sup>], and on the equilibrium constant, of increasing the temperature.</span></p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Outline <strong>one </strong>laboratory methods of distinguishing between solutions of citric acid and hydrochloric acid of equal concentration, stating the expected observations.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">C<sub>6</sub>H<sub>8</sub>O<sub>7</sub> <em><strong>AND</strong> </em>C<sub>6</sub>H<sub>7</sub>O<sub>7</sub><sup>−</sup><br/><em><strong>OR</strong></em><br/>H<sub>2</sub>O <em><strong>AND</strong> </em>H<sub>3</sub>O<sup>+</sup> ✔</span></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">weak acid <em><strong>AND</strong> </em>partially dissociated<br/><em><strong>OR</strong></em><br/>weak acid <em><strong>AND</strong> </em>equilibrium lies to left<br/><em><strong>OR</strong></em><br/>weak acid <em><strong>AND</strong> K</em><sub>c</sub>/<em>K</em><sub>a</sub><1 ✔</span></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Any one of:</em><br/>«electrical» conductivity <em><strong>AND</strong> </em>HCl greater ✔<br/>pH <em><strong>AND</strong> </em>citric acid higher ✔<br/>titrate with strong base <em><strong>AND</strong> </em>pH at equivalence higher for citric acid ✔<br/>add reactive metal/carbonate/hydrogen carbonate <em><strong>AND</strong> </em>stronger effervescence/faster reaction with HCl ✔<br/>titration <em><strong>AND</strong> </em>volume of alkali for complete neutralisation greater for citric acid ✔<br/>titrate with strong base <em><strong>AND</strong> </em>more than one equivalence point for complete neutralisation of citric acid ✔<br/></span><span style=\"background-color: #ffffff;\">titrate with strong base <em><strong>AND</strong> </em>buffer zone with citric acid ✔<br/></span></p>\n<p> </p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Accept “add universal indicator </span></em><span style=\"background-color: #ffffff;\"><strong>AND</strong></span> <em><span style=\"background-color: #ffffff;\">HCl more red/pink” for M2. </span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept any acid reaction </span></em><span style=\"background-color: #ffffff;\"><strong>AND</strong></span> <em><span style=\"background-color: #ffffff;\">HCl greater rise in temperature. </span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Accept specific examples throughout. </span></em></p>\n<p><em><span style=\"background-color: #ffffff;\">Do <strong>not</strong> accept “smell” or “taste”.</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"tool-2-technology"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "19N.2.SL.TZ0.6",
|
||
"Question": "<div class=\"specification\">\n<p><span style=\"background-color: #ffffff;\">Automobile air bags inflate by a rapid decomposition reaction. One typical compound used is guanidinium nitrate, C(NH<sub>2</sub>)<sub>3</sub>NO<sub>3</sub>, which decomposes very rapidly to form nitrogen, water vapour and carbon.</span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Deduce the equation for the decomposition of guanidinium nitrate.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate the total number of moles of gas produced from the decomposition of 10.0 g of guanidinium nitrate.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Calculate the pressure, in kPa, of this gas in a 10.0 dm<sup>3</sup> air bag at 127°C, assuming no gas escapes.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Suggest why water vapour deviates significantly from ideal behaviour when the gases are cooled, while nitrogen does not.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span style=\"background-color: #ffffff;\">Another airbag reactant produces nitrogen gas and sodium.</span></p>\n<p><span style=\"background-color: #ffffff;\">Suggest, including an equation, why the products of this reactant present a safety hazard.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">C(NH<sub>2</sub>)<sub>3</sub>NO<sub>3 </sub>(s) → 2N<sub>2 </sub>(g) + 3H<sub>2</sub>O (g) + C (s) ✔</span></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">moles of gas = « <span class=\"mjpage\"><math alttext=\"\\frac{{10.0{\\text{g}}}}{{122.11{\\text{g mo}}{{\\text{l}}^{ - 1}}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>5</mn><mo>×</mo><mfrac><mrow><mn>10.0</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>122.11</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo></math></span>» 0.409 «mol» ✔</span></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">«<span class=\"mjpage\"><math alttext=\"p = \\frac{{0.409{\\text{mol}} \\times {\\text{8}}{\\text{.31 J }}{{\\text{K}}^{ - 1}}{\\text{mo}}{{\\text{l}}^{ - 1}} \\times \\left( {127 + 273} \\right){\\text{K}}}}{{{\\text{10}}{\\text{.0 d}}{{\\text{m}}^3}}}\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mo>=</mo><mfrac><mrow><mn>0.409</mn><mo> </mo><mtext>mol</mtext><mo>×</mo><mtext>8</mtext><msup><mtext>.31 J K</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup><mtext>mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><mrow><mo>(</mo><mn>127</mn><mo>+</mo><mn>273</mn><mo>)</mo><mo> </mo></mrow><mtext>K</mtext></mrow><mrow><mtext>10</mtext><mtext>.0 d</mtext><msup><mtext>m</mtext><mn>3</mn></msup></mrow></mfrac></math></span>» = 136 «kPa» ✔</span></p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\"><em>Any <strong>two</strong> of:</em><br/>nitrogen non-polar/London/dispersion forces <em><strong>AND</strong> </em>water polar/H-bonding ✔<br/>water has «much» stronger intermolecular forces ✔<br/>water molecules attract/condense/occupy smaller volume «and therefore deviate from ideal behaviour» ✔</span></p>\n<div class=\"question_part_label\">a(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"background-color: #ffffff;\">2Na (s) + 2H<sub>2</sub>O (l) → 2NaOH (aq) + H<sub>2 </sub>(g) ✔</span></p>\n<p><span style=\"background-color: #ffffff;\">hydrogen explosive<br/><em><strong>OR</strong></em><br/>highly exothermic reaction<br/><em><strong>OR</strong></em><br/>sodium reacts violently with water<br/><em><strong>OR</strong></em><br/>forms strong alkali ✔</span></p>\n<p><em><span style=\"background-color: #ffffff;\">NOTE: Accept the equation of combustion of hydrogen.<br/>Do <strong>not</strong> accept just “sodium is reactive/dangerous”.</span></em></p>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-3-classification-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"structure-1-5-ideal-gases",
|
||
"structure-3-1-the-periodic-table-classification-of-elements",
|
||
"tool-1-experimental-techniques"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "20N.3.SL.TZ0.1",
|
||
"Question": "<div class=\"specification\">\n<p><span class=\"fontstyle0\">In order to determine the oil content of different types of potato crisps (chips), a student weighed <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>5</mn><mo>.</mo><mn>00</mn><mo> </mo><mi mathvariant=\"normal\">g</mi></math> of crushed crisps and mixed them with <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>20</mn><mo>.</mo><mn>0</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></math></span><span class=\"fontstyle0\"> </span><span class=\"fontstyle0\">of non-polar solvent.</span></p>\n<p><span class=\"fontstyle0\">She assumed all the oil in the crisps dissolved in the solvent.</span></p>\n<p><span class=\"fontstyle0\">The student then filtered the mixture to remove any solids, and gently heated the solution on a hot plate to evaporate the solvent.</span></p>\n<p><span class=\"fontstyle0\">She measured the mass of the oil that remained from each type of crisps</span> </p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">Suggest why a non-polar solvent was needed.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">State one reason why the mixture was not heated strongly.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">Non-polar solvents can be toxic. Suggest a modification to the experiment which allows the evaporated solvent to be collected.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">Suggest one source of error in the experiment, excluding faulty apparatus and human error, that would lead to the following:</span></p>\n<p><img height=\"275\" src=\"\" width=\"672\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>oil is non-polar «and dissolves best in non-polar solvents» <br/><em><strong>OR</strong></em> <br/>oil does not dissolve in polar solvents ✔</p>\n<p><em>Do <strong>not</strong> accept “like dissolves like” only.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>solvent/oil is flammable<br/><em><strong>OR</strong></em><br/>solvent/oil must be kept below its flash point<br/><em><strong>OR</strong></em><br/>oxidation/decomposition of oil<br/><em><strong>OR</strong></em><br/>mixture has a low boiling point ✔</p>\n<p><em>Accept “to prevent evaporation of oil”.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>distillation «instead of evaporation» ✔</p>\n<p><em>Accept “pass vapour through a condenser and collect liquid”.</em></p>\n<p><em>Do <strong>not</strong> accept “condensation” without experimental details.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Experimental mass greater than actual mass of oil in crisps:</em><br/>other substances «in the crisps» are soluble in the solvent<br/><em><strong>OR</strong></em><br/>not all the solvent evaporates ✔</p>\n<p><em>Experimental mass less than actual mass of oil in crisps:</em><br/>not all oil dissolved/extracted ✔</p>\n<p><em>Accept “oil evaporated” <strong>OR</strong> “oil burned/decomposed” <strong>OR</strong> “oil absorbed by the filter” <strong>OR</strong> “assumption «all oil dissolved» was wrong” for M2.</em></p>\n<p><em>Do <strong>not</strong> accept examples of human errors <strong>OR</strong> faulty apparatus.</em></p>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>A well answered question where replies used all the alternatives provided. Very few candidates limited their answer to \"like dissolves like\" and while this expression was used most student elaborated with higher quality answer. Some common incorrect responses included students talking about dissolving the crisps (chips) or indicating the oil was a polar compound.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Another correctly answered question. As accepted by notes many candidates scored by stating \"to prevent evaporation of oil\". This resulted in the same argument scoring twice as often used for 1d as well. Some students incorrectly indicated the problem was to prevent the evaporation of the solvent which was the point of this step in the experiment. This could indicate a general lack of understanding of experimental methods.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>A bit disappointing as the number of correct answers were substantially lower than expected. Many students responded using a fume hood or other method to remove the solvent. Once again this indicates a general misunderstanding about experimental methods.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Even weak candidates scored at least one point and often both. One common pitfall was to invert the arguments or provide answers excluded by the stem. A frequent incorrect answer was identification of faulty apparatus and human error which was specifically excluded in the question.</p>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"topics": [
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"tool-1-experimental-techniques",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "20N.1B.SL.TZ0.18",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span class=\"fontstyle0\">\n The vapour pressure of pure ethanal at\n </span>\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 20\n </mn>\n <mo>\n °\n </mo>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </math>\n <span class=\"fontstyle0\">\n is\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 101\n </mn>\n <mo>\n </mo>\n <mi>\n kPa\n </mi>\n </math>\n .\n </span>\n </p>\n <p>\n <span class=\"fontstyle0\">\n Calculate the vapour pressure of ethanal above the liquid mixture at\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 20\n </mn>\n <mo>\n °\n </mo>\n <mi mathvariant=\"normal\">\n C\n </mi>\n </math>\n </span>\n <span class=\"fontstyle0\">\n .\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span class=\"fontstyle0\">\n Describe how this mixture is separated by fractional distillation.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a(ii))\n </div><div class=\"card-body\">\n <p>\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n «\n </mo>\n <msub>\n <mi mathvariant=\"normal\">\n ρ\n </mi>\n <mi>\n ethanal\n </mi>\n </msub>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 250\n </mn>\n <mo>\n ×\n </mo>\n <mn>\n 101\n </mn>\n <mo>\n =\n </mo>\n <mo>\n »\n </mo>\n <mn>\n 25\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 3\n </mn>\n <mo>\n «\n </mo>\n <mi>\n kPa\n </mi>\n <mo>\n »\n </mo>\n </math>\n ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <em>\n Any two of:\n </em>\n <br/>\n continuous evaporation and condensation\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n increased surface area in column helps condensation ✔\n <br/>\n <em>\n Accept “glass «beads» aid condensation «in fractionating column»”.\n </em>\n </p>\n <p>\n temperature decreases up the fractionating column ✔\n </p>\n <p>\n liquids condense at different heights\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n liquid of lowest boiling point collected first\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n liquid with weakest intermolecular forces collected first\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n most volatile component collected first\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n fractions/liquids collected in order of boiling point/volatility ✔\n <br/>\n <em>\n Accept “liquids collected in order of molar mass”.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (a(ii))\n </div><div class=\"card-body\">\n <p>\n This question involving Raoult's Law was very well answered and most were able to calculate the mole fraction of ethanal in the mixture (0.250) and the corresponding vapour pressure of ethanal above the liquid mixture at 20 °C (25.3 kPa). There was one G2 comment on this question. One teacher stated that the diagram shows four fractions but the stem of the question specifically states only three components and hence the fourth test tube is not required. The teacher commented that some students may have been distracted by this.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n In this question candidates were required to describe how the mixture can be separated by fractional distillation. Only the better candidates scored both marks, though most gained at least one mark, usually for stating that the most volatile component is collected first. Many did not convey the idea that there is continuous evaporation and condensation in the process or the fact that the temperature decreases up the fractionating column.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"structure-1-5-ideal-gases",
|
||
"tool-1-experimental-techniques"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "20N.3.SL.TZ0.2",
|
||
"Question": "<div class=\"specification\">\n<p><span class=\"fontstyle0\">An investigation was carried out to determine the effect of chain length of the alcohol on the equilibrium constant, </span><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>K</mi><mi mathvariant=\"normal\">c</mi></msub></math><span class=\"fontstyle0\">, for the reversible reaction:</span></p>\n<p style=\"text-align: center;\"><span class=\"fontstyle0\"><math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ROH</mi><mo>+</mo><msub><mi>CH</mi><mn>3</mn></msub><mi>COOH</mi><mover><mo>⇌</mo><mrow><msup><mi mathvariant=\"normal\">H</mi><mo>+</mo></msup><mfenced><mi>aq</mi></mfenced><mo> </mo></mrow></mover><msub><mi>CH</mi><mn>3</mn></msub><mi>COOR</mi><mo>+</mo><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub><mi mathvariant=\"normal\">O</mi></math></span></p>\n<p><span class=\"fontstyle0\">The reactants, products and the catalyst form a homogeneous mixture.</span></p>\n<p><span class=\"fontstyle0\">Fixed volumes of each alcohol, the ethanoic acid and the sulfuric acid catalyst were placed in sealed conical flasks.</span></p>\n<p><span class=\"fontstyle0\">At equilibrium, the flasks were placed in an ice bath, and samples of each flask titrated with <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>NaOH</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></span><span class=\"fontstyle0\"> to determine the ethanoic acid concentration present in the equilibrium mixture.</span></p>\n<p><span class=\"fontstyle0\">The following processed results were obtained.</span></p>\n<p><span class=\"fontstyle0\"><img height=\"201\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"529\"/></span></p>\n<p style=\"text-align: center;\"><span class=\"fontstyle0\"> © International Baccalaureate Organization 2020 <br/> </span></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">Identify the independent and dependent variables in this experiment.</span></p>\n<p><span class=\"fontstyle0\"><img height=\"222\" src=\"\" width=\"655\"/></span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">The ice bath is used at equilibrium to slow down the forward and reverse reactions. Explain why adding a large amount of water to the reaction mixture would also slow down </span><span class=\"fontstyle2\"><strong>both</strong> </span><span class=\"fontstyle0\">reactions.</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">Suggest why the titration must be conducted quickly even though a low temperature is maintained.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">An additional experiment was conducted in which only the sulfuric acid catalyst was titrated with <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>NaOH</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></span><span class=\"fontstyle0\">. Outline why this experiment was necessary.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">Calculate the percentage uncertainty and percentage error in the experimentally determined value of </span><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>K</mi><mi mathvariant=\"normal\">c</mi></msub></math> <span class=\"fontstyle0\">for methanol.</span></p>\n<p><img height=\"290\" src=\"\" width=\"709\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">e.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">Comment on the magnitudes of random and systematic errors in this experiment using the answers in (e).</span></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">f.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">Suggest a risk of using sulfuric acid as the catalyst.</span></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">g.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Independent variable:</em><br/>chain length <em><strong>OR</strong></em> number of carbon «atoms in alcohol»<br/><em><strong>AND</strong></em><br/><em>Dependent variable:</em><br/>volume of <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>NaOH</mi></math> <em><strong>OR</strong></em> <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>K</mi><mi>c</mi></msub></math>/equilibrium constant <em><strong>OR</strong></em> <span style=\"text-decoration: underline;\">equilibrium</span> concentration/moles of <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CH</mi><mn>3</mn></msub><mi>COOH</mi></math> ✔</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>dilution/lower concentrations ✔</p>\n<p>less frequent collisions «per unit volume» ✔</p>\n<p><em>Accept “lowers concentration of acid catalyst” for M1. M2 must refer to increase in activation energy or different pathway.</em></p>\n<p><em>Do <strong>not</strong> accept responses referring to equilibrium.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>equilibrium shifts to left<br/><em><strong>OR</strong></em><br/>more ethanoic acid is produced «as ethanoic acid is neutralized»<br/><em><strong>OR</strong></em><br/>prevents/slows down ester hydrolysis ✔</p>\n<p><em>Accept “prevents equilibrium shift” if described correctly without direction.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>to determine volume/moles of <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>NaOH</mi></math> used up by the catalyst/sulfuric acid «in the titration»<br/><em><strong>OR</strong></em><br/>to eliminate/reduce «systematic» error caused by acid catalyst ✔</p>\n<p><em><br/>Do not accept “control” <strong>OR</strong> “standard” alone.</em></p>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Percentage uncertainty:</em><br/><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>100</mn></mrow><mrow><mn>6</mn><mo>.</mo><mn>5</mn></mrow></mfrac><mo>=</mo><mo>»</mo><mn>6</mn><mo>«</mo><mo>%</mo><mo>»</mo></math> ✔</p>\n<p><em>Percentage error:</em><br/><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>5</mn><mo>-</mo><mn>5</mn><mo>.</mo><mn>3</mn></mrow><mrow><mn>5</mn><mo>.</mo><mn>3</mn></mrow></mfrac><mo>=</mo><mo>»</mo><mn>23</mn><mo>«</mo><mo>%</mo><mo>»</mo></math> ✔</p>\n<p><em>Award <strong>[1 max]</strong> if calculations are reversed <strong>OR</strong> if incorrect alcohol is used.</em></p>\n<div class=\"question_part_label\">e.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Any two:</em></p>\n<p>large percentage error means large systematic error «in procedure» ✔</p>\n<p>small percentage uncertainty means small random errors ✔</p>\n<p>random errors smaller than systematic error ✔</p>\n<p><em><br/></em><em>Award <strong>[2]</strong> for “both random and systematic errors are significant.”</em></p>\n<div class=\"question_part_label\">f.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>corrosive/burns/irritant/strong oxidizing agent/carcinogenic<br/><em><strong>OR</strong></em><br/>disposal is an environmental issue<br/><em><strong>OR</strong></em><br/>causes other side reactions/dehydration/decomposition ✔</p>\n<p><br/><em>Do <strong>not</strong> accept just “risk of accidents” <strong>OR</strong> “health risks” <strong>OR</strong> “hazardous”.</em></p>\n<div class=\"question_part_label\">g.</div>\n</div>",
|
||
"Examiners report": "",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"tool-1-experimental-techniques",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "20N.2.HL.TZ0.7",
|
||
"Question": "<div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">Nitrogen monoxide reacts with oxygen gas to form nitrogen dioxide.</span></p>\n<p><span class=\"fontstyle0\"> The following experimental data was obtained.<br/> </span></p>\n<p><span class=\"fontstyle0\"><img height=\"150\" src=\"\" width=\"463\"/></span></p>\n<p><span class=\"fontstyle0\"> Deduce the partial order of reaction with respect to nitrogen monoxide and oxygen.<br/> </span></p>\n<p><span class=\"fontstyle0\"><img height=\"148\" src=\"\" width=\"583\"/></span></p>\n<p> </p>\n<p> </p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p><span class=\"fontstyle0\">Nitrogen monoxide reacts with oxygen gas to form nitrogen dioxide.</span></p>\n<p><span class=\"fontstyle0\">Deduce, giving a reason, whether the following mechanism is possible.</span></p>\n<p><span class=\"fontstyle0\"><img height=\"67\" src=\"\" width=\"477\"/></span></p>\n<p> </p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi><mi>O</mi></math>: second ✔<br/><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>O</mi><mn>2</mn></msub></math>: first ✔</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>not possible <em><strong>AND</strong> </em>«proposed» mechanism does not match experimental rate law<br/><em><strong>OR</strong></em><br/>not possible <em><strong>AND</strong> </em>«proposed» mechanism shows zero/not first order with respect to oxygen ✔</p>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates could correctly deduce the order of each reactant from rate experimental rate data.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>60% of candidates could explain why the proposed reaction mechanism was inconsistent with the empirical data given.</p>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "20N.2.SL.TZ0.11",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span class=\"fontstyle0\">\n Calculate the energy released, in\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n kJ\n </mi>\n </math>\n , from the complete combustion of\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 00\n </mn>\n <mo>\n </mo>\n <msup>\n <mi>\n dm\n </mi>\n <mn>\n 3\n </mn>\n </msup>\n </math>\n </span>\n <span class=\"fontstyle0\">\n </span>\n <span class=\"fontstyle0\">\n of ethanol.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span class=\"fontstyle0\">\n Outline the advantages and disadvantages of using biodiesel instead of gasoline as fuel for a car. Exclude any discussion of cost.\n </span>\n </p>\n <p>\n <span class=\"fontstyle0\">\n <img height=\"392\" src=\"\" width=\"694\"/>\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span class=\"fontstyle0\">\n A mixture of gasoline and ethanol is often used as a fuel. Suggest an advantage of such a mixture over the use of pure gasoline. Exclude any discussion of cost.\n </span>\n </p>\n <p>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (e(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span class=\"fontstyle0\">\n Methane is another greenhouse gas. Contrast the reasons why methane and carbon dioxide are considered significant greenhouse gases.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n «\n </mo>\n <mn>\n 21\n </mn>\n <mo>\n </mo>\n <mn>\n 200\n </mn>\n <mo>\n </mo>\n <mi>\n kJ\n </mi>\n <mo>\n </mo>\n <msup>\n <mi>\n dm\n </mi>\n <mrow>\n <mo>\n −\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 00\n </mn>\n <mo>\n </mo>\n <msup>\n <mi>\n dm\n </mi>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <mo>\n »\n </mo>\n <mn>\n 106000\n </mn>\n <mo>\n /\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 06\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n <mo>\n «\n </mo>\n <mi>\n kJ\n </mi>\n <mo>\n »\n </mo>\n </math>\n ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <em>\n Advantages:\n <strong>\n [2 max]\n </strong>\n </em>\n </p>\n <p>\n renewable ✔\n </p>\n <p>\n uses up waste «such as used cooking oil» ✔\n </p>\n <p>\n lower carbon footprint/carbon neutral ✔\n </p>\n <p>\n higher flashpoint ✔\n </p>\n <p>\n produces less\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n SO\n </mi>\n <mi mathvariant=\"normal\">\n x\n </mi>\n </msub>\n </math>\n /\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n SO\n </mi>\n <mn>\n 2\n </mn>\n </msub>\n </math>\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n less polluting emissions ✔\n </p>\n <p>\n has lubricating properties\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n preserves/increases lifespan of engine ✔\n </p>\n <p>\n increases the life of the catalytic converter ✔\n </p>\n <p>\n eliminates dependence on foreign suppliers ✔\n </p>\n <p>\n does not require pipelines/infrastructure «to produce» ✔\n </p>\n <p>\n relatively less destruction of habitat compared to obtaining petrochemicals ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept “higher energy density” OR “biodegradable” for advantage.\n </em>\n </p>\n <p>\n <br/>\n <em>\n Disadvantages:\n <strong>\n [2 max]\n </strong>\n </em>\n </p>\n <p>\n needs conversion/transesterification ✔\n </p>\n <p>\n takes time to produce/grow plants ✔\n </p>\n <p>\n takes up land\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n deforestation ✔\n </p>\n <p>\n fertilizers/pesticides/phosphates/nitrates «used in production of crops» have negative environmental effects ✔\n </p>\n <p>\n biodiversity affected\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n loss of habitats «due to energy crop plantations» ✔\n </p>\n <p>\n cannot be used at low temperatures ✔\n </p>\n <p>\n variable quality «in production» ✔\n </p>\n <p>\n high viscosity/can clog/damage engines ✔\n </p>\n <p>\n <br/>\n <em>\n Accept “lower specific energy” as disadvantage.\n </em>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept “lower octane number” as disadvantage”.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n <em>\n Any one:\n </em>\n </p>\n <p>\n uses up fossil fuels more slowly ✔\n </p>\n <p>\n lower carbon footprint/CO2 emissions ✔\n </p>\n <p>\n undergoes more complete combustion ✔\n </p>\n <p>\n produces fewer particulates ✔\n </p>\n <p>\n higher octane number/rating\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n less knocking ✔\n </p>\n <p>\n prevents fuel injection system build up\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n helps keep engine clean ✔\n </p>\n <p>\n <br/>\n <em>\n Accept an example of a suitable advantage even if repeated from 11c.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e(ii))\n </div><div class=\"card-body\">\n <p>\n carbon dioxide is highly/more abundant «in the atmosphere» ✔\n </p>\n <p>\n methane is more effective/potent «as a greenhouse gas»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n methane/better/more effective at absorbing\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n IR\n </mi>\n </math>\n «radiation»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n methane has greater greenhouse factor\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n methane has greater global warming potential/GWP✔\n </p>\n <p>\n <br/>\n <em>\n Accept “carbon dioxide contributes more to global warming” for M1.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Almost all were able to calculate the energy released from the complete combustion of ethanol.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Most gained at least one mark for an advantage of using biodiesel instead of gasoline as fuel for a car and most scored one mark at least for a disadvantage of biodiesel. Many conveyed solid understanding, though the disadvantages were not as well articulated as the advantages. Some incorrectly based their responses on cost factors which were excluded as outlined in the stem of the question.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n Most scored the one mark for this question, with \"less knocking or higher octane number/rating\" the most common correct answer seen.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (e(ii))\n </div><div class=\"card-body\">\n <p>\n This was another \"Contrast-type\" question, which was better answered compared to (e)(i). Many scored both marks by stating that carbon dioxide is more abundant in the atmosphere whereas methane is more effective at absorbing IR radiation.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-3-energy-from-fuels"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "20N.2.SL.TZ0.9",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span class=\"fontstyle0\">\n Calculate the energy released, in\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n kJ\n </mi>\n </math>\n , from the complete combustion of\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 00\n </mn>\n <mo>\n </mo>\n <msup>\n <mi>\n dm\n </mi>\n <mn>\n 3\n </mn>\n </msup>\n </math>\n </span>\n <span class=\"fontstyle0\">\n </span>\n <span class=\"fontstyle0\">\n of ethanol.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span class=\"fontstyle0\">\n Outline the advantages and disadvantages of using biodiesel instead of gasoline as fuel for a car. Exclude any discussion of cost.\n </span>\n </p>\n <p>\n <span class=\"fontstyle0\">\n <img height=\"392\" src=\"\" width=\"694\"/>\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [4]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span class=\"fontstyle0\">\n A mixture of gasoline and ethanol is often used as a fuel. Suggest an advantage of such a mixture over the use of pure gasoline. Exclude any discussion of cost.\n </span>\n </p>\n <p>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (f(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n <span class=\"fontstyle0\">\n Methane is another greenhouse gas. Contrast the reasons why methane and carbon dioxide are considered significant greenhouse gases.\n </span>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mo>\n «\n </mo>\n <mn>\n 21\n </mn>\n <mo>\n </mo>\n <mn>\n 200\n </mn>\n <mo>\n </mo>\n <mi>\n kJ\n </mi>\n <mo>\n </mo>\n <msup>\n <mi>\n dm\n </mi>\n <mrow>\n <mo>\n −\n </mo>\n <mn>\n 3\n </mn>\n </mrow>\n </msup>\n <mo>\n ×\n </mo>\n <mn>\n 5\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 00\n </mn>\n <mo>\n </mo>\n <msup>\n <mi>\n dm\n </mi>\n <mn>\n 3\n </mn>\n </msup>\n <mo>\n =\n </mo>\n <mo>\n »\n </mo>\n <mn>\n 106000\n </mn>\n <mo>\n /\n </mo>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 06\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mn>\n 5\n </mn>\n </msup>\n <mo>\n «\n </mo>\n <mi>\n kJ\n </mi>\n <mo>\n »\n </mo>\n </math>\n ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <em>\n Advantages:\n <strong>\n [2 max]\n </strong>\n </em>\n </p>\n <p>\n renewable ✔\n </p>\n <p>\n uses up waste «such as used cooking oil» ✔\n </p>\n <p>\n lower carbon footprint/carbon neutral ✔\n </p>\n <p>\n higher flashpoint ✔\n </p>\n <p>\n produces less\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n SO\n </mi>\n <mi mathvariant=\"normal\">\n x\n </mi>\n </msub>\n </math>\n /\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mi>\n SO\n </mi>\n <mn>\n 2\n </mn>\n </msub>\n </math>\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n less polluting emissions ✔\n </p>\n <p>\n has lubricating properties\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n preserves/increases lifespan of engine ✔\n </p>\n <p>\n increases the life of the catalytic converter ✔\n </p>\n <p>\n eliminates dependence on foreign suppliers ✔\n </p>\n <p>\n does not require pipelines/infrastructure «to produce» ✔\n </p>\n <p>\n relatively less destruction of habitat compared to obtaining petrochemicals ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept “higher energy density” OR “biodegradable” for advantage.\n </em>\n </p>\n <p>\n <br/>\n <em>\n Disadvantages:\n <strong>\n [2 max]\n </strong>\n </em>\n </p>\n <p>\n needs conversion/transesterification ✔\n </p>\n <p>\n takes time to produce/grow plants ✔\n </p>\n <p>\n takes up land\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n deforestation ✔\n </p>\n <p>\n fertilizers/pesticides/phosphates/nitrates «used in production of crops» have negative environmental effects ✔\n </p>\n <p>\n biodiversity affected\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n loss of habitats «due to energy crop plantations» ✔\n </p>\n <p>\n cannot be used at low temperatures ✔\n </p>\n <p>\n variable quality «in production» ✔\n </p>\n <p>\n high viscosity/can clog/damage engines ✔\n </p>\n <p>\n <br/>\n <em>\n Accept “lower specific energy” as disadvantage.\n </em>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept “lower octane number” as disadvantage”.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n <em>\n Any one:\n </em>\n </p>\n <p>\n uses up fossil fuels more slowly ✔\n </p>\n <p>\n lower carbon footprint/CO2 emissions ✔\n </p>\n <p>\n undergoes more complete combustion ✔\n </p>\n <p>\n produces fewer particulates ✔\n </p>\n <p>\n higher octane number/rating\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n less knocking ✔\n </p>\n <p>\n prevents fuel injection system build up\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n helps keep engine clean ✔\n </p>\n <p>\n <br/>\n <em>\n Accept an example of a suitable advantage even if repeated from 9c.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (f(ii))\n </div><div class=\"card-body\">\n <p>\n carbon dioxide is highly/more abundant «in the atmosphere» ✔\n </p>\n <p>\n methane is more effective/potent «as a greenhouse gas»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n methane/better/more effective at absorbing\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n IR\n </mi>\n </math>\n «radiation»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n methane has greater greenhouse factor\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n methane has greater global warming potential/GWP✔\n </p>\n <p>\n <br/>\n <em>\n Accept “carbon dioxide contributes more to global warming” for M1.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Even rather weak candidates answered this one correctly.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n There were many good answers, but few candidates fully scored. Higher energy density and lower specific energy were quite common, and so references to damaging engines. Many students spent more time explaining each advantage rather than simply outlining. There were fewer journalistic and generic answers for this type of question than in the past.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n Another question where many candidates obtained the mark. In quite a few cases students repeated the argument for (c) and this allowed them to get two points for the same answer.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (f(ii))\n </div><div class=\"card-body\">\n <p>\n We received many good answers, but it was worrying the number of students that still provided general and shallow comments. Of the 3 contrast question this had the best response.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-3-energy-from-fuels"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21M.2.HL.TZ1.1",
|
||
"Question": "<div class=\"specification\">\n<p>Iron may be extracted from iron (II) sulfide, FeS.</p>\n</div><div class=\"specification\">\n<p>Iron (II) sulfide, FeS, is ionically bonded.</p>\n</div><div class=\"specification\">\n<p>The first step in the extraction of iron from iron (II) sulfide is to roast it in air to form iron (III) oxide and sulfur dioxide.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why metals, like iron, can conduct electricity.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Justify why sulfur is classified as a non-metal by giving <strong>two</strong> of its chemical properties.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Sketch the first eight successive ionisation energies of sulfur.</p>\n<p><img height=\"394\" src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\" width=\"480\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Describe the bonding in this type of solid.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State a technique that could be used to determine the crystal structure of the solid compound.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the full electron configuration of the sulfide ion.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline, in terms of their electronic structures, why the ionic radius of the sulfide ion is greater than that of the oxide ion.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest why chemists find it convenient to classify bonding into ionic, covalent and metallic.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Write the equation for this reaction.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the change in the oxidation state of sulfur.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest why this process might raise environmental concerns.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why the addition of small amounts of carbon to iron makes the metal harder.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">f.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>mobile/delocalized «sea of» electrons</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Any two of:</em></p>\n<p>forms acidic oxides «rather than basic oxides» ✔</p>\n<p>forms covalent/bonds compounds «with other non-metals» ✔</p>\n<p>forms anions «rather than cations» ✔</p>\n<p>behaves as an oxidizing agent «rather than a reducing agent» ✔</p>\n<p><em><br/>Award <strong>[1 max]</strong> for 2 correct non-chemical properties such as non-conductor, high ionisation energy, high electronegativity, low electron affinity if no marks for chemical properties are awarded.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"378\" src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\" width=\"465\"/></p>\n<p>two regions of small increases <em><strong>AND</strong> </em>a large increase between them✔</p>\n<p>large increase from 6th to 7th ✔</p>\n<p><em><br/>Accept line/curve showing these trends.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>electrostatic attraction ✔</p>\n<p>between oppositely charged ions/between Fe<sup>2+</sup> and S<sup>2−</sup> ✔</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>X-ray crystallography ✔</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> ✔</p>\n<p><em><br/>Do <strong>not</strong> accept “[Ne] 3s<sup>2</sup> 3p<sup>6</sup>”.</em></p>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«valence» electrons further from nucleus/extra electron shell/ electrons in third/3s/3p level «not second/2s/2p»✔</p>\n<p><em><br/>Accept 2,8 (for O<sup>2–</sup>) and 2,8,8 (for S<sup>2–</sup>)</em></p>\n<div class=\"question_part_label\">d(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>allows them to explain the properties of different compounds/substances<br/><em><strong>OR</strong></em><br/>enables them to generalise about substances<br/><em><strong>OR</strong></em><br/>enables them to make predictions ✔</p>\n<p><em><br/>Accept other valid answers.</em></p>\n<div class=\"question_part_label\">d(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>4FeS(s) + 7O<sub>2</sub>(g) → 2Fe<sub>2</sub>O<sub>3</sub>(s) + 4SO<sub>2</sub>(g) ✔</p>\n<p><em><br/>Accept any correct ratio.</em></p>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>+6<br/><em><strong>OR</strong></em><br/>−2 to +4 ✔</p>\n<p><em>Accept “6/VI”.</em><br/><em>Accept “−II, 4//IV”.</em><br/>Do <strong>not</strong> accept 2- to 4+.</p>\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>sulfur dioxide/SO<sub>2</sub> causes acid rain ✔</p>\n<p><em>Accept sulfur dioxide/SO<sub>2</sub>/dust causes respiratory problems</em><br/><em>Do <strong>not</strong> accept just “causes respiratory problems” or “causes acid rain”.</em></p>\n<div class=\"question_part_label\">e(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>disrupts the regular arrangement «of iron atoms/ions»<br/><em><strong>OR</strong></em><br/>carbon different size «to iron atoms/ions» ✔</p>\n<p>prevents layers/atoms sliding over each other ✔</p>\n<div class=\"question_part_label\">f.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">e(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">f.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"structure-1-3-electron-configurations",
|
||
"structure-2-1-the-ionic-model",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-2-3-the-metallic-model",
|
||
"structure-2-4-from-models-to-materials",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21M.2.HL.TZ1.6",
|
||
"Question": "<div class=\"specification\">\n<p>When dinitrogen pentoxide, N<sub>2</sub>O<sub>5</sub>, is heated the colourless gas undergoes thermal decomposition to produce brown nitrogen dioxide:</p>\n<p style=\"text-align: center;\">N<sub>2</sub>O<sub>5 </sub>(g) → 2NO<sub>2 </sub>(g) + <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>O<sub>2 </sub>(g)</p>\n</div><div class=\"specification\">\n<p>Data for the decomposition at constant temperature is given.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest how the extent of decomposition could be measured.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Plot the missing point on the graph and draw the best-fit line.</p>\n<p style=\"text-align:center;\"><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why increasing the concentration of N<sub>2</sub>O<sub>5</sub> increases the rate of reaction.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Write the rate expression for this reaction.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the value of the rate constant, <em>k</em>, giving its units.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(iv).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>use colorimeter<br/><em><strong>OR</strong></em><br/>change in colour<br/><em><strong>OR</strong></em><br/>change in volume<br/><em><strong>OR</strong></em><br/>change in pressure ✔</p>\n<p><em>Accept suitable instruments, e.g. pressure probe/oxygen sensor.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p>point correct ✔</p>\n<p>straight line passing close to all points <em><strong>AND</strong> </em>through origin ✔</p>\n<p><em><br/>Accept free hand drawn line as long as attempt to be linear and meets criteria for M2.</em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>greater frequency of collisions «as concentration increases»<br/><em><strong>OR</strong></em><br/>more collisions per unit time «as concentration increases» ✔</p>\n<p><em><br/>Accept “rate/chance/probability/likelihood” instead of “frequency”.</em></p>\n<p><em>Do <strong>not</strong> accept just “more collisions”.</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>rate = <em>k</em>[N<sub>2</sub>O<sub>5</sub>] ✔</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>k</em> = <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mo>∆</mo><mi>rate</mi></mrow><mrow><mo>∆</mo><mfenced close=\"]\" open=\"[\"><mrow><msub><mi mathvariant=\"normal\">N</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>5</mn></msub></mrow></mfenced></mrow></mfrac></math> ✔</p>\n<p>«<em>k</em> = <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>75</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><msup><mi>min</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></mrow><mrow><mn>25</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>»</mo></mrow></mfrac></math>= » 0.030 «min<sup>–1</sup>» ✔</p>\n<p>min<sup>–1</sup> ✔</p>\n<p><em><br/>M1 can be awarded from correct M2 if not explicitly stated.</em></p>\n<p><em>Accept k = gradient.</em></p>\n<p><em>Accept values in the range 0.028–0.032.</em></p>\n<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>\n<div class=\"question_part_label\">b(iv).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(iv).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"tool-1-experimental-techniques",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21M.2.HL.TZ1.7",
|
||
"Question": "<div class=\"specification\">\n<p>Oxygen exists as two allotropes, diatomic oxygen, O<sub>2</sub>, and ozone, O<sub>3</sub>.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw a Lewis (electron dot) structure for ozone.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Discuss the relative length of the two O−O bonds in ozone.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why there are frequencies of UV light that will dissociate O<sub>3</sub> but not O<sub>2</sub>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain, using equations, how the presence of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mtext>CCl</mtext><mtext>2</mtext></msub><msub><mtext>F</mtext><mtext>2</mtext></msub></math> results in a chain reaction that decreases the concentration of ozone in the stratosphere.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"78\" src=\"\" width=\"437\"/>✔</p>\n<p><em>Accept any combination of lines, dots or crosses to represent electrons.</em></p>\n<p><em>Do <strong>not</strong> accept structures that represent 1.5 bonds.</em></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>both equal ✔</p>\n<p>delocalization/resonance ✔</p>\n<p><em><br/>Accept bond length between 121 and 148 pm/ that of single O−O bond and double O=O bond for M1.</em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>bond in O<sub>3</sub> is weaker<br/><em><strong>OR</strong></em><br/>O<sub>3</sub> bond order 1.5/< 2 ✔</p>\n<p><em><br/>Do <strong>not</strong> accept bond in O<sub>3</sub> is longer for M1.</em></p>\n<p><br/>lower frequency/longer wavelength «UV light» has enough energy to break the O–O bond in O<sub>3</sub> «but not that in O<sub>2</sub>» ✔</p>\n<p><em><br/>Accept “lower frequency/longer wavelength «UV light» has lower energy”.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mtext>CCl</mtext><mtext>2</mtext></msub><msub><mtext>F</mtext><mtext>2</mtext></msub><msub><mtext>(g) →∙CClF</mtext><mtext>2</mtext></msub><mtext>(g) Cl</mtext><mo>∙</mo><mtext>(g)</mtext></math> ✔</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mtext>Cl•(g)+O</mtext><mtext>3</mtext></msub><msub><mtext>(g)→O</mtext><mtext>2</mtext></msub><mtext>(g)+ClO•(g)</mtext></math><br/><em><strong>AND</strong></em><br/><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mtext>ClO∙(g)+O</mtext><mtext>3</mtext></msub><msub><mtext>(g)→2O</mtext><mtext>2</mtext></msub><mtext>(g)+Cl</mtext><mo>∙</mo><mtext>(g)</mtext></math> ✔</p>\n<p><em><br/>Do <strong>not</strong> penalize missing radical.</em></p>\n<p><em>Accept:for M2:</em><br/><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mtext>Cl∙(g) + O</mtext><mtext>3</mtext></msub><msub><mtext>(g) → O</mtext><mtext>2</mtext></msub><mtext>(g) + ClO</mtext><mo>∙</mo><mtext>(g)</mtext></math><br/><em><strong>AND</strong></em><br/><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mtext>ClO∙(g) + O(g) → O</mtext><mtext>2</mtext></msub><mtext>(g) + Cl</mtext><mo>∙</mo><mtext>(g)</mtext></math></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"topics": [
|
||
"structure-2-models-of-bonding-and-structure"
|
||
],
|
||
"subtopics": [
|
||
"structure-2-2-the-covalent-model"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21M.2.HL.TZ2.1",
|
||
"Question": "<div class=\"specification\">\n<p>Limestone can be converted into a variety of useful commercial products through the lime cycle. Limestone contains high percentages of calcium carbonate, CaCO<sub>3</sub>.</p>\n<p><img height=\"218\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"538\"/></p>\n</div><div class=\"specification\">\n<p>Thermodynamic data for the decomposition of calcium carbonate is given.</p>\n<p><img src=\"\"/></p>\n</div><div class=\"specification\">\n<p>The second step of the lime cycle produces calcium hydroxide, Ca(OH)<sub>2</sub>.</p>\n</div><div class=\"specification\">\n<p>Calcium hydroxide reacts with carbon dioxide to reform calcium carbonate.</p>\n<p style=\"text-align: center;\">Ca(OH)<sub>2 </sub>(aq) + CO<sub>2 </sub>(g) → CaCO<sub>3</sub> (s) + H<sub>2</sub>O (l)</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calcium carbonate is heated to produce calcium oxide, CaO.</p>\n<p style=\"text-align:center;\">CaCO<sub>3 </sub>(s) → CaO (s) + CO<sub>2 </sub>(g)</p>\n<p>Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the enthalpy change of reaction, <em>ΔH</em>, in kJ, for the decomposition of calcium carbonate.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the change in entropy, Δ<em>S</em>, in J K<sup>−1</sup>, for the decomposition of calcium carbonate.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the temperature, in K, at which the decomposition of calcium carbonate becomes spontaneous, using b(i), b(ii) and section 1 of the data booklet.</p>\n<p>(If you do not have answers for b(i) and b(ii), use Δ<em>H</em> = 190 kJ and Δ<em>S</em> = 180 J K<sup>−1</sup>, but these are not the correct answers.)</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Sketch an energy profile for the decomposition of calcium carbonate based on your answer to b(i), labelling the axes and activation energy, <em>E</em><sub>a</sub>.</p>\n<p style=\"text-align:center;\"><img src=\"\"/></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State how adding a catalyst to the reaction would impact the enthalpy change of reaction, Δ<em>H</em>, and the activation energy, <em>E</em><sub>a</sub>.</p>\n<p><img height=\"174\" src=\"\" width=\"679\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Write the equation for the reaction of Ca(OH)<sub>2 </sub>(aq) with hydrochloric acid, HCl (aq).</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the volume, in dm<sup>3</sup>, of 0.015 mol dm<sup>−3</sup> calcium hydroxide solution needed to neutralize 35.0 cm<sup>3</sup> of 0.025 mol dm<sup>−3</sup> HCl (aq).</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Saturated calcium hydroxide solution is used to test for carbon dioxide. Calculate the pH of a 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> solution of calcium hydroxide, a strong base.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the mass, in g, of CaCO<sub>3 </sub>(s) produced by reacting 2.41 dm<sup>3</sup> of 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> of Ca(OH)<sub>2</sub> (aq) with 0.750 dm<sup>3</sup> of CO<sub>2</sub> (g) at STP.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>2.85 g of CaCO<sub>3</sub> was collected in the experiment in d(i). Calculate the percentage yield of CaCO<sub>3</sub>.</p>\n<p>(If you did not obtain an answer to d(i), use 4.00 g, but this is not the correct value.)</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline how <strong>one</strong> calcium compound in the lime cycle can reduce a problem caused by acid deposition.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>n</em><sub>CaCO3</sub> = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>555</mn><mo> </mo><mi mathvariant=\"normal\">g</mi></mrow><mrow><mn>11</mn><mo>.</mo><mn>09</mn><mo> </mo><mi mathvariant=\"normal\">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></math>=» 5.55 «mol» ✓</p>\n<p>«<em>V</em> = 5.55 mol × 22.7 dm<sup>3</sup> mol<sup>−1</sup> =» 126 «dm<sup>3</sup>» ✓</p>\n<p><em><br/>Award <strong>[2]</strong> for correct final answer.</em></p>\n<p><em>Accept method using pV = nRT to obtain the volume with p as either 100 kPa (126 dm<sup>3</sup>) or 101.3 kPa (125 dm<sup>3</sup>).</em></p>\n<p><em>Do not penalize use of 22.4 dm<sup>3</sup> mol<sup>–1</sup> to obtain the volume (124 dm<sup>3</sup>).</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>ΔH</em> =» (−635 «kJ» – 393.5 «kJ») – (−1207 «kJ») ✓</p>\n<p>«<em>ΔH</em> = + » 179 «kJ» ✓</p>\n<p><em><br/>Award <strong>[2]</strong> for correct final answer.</em></p>\n<p><em>Award<strong> [1 max]</strong> for −179 kJ.</em></p>\n<p><em>Ignore an extra step to determine total enthalpy change in kJ: 179 kJ mol<sup>-1</sup> x 5.55 mol = 993 kJ.</em></p>\n<p><em>Award <strong>[2]</strong> for an answer in the range 990 - 993« kJ».</em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«Δ<em>S</em> = (40 J K<sup>−1</sup> + 214 J K<sup>−1</sup>) − (93 J K<sup>−1</sup>) =» 161 «J K<sup>−1</sup>» ✓</p>\n<p><em><br/>Ignore an extra step to determine total entropy change in JK<sup>–1</sup>: 161 J mol<sup>–1</sup>K<sup>–1</sup> x 5.55 mol = 894 «J mol<sup>–1</sup>K<sup>–1</sup>»</em></p>\n<p><em>Award <strong>[1]</strong> for 894 «J mol<sup>–1</sup>K<sup>–1</sup>».</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«spontaneous» if Δ<em>G</em> = Δ<em>H</em> − <em>T</em>Δ<em>S</em> < 0<br/><em><strong>OR</strong></em><br/>Δ<em>H</em> < <em>T</em>Δ<em>S</em> ✓</p>\n<p>«<em>T</em> ><math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>179</mn><mo> </mo><mi>kJ</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>16</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi mathvariant=\"normal\">K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></math>=» 1112 «K» ✓</p>\n<p><em><br/>Award <strong>[2]</strong> for correct final answer.</em></p>\n<p><em>Accept “1056 K” if both of the incorrect values are used to solve the problem.</em></p>\n<p><em>Do <strong>not</strong> award M2 for any negative T value.</em></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>endothermic sketch ✓</p>\n<p>x-axis labelled “extent of reaction/progress of reaction/reaction coordinate/reaction pathway” <em><strong>AND</strong> </em>y-axis labelled “potential energy/energy/enthalpy✓</p>\n<p>activation energy/<em>E</em><sub>a</sub> ✓</p>\n<p><img src=\"\"/></p>\n<p><em><br/>Do <strong>not</strong> accept “time” for x-axis.</em></p>\n<div class=\"question_part_label\">b(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Δ<em>H</em> same <em><strong>AND</strong> </em>lower <em>E</em><sub>a</sub> ✓</p>\n<div class=\"question_part_label\">b(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Ca(OH)<sub>2 </sub>(aq) + 2HCl (aq) → 2H<sub>2</sub>O (l) + CaCl<sub>2 </sub>(aq) ✓</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>n</em><sub>HCl</sub> = 0.0350 dm<sup>3</sup> × 0.025 mol dm<sup>−3</sup> =» 0.00088 «mol»</p>\n<p><em><strong>OR</strong></em><br/><em>n</em><sub>Ca(OH)2</sub> = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em>n</em><sub>HCl</sub>/0.00044 «mol» ✓</p>\n<p><br/>«<em>V</em> = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mstyle displaystyle=\"true\"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>00088</mn><mo> </mo><mi>mol</mi></mstyle><mrow><mn>0</mn><mo>.</mo><mn>015</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math> =» 0.029 «dm<sup>3</sup>» ✓</p>\n<p><em><br/>Award <strong>[2]</strong> for correct final answer.</em></p>\n<p><em>Award <strong>[1 max]</strong> for 0.058 «dm<sup>3</sup>».</em></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong>Alternative 1:</strong></em></p>\n<p>[OH<sup>−</sup>] = « 2 × 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> =» 0.0466 «mol dm<sup>−3</sup>» ✓</p>\n<p>«[H<sup>+</sup>] = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>14</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><mn>0466</mn></mrow></mfrac></math> = 2.15 × 10<sup>−13 </sup>mol dm<sup>−3</sup>»</p>\n<p>pH = « −log (2.15 × 10−13) =» 12.668 ✓</p>\n<p> </p>\n<p><em><strong>Alternative 2:</strong></em></p>\n<p>[OH<sup>−</sup>] =« 2 × 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> =» 0.0466 «mol dm<sup>−3</sup>» ✓</p>\n<p>«pOH = −log (0.0466) = 1.332»</p>\n<p>pH = «14.000 – pOH = 14.000 – 1.332 =» 12.668 ✓</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>\n<p><em>Award <strong>[1 max]</strong> for pH =12.367.</em></p>\n<div class=\"question_part_label\">c(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>n</em><sub>Ca(OH)2</sub> = 2.41 dm<sup>3</sup> × 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> =» 0.0562 «mol» <em><strong>AND</strong></em></p>\n<p>«<em>n</em><sub>CO2</sub> =<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>750</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup></mrow><mrow><mn>22</mn><mo>.</mo><mn>7</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math>=» 0.0330 «mol» ✓</p>\n<p>«CO<sub>2</sub> is the limiting reactant»</p>\n<p>«<em>m</em><sub>CaCO3</sub> = 0.0330 mol × 100.09 g mol<sup>−1</sup> =» 3.30 «g» ✓</p>\n<p> </p>\n<p><em>Only award ECF for M2 if limiting reagent is used.</em></p>\n<p><em>Accept answers in the range 3.30 - 3.35 «g».</em></p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>2</mn><mo>.</mo><mn>85</mn></mrow><mrow><mn>3</mn><mo>.</mo><mn>30</mn></mrow></mfrac></math> × 100 =» 86.4 «%» ✓</p>\n<p> </p>\n<p><em>Accept answers in the range 86.1-86.4 «%».</em></p>\n<p><em>Accept “71.3 %” for using the incorrect given value of 4.00 g.</em></p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«add» Ca(OH)<sub>2</sub>/CaCO<sub>3</sub>/CaO <em><strong>AND</strong> </em>to «acidic» water/river/lake/soil<br/><em><strong>OR</strong></em><br/>«use» Ca(OH)<sub>2</sub>/CaCO<sub>3</sub>/CaO in scrubbers «to prevent release of acidic pollution» ✓</p>\n<p> </p>\n<p><em>Accept any correct name for any of the calcium compounds listed.</em></p>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-2-energy-cycles-in-reactions",
|
||
"reactivity-1-4-entropy-and-spontaneity",
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"structure-1-5-ideal-gases",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21M.2.HL.TZ2.6",
|
||
"Question": "<div class=\"specification\">\n<p>Bromate and bromide ions react in acidic aqueous solution.</p>\n<p style=\"text-align: center;\">BrO<sub>3</sub><sup>− </sup>(aq) + 5Br<sup>− </sup>(aq) + 6H<sup>+ </sup>(aq) → 3Br<sub>2 </sub>(l) + 3H<sub>2</sub>O (l)</p>\n<p>The following rate data was collected.</p>\n<p><img height=\"169\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"479\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the rate expression for the reaction.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the value and unit of the rate constant using the rate expression in (a).</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>BrO<sub>3</sub><sup>–</sup>:</em> 1/first <em><strong>AND</strong> Br<sup>–</sup>:</em> 1/first <em><strong>AND</strong> H<sup>+</sup>:</em> 2/second ✓</p>\n<p>«Rate =» <em>k</em>[BrO<sub>3</sub><sup>−</sup>][Br<sup>−</sup>][H<sup>+</sup>]<sup>2</sup> ✓</p>\n<p><em><br/>M2: Square brackets required for the mark.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>k</em> =<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>8</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><mn>10</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>10</mn><mo>×</mo><msup><mfenced><mrow><mn>0</mn><mo>.</mo><mn>10</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac></math>=» 8.0 ✓</p>\n<p>mol<sup>−3</sup> dm<sup>9 </sup>s<sup>−1</sup> ✓</p>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21M.2.HL.TZ2.7",
|
||
"Question": "<div class=\"specification\">\n<p>Consider the following equilibrium reaction:</p>\n<p style=\"text-align: center;\">2SO<sub>2</sub> (g) + O<sub>2</sub> (g) <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⇌</mo></math> 2SO<sub>3</sub> (g)</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the equilibrium constant expression, <em>K</em><sub>c</sub>, for the reaction above.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State and explain how the equilibrium would be affected by increasing the volume of the reaction container at a constant temperature.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>SO<sub>2</sub> (g), O<sub>2 </sub>(g) and SO<sub>3 </sub>(g) are mixed and allowed to reach equilibrium at 600 °C.</p>\n<p><img src=\"\"/></p>\n<p>Determine the value of <em>K</em><sub>c</sub> at 600 °C.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>K</em><sub>c</sub> = <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><msup><mfenced close=\"]\" open=\"[\"><msub><mi>SO</mi><mn>3</mn></msub></mfenced><mn>2</mn></msup><mrow><msup><mfenced close=\"]\" open=\"[\"><msub><mi>SO</mi><mn>2</mn></msub></mfenced><mn>2</mn></msup><mfenced close=\"]\" open=\"[\"><msub><mi mathvariant=\"normal\">O</mi><mn>2</mn></msub></mfenced></mrow></mfrac></math> » ✓</p>\n<p><em><br/>Square brackets required for the mark.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>pressure decrease «due to larger volume» ✓</p>\n<p>reaction shifts to side with more moles/molecules «of gas» ✓</p>\n<p>reaction shifts left/towards reactants ✓</p>\n<p><em><br/>Award M3 only if M1 <strong>OR</strong> M2 awarded.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>[O<sub>2</sub>] = 1.25 «mol dm<sup>−3</sup>» <em><strong>AND</strong> </em>[SO<sub>3</sub>] = 3.50 «mol dm<sup>−3</sup>» ✓</p>\n<p>«<em>K</em><sub>c</sub> =<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><msup><mfenced close=\"]\" open=\"[\"><mrow><mn>3</mn><mo>.</mo><mn>50</mn></mrow></mfenced><mn>2</mn></msup><mrow><msup><mfenced close=\"]\" open=\"[\"><mrow><mn>1</mn><mo>.</mo><mn>50</mn></mrow></mfenced><mn>2</mn></msup><mfenced close=\"]\" open=\"[\"><mrow><mn>1</mn><mo>.</mo><mn>25</mn></mrow></mfenced></mrow></mfrac></math>=» 4.36 ✓</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> for correct final answer</em></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21M.2.SL.TZ1.1",
|
||
"Question": "<div class=\"specification\">\n<p>Iron may be extracted from iron (II) sulfide, FeS.</p>\n</div><div class=\"specification\">\n<p>Iron (II) sulfide, FeS, is ionically bonded.</p>\n</div><div class=\"specification\">\n<p>The first step in the extraction of iron from iron (II) sulfide is to roast it in air to form iron (III) oxide and sulfur dioxide.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why metals, like iron, can conduct electricity.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Justify why sulfur is classified as a non-metal by giving <strong>two</strong> of its chemical properties.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Describe the bonding in this type of solid.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the full electron configuration of the sulfide ion.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline, in terms of their electronic structures, why the ionic radius of the sulfide ion is greater than that of the oxide ion.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest why chemists find it convenient to classify bonding into ionic, covalent and metallic.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Write the equation for this reaction.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the change in the oxidation state of sulfur.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest why this process might raise environmental concerns.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why the addition of small amounts of carbon to iron makes the metal harder.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>mobile/delocalized «sea of» electrons</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Any two of:</em></p>\n<p>forms acidic oxides «rather than basic oxides» ✔</p>\n<p>forms covalent/bonds compounds «with other non-metals» ✔</p>\n<p>forms anions «rather than cations» ✔</p>\n<p>behaves as an oxidizing agent «rather than a reducing agent» ✔</p>\n<p><em><br/>Award <strong>[1 max]</strong> for 2 correct non-chemical properties such as non-conductor, high ionisation energy, high electronegativity, low electron affinity if no marks for chemical properties are awarded.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>electrostatic attraction ✔</p>\n<p>between oppositely charged ions/between Fe<sup>2+</sup> and S<sup>2−</sup> ✔</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> ✔</p>\n<p><em><br/>Do <strong>not</strong> accept “[Ne] 3s<sup>2</sup> 3p<sup>6</sup>”.</em></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«valence» electrons further from nucleus/extra electron shell/ electrons in third/3s/3p level «not second/2s/2p»✔</p>\n<p><em><br/>Accept 2,8 (for O<sup>2–</sup>) and 2,8,8 (for S<sup>2–</sup>)</em></p>\n<div class=\"question_part_label\">c(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>allows them to explain the properties of different compounds/substances<br/><em><strong>OR</strong></em><br/>enables them to generalise about substances<br/><em><strong>OR</strong></em><br/>enables them to make predictions ✔</p>\n<p><em><br/>Accept other valid answers.</em></p>\n<div class=\"question_part_label\">c(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>4FeS(s) + 7O<sub>2</sub>(g) → 2Fe<sub>2</sub>O<sub>3</sub>(s) + 4SO<sub>2</sub>(g) ✔</p>\n<p><em><br/>Accept any correct ratio.</em></p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>+6<br/><em><strong>OR</strong></em><br/>−2 to +4 ✔</p>\n<p><em>Accept “6/VI”.</em><br/><em>Accept “−II, 4//IV”.</em><br/>Do <strong>not</strong> accept 2− to 4+.</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>sulfur dioxide/SO<sub>2</sub> causes acid rain ✔</p>\n<p><em>Accept sulfur dioxide/SO<sub>2</sub>/dust causes respiratory problems</em><br/><em>Do <strong>not</strong> accept just “causes respiratory problems” or “causes acid rain”.</em></p>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>disrupts the regular arrangement «of iron atoms/ions»<br/><em><strong>OR</strong></em><br/>carbon different size «to iron atoms/ions» ✔</p>\n<p>prevents layers/atoms sliding over each other ✔</p>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"structure-1-3-electron-configurations",
|
||
"structure-2-1-the-ionic-model",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-2-3-the-metallic-model",
|
||
"structure-2-4-from-models-to-materials",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21M.2.SL.TZ1.2",
|
||
"Question": "<div class=\"specification\">\n<p>Iron (II) sulfide reacts with hydrochloric acid to form hydrogen sulfide, H<sub>2</sub>S.</p>\n</div><div class=\"specification\">\n<p>In aqueous solution, hydrogen sulfide acts as an acid.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw the Lewis (electron dot) structure of hydrogen sulfide.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Predict the shape of the hydrogen sulfide molecule.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the formula of its conjugate base.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Saturated aqueous hydrogen sulfide has a concentration of 0.10 mol dm<sup>−3</sup> and a pH of 4.0. Demonstrate whether it is a strong or weak acid.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the hydroxide ion concentration in saturated aqueous hydrogen sulfide.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>A gaseous sample of nitrogen, contaminated only with hydrogen sulfide, was reacted with excess sodium hydroxide solution at constant temperature. The volume of the gas changed from 550 cm<sup>3</sup> to 525 cm<sup>3</sup>.</p>\n<p>Determine the mole percentage of hydrogen sulfide in the sample, stating one assumption you made.</p>\n<p><img height=\"303\" src=\"\" width=\"705\"/></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"55\" src=\"\" width=\"83\"/> <em><strong>OR <img height=\"50\" src=\"\" width=\"125\"/>✔</strong></em></p>\n<p><em>Accept any combination of lines, dots or crosses to represent electrons.</em></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>bent/non-linear/angular/v-shaped✔</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>HS<sup>−</sup> ✔</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>weak <em><strong>AND</strong> </em>strong acid of this concentration/[H<sup>+</sup>] = 0.1 mol dm<sup>−3</sup> would have pH = 1<br/><em><strong>OR</strong></em><br/>weak <em><strong>AND</strong> </em>[H<sup>+</sup>] = 10<sup>−4</sup> < 0.1 «therefore only fraction of acid dissociated» ✔</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>10<sup>−10</sup> «mol dm<sup>−3</sup>» ✔</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Mole percentage H<sub>2</sub>S:</em><br/>volume of H<sub>2</sub>S = «550 − 525 = » 25 «cm<sup>3</sup>» ✔<br/>mol % H<sub>2</sub>S = «<math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>25</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></mrow><mrow><mn>550</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></mrow></mfrac><mo>×</mo><mn>100</mn></math> = » 4.5 «%» ✔</p>\n<p><em>Award [2] for correct final answer of 4.5 «%»</em></p>\n<p> </p>\n<p><em>Assumption:</em><br/>«both» gases behave as ideal gases ✔<br/><br/><em>Accept “volume of gas <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">α</mi></math> mol of gas”.</em><br/><em>Accept “reaction goes to completion”.</em><br/><em>Accept “nitrogen is insoluble/does not </em><em>react with NaOH/only H<sub>2</sub>S reacts with </em><em>NaOH”.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"structure-1-5-ideal-gases",
|
||
"structure-2-2-the-covalent-model"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21M.2.SL.TZ1.3",
|
||
"Question": "<div class=\"specification\">\n<p>Magnetite, Fe<sub>3</sub>O<sub>4</sub>, is another ore of iron that contains both Fe<sup>2+</sup> and Fe<sup>3+</sup>.</p>\n</div><div class=\"specification\">\n<p>Iron exists as several isotopes.</p>\n</div><div class=\"specification\">\n<p>In acidic solution, hydrogen peroxide, H<sub>2</sub>O<sub>2</sub>, will oxidize Fe<sup>2+</sup>.</p>\n<p style=\"text-align: center;\">Fe<sup>2+</sup> (aq) → Fe<sup>3+</sup> (aq) + e<sup>−</sup></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the ratio of Fe<sup>2+</sup>:Fe<sup>3+</sup> in Fe<sub>3</sub>O<sub>4</sub>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the type of spectroscopy that could be used to determine their relative abundances.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the number of protons, neutrons and electrons in each species.</p>\n<p><img height=\"151\" src=\"\" width=\"502\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Iron has a relatively small specific heat capacity; the temperature of a 50 g sample rises by 44.4°C when it absorbs 1 kJ of heat energy.</p>\n<p>Determine the specific heat capacity of iron, in J g<sup>−1 </sup>K<sup>−1</sup>. Use section 1 of the data booklet.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Write the half-equation for the reduction of hydrogen peroxide to water in acidic solution.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce a balanced equation for the oxidation of Fe2+ by acidified hydrogen peroxide.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>1:2 ✔</p>\n<p><em>Accept 2 Fe<sup>3+</sup>: 1 Fe<sup>2+</sup></em><br/><em>Do <strong>not</strong> accept 2:1 only</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>mass «spectroscopy»/MS ✔</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"88\" src=\"\" width=\"515\"/></p>\n<p><em>Award <strong>[1 max]</strong> for 4 correct values.</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>specific heat capacity « = <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mi>q</mi><mrow><mi>m</mi><mo>×</mo><mo>∆</mo><mi>T</mi></mrow></mfrac><mo>/</mo><mfrac><mrow><mn>1000</mn><mo> </mo><mi mathvariant=\"normal\">J</mi></mrow><mrow><mn>50</mn><mo> </mo><mi mathvariant=\"normal\">g</mi><mo>×</mo><mn>44</mn><mo> </mo><mi mathvariant=\"normal\">K</mi></mrow></mfrac></math>» = 0.45 «J g<sup>−1 </sup>K<sup>−1</sup>» ✔</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>H<sub>2</sub>O<sub>2</sub>(aq) + 2H<sup>+</sup>(aq) + 2e<sup>−</sup>→ 2H<sub>2</sub>O(l) ✔</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>H<sub>2</sub>O<sub>2</sub>(aq) + 2H<sup>+</sup>(aq) + 2Fe<sup>2+</sup>(aq) → 2H<sub>2</sub>O(l) + 2Fe<sup>3+</sup>(aq) ✔</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(ii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-1-measuring-enthalpy-changes",
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"structure-1-2-the-nuclear-atom",
|
||
"structure-1-4-counting-particles-by-mass-the-mole",
|
||
"tool-1-experimental-techniques"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21M.2.SL.TZ1.5",
|
||
"Question": "<div class=\"specification\">\n<p>Ethanol is obtained by the hydration of ethene, C<sub>2</sub>H<sub>4</sub>.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the class of compound to which ethene belongs.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the molecular formula of the next member of the homologous series to which ethene belongs.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Justify why ethene has only a single signal in its <sup>1</sup>H NMR spectrum.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest <strong>two</strong> possible products of the incomplete combustion of ethene that would not be formed by complete combustion.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>A white solid was formed when ethene was subjected to high pressure.</p>\n<p>Deduce the type of reaction that occurred.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>alkene ✔</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>C<sub>3</sub>H<sub>6</sub> ✔</p>\n<p><em>Accept structural formula.</em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>hydrogen atoms/protons in same chemical environment ✔</p>\n<p><em>Accept “all H atoms/protons are equivalent”.</em><br/><em>Accept “symmetrical”</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>carbon monoxide/CO <em><strong>AND</strong> </em>carbon/C/soot ✔</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«addition» polymerization ✔</p>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-3-energy-from-fuels",
|
||
"structure-2-4-from-models-to-materials",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21M.2.SL.TZ1.6",
|
||
"Question": "<div class=\"specification\">\n<p>When dinitrogen pentoxide, N<sub>2</sub>O<sub>5</sub>, is heated the colourless gas undergoes thermal decomposition to produce brown nitrogen dioxide:</p>\n<p style=\"text-align: center;\">N<sub>2</sub>O<sub>5 </sub>(g) → 2NO<sub>2 </sub>(g) + <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>O<sub>2 </sub>(g)</p>\n</div><div class=\"specification\">\n<p>Data for the decomposition at constant temperature is given.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest how the extent of decomposition could be measured.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Plot the missing point on the graph and draw the best-fit line.</p>\n<p style=\"text-align:center;\"><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the relationship between the concentration of N<sub>2</sub>O<sub>5</sub> and the rate of reaction.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why increasing the concentration of N<sub>2</sub>O<sub>5</sub> increases the rate of reaction.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>use colorimeter<br/><em><strong>OR</strong></em><br/>change in colour<br/><em><strong>OR</strong></em><br/>change in volume<br/><em><strong>OR</strong></em><br/>change in pressure ✔</p>\n<p><em>Accept suitable instruments, e.g. pressure probe/oxygen sensor.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p>point correct ✔</p>\n<p>straight line passing close to all points <em><strong>AND</strong> </em>through origin ✔</p>\n<p><em><br/>Accept free hand drawn line as long as attempt to be linear and meets criteria for M2.</em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>« rate of reaction is directly» proportional to/∝[N<sub>2</sub>O<sub>5</sub>]<br/><em><strong>OR</strong></em><br/>doubling concentration doubles rate ✔</p>\n<p><em><br/>Do <strong>not</strong> accept “rate increases as concentration increases”/ positive correlation</em></p>\n<p><em>Accept linear</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>greater frequency of collisions «as concentration increases»<br/><em><strong>OR</strong></em><br/>more collisions per unit time «as concentration increases» ✔</p>\n<p><em><br/>Accept “rate/chance/probability/likelihood” instead of “frequency”.</em></p>\n<p><em>Do <strong>not</strong> accept just “more collisions”.</em></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"tool-1-experimental-techniques",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21M.2.SL.TZ2.1",
|
||
"Question": "<div class=\"specification\">\n<p>Limestone can be converted into a variety of useful commercial products through the lime cycle. Limestone contains high percentages of calcium carbonate, CaCO<sub>3</sub>.</p>\n<p><img height=\"218\" src=\"\" style=\"display: block; margin-left: auto; margin-right: auto;\" width=\"538\"/></p>\n</div><div class=\"specification\">\n<p>The second step of the lime cycle produces calcium hydroxide, Ca(OH)<sub>2</sub>.</p>\n</div><div class=\"specification\">\n<p>Calcium hydroxide reacts with carbon dioxide to reform calcium carbonate.</p>\n<p style=\"text-align: center;\">Ca(OH)<sub>2 </sub>(aq) + CO<sub>2 </sub>(g) → CaCO<sub>3</sub> (s) + H<sub>2</sub>O (l)</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calcium carbonate is heated to produce calcium oxide, CaO.</p>\n<p style=\"text-align:center;\">CaCO<sub>3 </sub>(s) → CaO (s) + CO<sub>2 </sub>(g)</p>\n<p>Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Thermodynamic data for the decomposition of calcium carbonate is given.</p>\n<p><img height=\"119\" src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\" width=\"205\"/></p>\n<p>Calculate the enthalpy change of reaction, <em>ΔH</em>, in kJ, for the decomposition of calcium carbonate.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The potential energy profile for a reaction is shown. Sketch a dotted line labelled “Catalysed” to indicate the effect of a catalyst.</p>\n<p><img height=\"317\" src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\" width=\"454\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why a catalyst has such an effect.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Write the equation for the reaction of Ca(OH)<sub>2</sub> (aq) with hydrochloric acid, HCl (aq).</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the volume, in dm<sup>3</sup>, of 0.015 mol dm<sup>−3</sup> calcium hydroxide solution needed to neutralize 35.0 cm<sup>3</sup> of 0.025 mol dm<sup>−3</sup> HCl (aq).</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Saturated calcium hydroxide solution is used to test for carbon dioxide. Calculate the pH of a 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> solution of calcium hydroxide, a strong base.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the mass, in g, of CaCO<sub>3 </sub>(s) produced by reacting 2.41 dm<sup>3</sup> of 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> of Ca(OH)<sub>2</sub> (aq) with 0.750 dm<sup>3</sup> of CO<sub>2</sub> (g) at STP.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>2.85 g of CaCO<sub>3</sub> was collected in the experiment in e(i). Calculate the percentage yield of CaCO<sub>3</sub>.</p>\n<p>(If you did not obtain an answer to e(i), use 4.00 g, but this is not the correct value.)</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline how <strong>one</strong> calcium compound in the lime cycle can reduce a problem caused by acid deposition.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">f.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>n</em><sub>CaCO3</sub> = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>555</mn><mo> </mo><mi mathvariant=\"normal\">g</mi></mrow><mrow><mn>11</mn><mo>.</mo><mn>09</mn><mo> </mo><mi mathvariant=\"normal\">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></math>=» 5.55 «mol» ✓</p>\n<p>«<em>V</em> = 5.55 mol × 22.7 dm<sup>3</sup> mol<sup>−1</sup> =» 126 «dm<sup>3</sup>» ✓</p>\n<p><em><br/>Award <strong>[2]</strong> for correct final answer.</em></p>\n<p><em>Accept method using pV = nRT to obtain the volume with p as either 100 kPa (126 dm<sup>3</sup>) or 101.3 kPa (125 dm<sup>3</sup>).</em></p>\n<p><em>Do not penalize use of 22.4 dm<sup>3</sup> mol<sup>–1</sup> to obtain the volume (124 dm<sup>3</sup>).</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>ΔH</em> =» (−635 «kJ» – 393.5 «kJ») – (−1207 «kJ») ✓</p>\n<p>«<em>ΔH</em> = + » 179 «kJ» ✓</p>\n<p><em><br/>Award <strong>[2]</strong> for correct final answer.</em></p>\n<p><em>Award<strong> [1 max]</strong> for −179 kJ.</em></p>\n<p><em>Ignore an extra step to determine total enthalpy change in kJ: 179 kJ mol<sup>−1</sup> x 5.55 mol = 993 kJ.</em></p>\n<p><em>Award <strong>[2]</strong> for an answer in the range 990 - 993« kJ».</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p>lower activation energy curve between same reactant and product levels ✓</p>\n<p><em><br/>Accept curve with or without an intermediate.</em></p>\n<p><em>Accept a horizontal straight line below current line with the activation energy with catalyst/E<sub>cat</sub> clearly labelled.</em></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>provides an alternative «reaction» pathway/mechanism ✓</p>\n<p><em><br/>Do <strong>not</strong> accept “lower activation energy” only.</em></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Ca(OH)<sub>2</sub> (aq) + 2HCl (aq) → 2H<sub>2</sub>O (l) + CaCl<sub>2</sub> (aq) ✓</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>n</em><sub>HCl</sub> = 0.0350 dm<sup>3</sup> × 0.025 mol dm<sup>−3</sup> =» 0.00088 «mol»<br/><em><strong>OR</strong></em><br/><em>n</em><sub>Ca(OH)2</sub> = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em>n</em><sub>HCl</sub>/0.00044 «mol» ✓</p>\n<p>«<em>V</em> = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mstyle displaystyle=\"true\"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>00088</mn><mo> </mo><mi>mol</mi></mstyle><mrow><mn>0</mn><mo>.</mo><mn>015</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math> =» 0.029 «dm<sup>3</sup>» ✓</p>\n<p><em><br/>Award <strong>[2]</strong> for correct final answer.</em></p>\n<p><em>Award <strong>[1 max]</strong> for 0.058 «dm<sup>3</sup>».</em></p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong>Alternative 1:</strong></em></p>\n<p>[OH<sup>−</sup>] = « 2 × 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> =» 0.0466 «mol dm<sup>−3</sup>» ✓</p>\n<p>«[H<sup>+</sup>] = <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>14</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><mn>0466</mn></mrow></mfrac></math> = 2.15 × 10<sup>−13</sup> mol dm<sup>−3</sup>»<br/>pH = « −log(2.15 × 10<sup>−13</sup>) =» 12.668 ✓</p>\n<p> </p>\n<p><em><strong>Alternative 2:</strong></em></p>\n<p>[OH<sup>−</sup>] =« 2 × 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> =» 0.0466 «mol dm<sup>−3</sup>» ✓</p>\n<p>«pOH = −log (0.0466) = 1.332»</p>\n<p>pH = «14.000 – pOH = 14.000 – 1.332 =» 12.668 ✓</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>\n<p><em>Award <strong>[1 max]</strong> for pH =12.367.</em></p>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>n</em><sub>Ca(OH)2</sub> = 2.41 dm<sup>3</sup> × 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> =» 0.0562 «mol» <em><strong>AND</strong></em><br/>«<em>n</em><sub>CO2</sub> =<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>750</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup></mrow><mrow><mn>22</mn><mo>.</mo><mn>7</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math>=» 0.0330 «mol» ✓</p>\n<p>«CO<sub>2</sub> is the limiting reactant»</p>\n<p>«<em>m</em><sub>CaCO3</sub> = 0.0330 mol × 100.09 g mol<sup>−1</sup> =» 3.30 «g» ✓</p>\n<p><em><br/>Only award ECF for M2 if limiting reagent is used.</em></p>\n<p><em>Accept answers in the range 3.30 - 3.35 «g».</em></p>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>2</mn><mo>.</mo><mn>85</mn></mrow><mrow><mn>3</mn><mo>.</mo><mn>30</mn></mrow></mfrac></math> × 100 =» 86.4 «%» ✓</p>\n<p><em><br/>Accept answers in the range 86.1-86.4 «%».</em></p>\n<p><em>Accept “71.3 %” for using the incorrect given value of 4.00 g.</em></p>\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«add» Ca(OH)<sub>2</sub>/CaCO<sub>3</sub>/CaO <em><strong>AND</strong> </em>to «acidic» water/river/lake/soil<br/><em><strong>OR</strong></em><br/>«use» Ca(OH)<sub>2</sub>/CaCO<sub>3</sub>/CaO in scrubbers «to prevent release of acidic pollution» ✓</p>\n<p><em><br/>Accept any correct name for any of the calcium compounds listed.</em></p>\n<div class=\"question_part_label\">f.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">f.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"structure-1-5-ideal-gases",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21M.2.SL.TZ2.2",
|
||
"Question": "<div class=\"specification\">\n<p>The properties of elements can be predicted from their position in the periodic table.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why Si has a smaller atomic radius than Al.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain the decrease in radius from Na to Na<sup>+</sup>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the condensed electron configurations for Cr and Cr3<sup>+</sup>.</p>\n<p><img height=\"190\" src=\"\" width=\"768\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Describe metallic bonding and how it contributes to electrical conductivity.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the Lewis (electron dot) structure and molecular geometry of sulfur dichloride, SCl<sub>2</sub>.</p>\n<p><img height=\"216\" src=\"\" width=\"433\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest, giving reasons, the relative volatilities of SCl<sub>2</sub> and H<sub>2</sub>O.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Consider the following equilibrium reaction:</p>\n<p style=\"text-align:center;\">2SO<sub>2 </sub>(g) + O<sub>2 </sub>(g) <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⇌</mo></math> 2SO<sub>3 </sub>(g)</p>\n<p>State and explain how the equilibrium would be affected by increasing the volume of the reaction container at a constant temperature.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>nuclear charge/number of protons/Z/Z<sub>eff</sub> increases «causing a stronger pull on the outer electrons» ✓</p>\n<p>same number of shells/«outer» energy level/shielding ✓</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Na<sup>+</sup> has one less energy level/shell<br/><em><strong>OR</strong></em><br/>Na<sup>+</sup> has 2 energy levels/shells <em><strong>AND</strong> </em>Na has 3 ✓</p>\n<p>less shielding «in Na<sup>+</sup> so valence electrons attracted more strongly to nucleus»<br/><em><strong>OR</strong></em><br/>effective nuclear charge/Z<sub>eff</sub> greater «in Na<sup>+</sup> so valence electrons attracted more strongly to nucleus» ✓</p>\n<p><em><br/>Accept “more protons than electrons «in Na<sup>+</sup>»” <strong>OR</strong> “less electron-electron repulsion «in Na<sup>+</sup>»” for M2.</em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Cr:</em><br/>[Ar] 4s<sup>1</sup>3d<sup>5</sup> ✓</p>\n<p><em><br/>Cr<sup>3+</sup>:</em><br/>[Ar] 3d<sup>3</sup> ✓</p>\n<p><em><br/>Accept “[Ar] 3d<sup>5</sup>4s<sup>1</sup>”.</em></p>\n<p><em>Accept “[Ar] 3d<sup>3</sup>4s<sup>0</sup>”.</em></p>\n<p><em>Award <strong>[1 max]</strong> for two correct full electron configurations “1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>4s<sup>1</sup>3d<sup>5</sup> <strong>AND</strong> 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>3d<sup>3</sup>”.</em></p>\n<p><em>Award<strong> [1 max]</strong> for 4s<sup>1</sup>3d<sup>5</sup> <strong>AND</strong> 3d<sup>3</sup>.</em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>electrostatic attraction ✓</p>\n<p>between «a lattice of» cations/positive «metal» ions <em><strong>AND</strong> </em>«a sea of» delocalized electrons ✓</p>\n<p><br/>mobile electrons responsible for conductivity<br/><em><strong>OR</strong></em><br/>electrons move when a voltage/potential difference/electric field is applied ✓</p>\n<p> </p>\n<p><em>Do <strong>not</strong> accept “nuclei” for “cations/positive ions” in M2.</em></p>\n<p><em>Accept “mobile/free” for “delocalized” electrons in M2.</em></p>\n<p><em>Accept “electrons move when connected to a cell/battery/power supply” <strong>OR</strong> “electrons move when connected in a circuit” for M3.</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>H<sub>2</sub>O forms hydrogen bonding «while SCl<sub>2</sub> does not» ✓</p>\n<p>SCl<sub>2</sub> «much» stronger London/dispersion/«instantaneous» induced dipole-induced dipole forces ✓</p>\n<p><em><strong><br/>Alternative 1:</strong></em><br/>H<sub>2</sub>O less volatile <em><strong>AND</strong> </em>hydrogen bonding stronger «than dipole–dipole and dispersion forces» ✓</p>\n<p><em><strong><br/>Alternative 2:</strong></em><br/>SCl<sub>2</sub> less volatile <em><strong>AND</strong> </em>effect of dispersion forces «could be» greater than hydrogen bonding ✓\\</p>\n<p> </p>\n<p><em>Ignore reference to Van der Waals.</em></p>\n<p><em>Accept “SCl<sub>2</sub> has «much» larger molar mass/electron density” for M2.</em></p>\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>pressure decrease «due to larger volume» ✓</p>\n<p>reactant side has more moles/molecules «of gas» ✓</p>\n<p>reaction shifts left/towards reactants ✓</p>\n<p><em><br/>Award M3 only if M1 <strong>OR</strong> M2 is awarded.</em></p>\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">e.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"structure-1-3-electron-configurations",
|
||
"structure-2-1-the-ionic-model",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-2-3-the-metallic-model",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21M.2.SL.TZ2.7",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the equilibrium constant expression,\n <em>\n K\n </em>\n <sub>\n c\n </sub>\n , for the reaction above.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State and explain how the equilibrium would be affected by increasing the volume of the reaction container at a constant temperature.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n «\n <em>\n K\n </em>\n <sub>\n c\n </sub>\n =\n <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <msup>\n <mfenced close=\"]\" open=\"[\">\n <msub>\n <mi>\n SO\n </mi>\n <mn>\n 3\n </mn>\n </msub>\n </mfenced>\n <mn>\n 2\n </mn>\n </msup>\n <mrow>\n <msup>\n <mfenced close=\"]\" open=\"[\">\n <msub>\n <mi>\n SO\n </mi>\n <mn>\n 2\n </mn>\n </msub>\n </mfenced>\n <mn>\n 2\n </mn>\n </msup>\n <mfenced close=\"]\" open=\"[\">\n <msub>\n <mi mathvariant=\"normal\">\n O\n </mi>\n <mn>\n 2\n </mn>\n </msub>\n </mfenced>\n </mrow>\n </mfrac>\n </math>\n » ✓\n </p>\n <p>\n <em>\n <br/>\n Square brackets required for the mark.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n pressure decrease «due to larger volume» ✓\n </p>\n <p>\n reaction shifts to side with more moles/molecules «of gas» ✓\n </p>\n <p>\n reaction shifts left/towards reactants ✓\n </p>\n <p>\n <em>\n <br/>\n Award M3 only if M1\n <strong>\n OR\n </strong>\n M2 awarded.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21N.2.HL.TZ0.11",
|
||
"Question": "<div class=\"specification\">\n<p>50.00 cm<sup>3</sup> of 0.75 mol dm<sup>−3</sup> sodium hydroxide was added in 1.00 cm<sup>3</sup> portions to 22.50 cm<sup>3</sup> of 0.50 mol dm<sup>−3</sup> chloroethanoic acid.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the initial pH before any sodium hydroxide was added, using section 21 of the data booklet.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The concentration of excess sodium hydroxide was 0.362 mol dm<sup>−3</sup>. Calculate the pH of the solution at the end of the experiment.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Sketch the neutralisation curve obtained <strong>and</strong> label the equivalence point.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>K</em>a = 10<sup>–2.87</sup> = 1.35 × 10<sup>–3</sup> »</p>\n<p>«1.35 × 10<sup>–3</sup> = <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mfenced close=\"]\" open=\"[\"><mi>chloroethanoate</mi></mfenced><mo>×</mo><mfenced close=\"]\" open=\"[\"><msup><mi mathvariant=\"normal\">H</mi><mo>+</mo></msup></mfenced></mrow><mrow><mn>0</mn><mo>.</mo><mn>50</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac><mo>=</mo><mfrac><msup><mi mathvariant=\"normal\">x</mi><mn>2</mn></msup><mrow><mn>0</mn><mo>.</mo><mn>50</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math> »</p>\n<p>«x = [H<sup>+</sup>] =<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mn>1</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>50</mn></msqrt></math>=» 2.6 × 10<sup>–2</sup> «mol dm<sup>–3</sup>» ✔</p>\n<p><br/>«pH = –log[H<sup>+</sup>] = –log(2.6 × 10<sup>–2</sup>) =» 1.59 ✔</p>\n<p> </p>\n<p><em>Accept final answer in range 1.58–1.60.</em></p>\n<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«pOH = –log(0.362) = 0.441»</p>\n<p>«pH = 14.000 – 0.441 =» 13.559 ✔</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p><em><strong>OR</strong></em></p>\n<p><img src=\"\"/></p>\n<p>starts at 1.6 <em><strong>AND</strong> </em>finishes at 13.6 ✔</p>\n<p>approximately vertical at the correct volume of alkali added ✔</p>\n<p>equivalence point labelled <em><strong>AND</strong> </em>above pH 7 ✔</p>\n<p> </p>\n<p><em>Accept any range from 1.1-1.9 <strong>AND </strong>13.1-13.9 for <strong>M1</strong> or ECF from 11c(i) and 11c(ii).</em></p>\n<p><em>Award <strong>M2</strong> for vertical climb at 28 cm<sup>3</sup> <strong>OR</strong> 15 cm<sup>3</sup>.</em></p>\n<p><em>Equivalence point must be labelled for <strong>M3</strong>.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-3-1-proton-transfer-reactions"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21N.2.HL.TZ0.2",
|
||
"Question": "<div class=\"specification\">\n<p>Electron transitions are related to trends in the periodic table.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain the general increase in trend in the first ionization energies of the period 3 elements, Na to Ar.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Sodium emits yellow light with a frequency of 5.09 × 10<sup>14 </sup>Hz when electrons transition from 3p to 3s orbitals.</p>\n<p>Calculate the energy difference, in J, between these two orbitals using sections 1 and 2 of the data booklet.</p>\n<p> </p>\n<p style=\"text-align:center;\"><em>Darling, D, n.d. D lines (of sodium). [online] Available at <https://www.daviddarling.info/encyclopedia/D/D_lines.html> [Accessed 6 May 2020].</em></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>increasing number of protons<br/><em><strong>OR</strong></em><br/>increasing nuclear charge ✔</p>\n<p>«atomic» radius/size decreases<br/><em><strong>OR</strong></em><br/>same number of shells/electrons occupy same shell<br/><em><strong>OR</strong></em><br/>similar shielding «by inner electrons» ✔</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«ΔE = hν = 6.63 × 10<sup>–34 </sup>J s × 5.09 × 10<sup>14 </sup>s<sup>–1</sup> =» 3.37 × 10<sup>–19 </sup>«J» ✔</p>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"topics": [
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"structure-1-3-electron-configurations",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21N.2.HL.TZ0.3",
|
||
"Question": "<div class=\"specification\">\n<p>White phosphorus is an allotrope of phosphorus and exists as P<sub>4</sub>.</p>\n</div><div class=\"specification\">\n<p>An equilibrium exists between PCl<sub>3</sub> and PCl<sub>5</sub>.</p>\n<p style=\"text-align: center;\">PCl<sub>3 </sub>(g) + Cl<sub>2 </sub>(g) <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⇌</mo></math> PCl<sub>5 </sub>(g)</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Sketch the Lewis (electron dot) structure of the P<sub>4</sub> molecule, containing only single bonds.</p>\n<p> </p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Write an equation for the reaction of white phosphorus (P<sub>4</sub>) with chlorine gas to form phosphorus trichloride (PCl<sub>3</sub>).</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the electron domain and molecular geometry using VSEPR theory, and estimate the Cl–P–Cl bond angle in PCl<sub>3</sub>.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline the reason why PCl<sub>5</sub> is a non-polar molecule, while PCl<sub>4</sub>F is polar.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the standard enthalpy change (Δ<em>H</em><sup>⦵</sup>) for the forward reaction in kJ mol<sup>−1</sup>.</p>\n<p style=\"text-align:center;\">Δ<em>H</em><sup>⦵</sup><sub>f</sub> PCl<sub>3 </sub>(g) = −306.4 kJ mol<sup>−1</sup></p>\n<p style=\"text-align:center;\">Δ<em>H</em><sup>⦵</sup><sub>f</sub> PCl<sub>5 </sub>(g) = −398.9 kJ mol<sup>−1</sup></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the entropy change, Δ<em>S</em>, in J K<sup>−1 </sup>mol<sup>−1</sup>, for this reaction.</p>\n<p style=\"text-align:center;\"><img src=\"\"/></p>\n<p style=\"text-align:center;\"> </p>\n<p style=\"text-align:center;\"><em>Chemistry 2e, Chpt. 21 Nuclear Chemistry, Appendix G: Standard Thermodynamic Properties for Selected Substances https://openstax.org/books/chemistry-2e/pages/g-standard-thermodynamic-properties-for- selectedsubstances# page_667adccf-f900-4d86-a13d-409c014086ea © 1999-2021, Rice University. Except where otherwise noted, textbooks on this site are licensed under a Creative Commons Attribution 4.0 International License. (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/.</em></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the Gibbs free energy change (Δ<em>G</em>), in kJ mol<sup>−1</sup>, for this reaction at 25 °C. Use section 1 of the data booklet.</p>\n<p>If you did not obtain an answer in c(i) or c(ii) use −87.6 kJ mol<sup>−1</sup> and −150.5 J mol<sup>−1 </sup>K<sup>−1</sup> respectively, but these are not the correct answers.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the equilibrium constant, <em>K</em>, for this reaction at 25 °C, referring to section 1 of the data booklet.</p>\n<p>If you did not obtain an answer in (c)(iii), use Δ<em>G</em> = –43.5 kJ mol<sup>−1</sup>, but this is not the correct answer.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the equilibrium constant expression,<em> K</em><sub>c</sub>, for this reaction.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State, with a reason, the effect of an increase in temperature on the position of this equilibrium.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(vi).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"109\" src=\"\" width=\"282\"/></p>\n<p><em>Accept any diagram with each P joined to the other three. <br/>Accept any combination of dots, crosses and lines.</em></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>P<sub>4 </sub>(s) + 6Cl<sub>2 </sub>(g) → 4PCl<sub>3 </sub>(l) ✔</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Electron domain geometry</em>: tetrahedral ✔</p>\n<p><em>Molecular geometry</em>: trigonal pyramidal ✔</p>\n<p><em>Bond angle</em>: 100«°» ✔</p>\n<p><em><br/>Accept any value or range within the range 91−108«°» for <strong>M3</strong>.</em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>PCl<sub>5</sub> is non-polar</em>:</p>\n<p>symmetrical<br/><em><strong>OR</strong></em><br/>dipoles cancel ✔</p>\n<p> </p>\n<p><em>PCl<sub>4</sub>F is polar:</em></p>\n<p>P–Cl has a different bond polarity than P–F ✔</p>\n<p>non-symmetrical «dipoles»<br/><em><strong>OR</strong></em><br/>dipoles do not cancel ✔</p>\n<p><em><br/></em><em>Accept F more electronegative than/different electronegativity to Cl for <strong>M2</strong>.</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«−398.9 kJ mol<sup>−1</sup> − (−306.4 kJ mol<sup>−1</sup>) =» −92.5 «kJ mol<sup>−1</sup>» ✔</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«ΔS = 364.5 J K<sup>–1 </sup>mol<sup>–1</sup> – (311.7 J K<sup>–1 </sup>mol<sup>–1</sup> + 223.0 J K<sup>–1 </sup>mol<sup>–1</sup>)=» –170.2 «J K<sup>–1 </sup>mol<sup>–1</sup>» ✔</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«ΔS =» –0.1702 «kJ mol<sup>–1 </sup>K<sup>–1</sup>»<br/><em><strong>OR</strong></em><br/>298 «K» ✔</p>\n<p>«ΔG = –92.5 kJ mol<sup>–1</sup> – (298 K × –0.1702 kJ mol<sup>–1 </sup>K<sup>–1</sup>) =» –41.8 «kJ mol<sup>–1</sup>» ✔</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>\n<p><em>If –87.6 and -150.5 are used then –42.8.</em></p>\n<div class=\"question_part_label\">c(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«ΔG = –41.8 kJ mol<sup>–1</sup> = <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>-</mo><mfrac><mrow><mn>8</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant=\"normal\">J</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo> </mo><msup><mi mathvariant=\"normal\">K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow><mn>1000</mn></mfrac></math> × 298 K × ln<em>K</em>»<br/><em><strong>OR</strong></em><br/>«ΔG = –41800 J mol<sup>–1</sup> = –8.31 J mol<sup>–1 </sup>K<sup>–1</sup> × 298 K × ln<em>K</em>»<br/><br/>«ln<em>K</em> = =» 16.9 ✔</p>\n<p>«<em>K</em> = e<sup>16.9</sup> =» 2.19 × 10<sup>7</sup> ✔</p>\n<p> </p>\n<p><em>Award<strong> [2]</strong> for correct final answer.</em></p>\n<p><em>Accept range of 1.80 × 10<sup>6</sup>–2.60 × 10<sup>7</sup>.</em></p>\n<p><em>If –43.5 is used then 4.25 × 10<sup>7</sup>.</em></p>\n<div class=\"question_part_label\">c(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>K</em><sub>c</sub> =» <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mfenced close=\"]\" open=\"[\"><msub><mi>PCl</mi><mn>5</mn></msub></mfenced><mrow><mfenced close=\"]\" open=\"[\"><msub><mi>PCl</mi><mn>3</mn></msub></mfenced><mfenced close=\"]\" open=\"[\"><msub><mi>Cl</mi><mn>2</mn></msub></mfenced></mrow></mfrac></math> ✔</p>\n<div class=\"question_part_label\">c(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«shifts» left/towards reactants <em><strong>AND</strong> </em>«forward reaction is» exothermic/ΔH is negative ✔</p>\n<div class=\"question_part_label\">c(vi).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(vi).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"structure-2-models-of-bonding-and-structure"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-2-energy-cycles-in-reactions",
|
||
"reactivity-1-4-entropy-and-spontaneity",
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"structure-2-2-the-covalent-model"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21N.2.HL.TZ0.5",
|
||
"Question": "<div class=\"specification\">\n<p>Phosphoric acid, H<sub>3</sub>PO<sub>4</sub> can form three different salts depending on the extent of neutralisation by sodium hydroxide.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Formulate an equation for the reaction of one mole of phosphoric acid with one mole of sodium hydroxide.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Formulate <strong>two</strong> equations to show the amphiprotic nature of H<sub>2</sub>PO<sub>4</sub><sup>−</sup>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the concentration of H<sub>3</sub>PO<sub>4</sub> if 25.00 cm<sup>3</sup> is completely neutralised by the addition of 28.40 cm<sup>3</sup> of 0.5000 mol dm<sup>−3</sup> NaOH.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline the reasons that sodium hydroxide is considered a Brønsted–Lowry and Lewis base.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>H<sub>3</sub>PO<sub>4 </sub>(aq) + NaOH (aq) → NaH<sub>2</sub>PO<sub>4 </sub>(aq) + H<sub>2</sub>O (l) ✔</p>\n<p><em><br/>Accept net ionic equation.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>H<sub>2</sub>PO<sub>4</sub><sup>− </sup>(aq) + H<sup>+ </sup>(aq) → H<sub>3</sub>PO<sub>4 </sub>(aq) ✔</p>\n<p>H<sub>2</sub>PO<sub>4</sub><sup>− </sup>(aq) + OH<sup>− </sup>(aq) → HPO<sub>4</sub><sup>2− </sup>(aq) + H<sub>2</sub>O (l) ✔</p>\n<p><em><br/>Accept reactions of H<sub>2</sub>PO<sub>4</sub><sup>−</sup> with any acidic, basic or amphiprotic species, such as H<sub>3</sub>O<sup>+</sup>, NH<sub>3</sub> or H<sub>2</sub>O. </em></p>\n<p><em>Accept H<sub>2</sub>PO<sub>4</sub><sup>−</sup> (aq) → HPO<sub>4</sub><sup>2−</sup> (aq) + H<sup>+</sup> (aq) for <strong>M2</strong>.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>NaOH</mi><mo> </mo><mfrac><mrow><mn>28</mn><mo>.</mo><mn>40</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></mrow><mn>1000</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>5000</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>01420</mn><mo> </mo><mi>mol</mi></math>»</p>\n<p>«<math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>01420</mn><mo> </mo><mi>mol</mi></mrow><mn>3</mn></mfrac><mo>=</mo></math>» 0.004733 «mol» ✔</p>\n<p>«<math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>004733</mn><mo> </mo><mi>mol</mi></mrow><mstyle displaystyle=\"true\"><mfrac><mrow><mn>25</mn><mo>.</mo><mn>00</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></mrow><mn>1000</mn></mfrac></mstyle></mfrac><mo>=</mo></math>» 0.1893 «mol dm<sup>−3</sup>» ✔</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Brønsted–Lowry base:</em><br/>proton acceptor</p>\n<p><em><strong>AND</strong></em></p>\n<p><em>Lewis Base:</em><br/>e<sup>–</sup> pair donor/nucleophile ✔</p>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"tool-1-experimental-techniques",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21N.2.SL.TZ0.2",
|
||
"Question": "<div class=\"question\">\n<p>Explain the general increase in trend in the first ionization energies of the period 3 elements, Na to Ar.</p>\n</div>",
|
||
"Markscheme": "<div class=\"question\">\n<p>increasing number of protons</p>\n<p><em><strong>OR</strong></em></p>\n<p>increasing nuclear charge ✔</p>\n<p> </p>\n<p>«atomic» radius/size decreases</p>\n<p><em><strong>OR</strong></em></p>\n<p>same number of shells/electrons occupy same shell</p>\n<p><em><strong>OR</strong></em></p>\n<p>similar shielding «by inner electrons» ✔</p>\n</div>",
|
||
"Examiners report": "<div class=\"question\">\n[N/A]\n</div>",
|
||
"topics": [
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"structure-1-3-electron-configurations",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21N.2.SL.TZ0.3",
|
||
"Question": "<div class=\"specification\">\n<p>White phosphorus is an allotrope of phosphorus and exists as P<sub>4</sub>.</p>\n</div><div class=\"specification\">\n<p>An equilibrium exists between PCl<sub>3</sub> and PCl<sub>5</sub>.</p>\n<p style=\"text-align: center;\">PCl<sub>3 </sub>(g) + Cl<sub>2 </sub>(g) <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⇌</mo></math> PCl<sub>5 </sub>(g)</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Sketch the Lewis (electron dot) structure of the P<sub>4</sub> molecule, containing only single bonds.</p>\n<p> </p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Write an equation for the reaction of white phosphorus (P<sub>4</sub>) with chlorine gas to form phosphorus trichloride (PCl<sub>3</sub>).</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the electron domain and molecular geometry using VSEPR theory, and estimate the Cl–P–Cl bond angle in PCl<sub>3</sub>.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain the polarity of PCl<sub>3</sub>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the standard enthalpy change (<em>ΔH</em><sup>⦵</sup>) for the forward reaction in kJ mol<sup>−1</sup>.</p>\n<p style=\"text-align:center;\"><em>ΔH</em><sup>⦵</sup><sub>f</sub> PCl<sub>3 </sub>(g) = −306.4 kJ mol<sup>−1</sup></p>\n<p style=\"text-align:center;\"><em>ΔH</em><sup>⦵</sup><sub>f</sub> PCl<sub>5 </sub>(g) = −398.9 kJ mol<sup>−1</sup></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the equilibrium constant expression,<em> K</em><sub>c</sub>, for this reaction.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State, with a reason, the effect of an increase in temperature on the position of this equilibrium.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(iii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"109\" src=\"\" width=\"282\"/></p>\n<p><em><br/>Accept any diagram with each P joined to the other three. <br/></em></p>\n<p><em>Accept any combination of dots, crosses and lines.</em></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>P<sub>4 </sub>(s) + 6Cl<sub>2</sub> (g) → 4PCl<sub>3</sub> (l) ✔</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Electron domain geometry</em>: tetrahedral ✔</p>\n<p><em>Molecular geometry</em>: trigonal pyramidal ✔</p>\n<p><em>Bond angle</em>: 100«°» ✔</p>\n<p> </p>\n<p><em>Accept any value or range within the range 91−108«°» for <strong>M3</strong>.</em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>polar <em><strong>AND</strong> </em>unsymmetrical distribution of charge<br/><em><strong>OR</strong></em><br/>polar <em><strong>AND</strong> </em>dipoles do not cancel<br/><em><strong>OR</strong></em><br/>«polar as» dipoles «add to» give a «partial» positive «charge» at P and a «partial» negative «charge» at the opposite/Cl side of the molecule ✔</p>\n<p><em>Accept “polar <strong>AND</strong> unsymmetrical molecule”.</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«−398.9 kJ mol<sup>−1</sup> − (−306.4 kJ mol<sup>−1</sup>) =» −92.5 «kJ mol<sup>−1</sup>» ✔</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>K</em><sub>c</sub> =» <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mfenced close=\"]\" open=\"[\"><msub><mi>PCl</mi><mn>5</mn></msub></mfenced><mrow><mfenced close=\"]\" open=\"[\"><msub><mi>PCl</mi><mn>3</mn></msub></mfenced><mfenced close=\"]\" open=\"[\"><msub><mi>Cl</mi><mn>2</mn></msub></mfenced></mrow></mfrac></math> ✔</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«shifts» left/towards reactants <em><strong>AND</strong> </em>«forward reaction is» exothermic/ΔH is negative ✔</p>\n<div class=\"question_part_label\">c(iii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c(iii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"structure-2-models-of-bonding-and-structure"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-2-energy-cycles-in-reactions",
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"structure-2-2-the-covalent-model"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21N.2.SL.TZ0.5",
|
||
"Question": "<div class=\"specification\">\n<p>Phosphoric acid, H<sub>3</sub>PO<sub>4</sub>, can undergo stepwise neutralization, forming amphiprotic species.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Formulate an equation for the reaction of one mole of phosphoric acid with one mole of sodium hydroxide.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Formulate <strong>two</strong> equations to show the amphiprotic nature of H<sub>2</sub>PO<sub>4</sub><sup>−</sup>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the concentration of H<sub>3</sub>PO<sub>4</sub> if 25.00 cm<sup>3</sup> is completely neutralised by the addition of 28.40 cm<sup>3</sup> of 0.5000 mol dm<sup>−3</sup> NaOH.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline the reason that sodium hydroxide is considered a Brønsted–Lowry base.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>H<sub>3</sub>PO<sub>4 </sub>(aq) + NaOH (aq) → NaH<sub>2</sub>PO<sub>4 </sub>(aq) + H<sub>2</sub>O (l) ✔</p>\n<p><em><br/>Accept net ionic equation.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>H<sub>2</sub>PO<sub>4</sub><sup>−</sup> (aq) + H<sup>+</sup> (aq) → H<sub>3</sub>PO<sub>4</sub> (aq) ✔</p>\n<p>H<sub>2</sub>PO<sub>4</sub><sup>−</sup> (aq) + OH<sup>−</sup> (aq) → HPO<sub>4</sub><sup>2−</sup> (aq) + H<sub>2</sub>O (l) ✔</p>\n<p><em><br/>Accept reactions of H<sub>2</sub>PO<sub>4</sub><sup>−</sup> with any acidic, basic or amphiprotic species, such as H<sub>3</sub>O<sup>+</sup>, NH<sub>3</sub> or H<sub>2</sub>O. </em></p>\n<p><em>Accept H<sub>2</sub>PO<sub>4</sub><sup>−</sup> (aq) → HPO<sub>4</sub><sup>2−</sup> (aq) + H<sup>+</sup> (aq) for <strong>M2</strong>.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«NaOH <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>28</mn><mo>.</mo><mn>40</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></mrow><mn>1000</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>5000</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>01420</mn><mo> </mo><mi>mol</mi></math>»</p>\n<p>«<math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>01420</mn><mo> </mo><mi>mol</mi></mrow><mn>3</mn></mfrac><mo>=</mo></math>» 0.004733 «mol» ✔</p>\n<p>«<math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>004733</mn><mo> </mo><mi>mol</mi></mrow><mstyle displaystyle=\"true\"><mfrac><mrow><mn>25</mn><mo>.</mo><mn>00</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></mrow><mn>1000</mn></mfrac></mstyle></mfrac><mo>=</mo></math>» 0.1893 «mol dm<sup>−3</sup>» ✔</p>\n<p><em><br/>Award <strong>[2]</strong> for correct final answer.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«OH<sup>−</sup> is a» proton acceptor ✔</p>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"tool-1-experimental-techniques",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21N.2.SL.TZ0.7",
|
||
"Question": "<div class=\"specification\">\n<p>Alkanes undergo combustion and substitution.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the molar enthalpy of combustion of an alkane if 8.75 × 10<sup>−4</sup> moles are burned, raising the temperature of 20.0 g of water by 57.3 °C.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Formulate equations for the two propagation steps and one termination step in the formation of chloroethane from ethane.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<em>q</em> = <em>mc</em>Δ<em>T</em> = 20.0 g × 4.18 J g<sup>−1 </sup>°C<sup>−1</sup> × 57.3 °C =» 4790 «J» ✔</p>\n<p>«<math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>∆</mo><msub><mi>H</mi><mtext>c</mtext></msub><mfrac><mrow><mn>4790</mn><mo> </mo><mi mathvariant=\"normal\">J</mi></mrow><mstyle displaystyle=\"true\"><mfrac><mn>1000</mn><mrow><mn>8</mn><mo>.</mo><mn>75</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup><mo> </mo><mi>mol</mi></mrow></mfrac></mstyle></mfrac><mo>=</mo></math>» –5470 «kJ mol<sup>–1</sup>» ✔</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> for correct final answer. </em></p>\n<p><em>Accept answers in the range –5470 to –5480 «kJ mol<sup>−1</sup>». </em></p>\n<p><em>Accept correct answer in any units, e.g. –5.47 «MJ mol<sup>−1</sup>» or 5.47 x 10<sup>6 </sup>«J mol<sup>−1</sup>».</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Cl<strong>·</strong> + C<sub>2</sub>H<sub>6</sub> → <strong>·</strong>C<sub>2</sub>H<sub>5</sub> + HCl ✔</p>\n<p><strong>·</strong>C<sub>2</sub>H<sub>5</sub> + Cl<sub>2</sub> → Cl<strong>·</strong> + C<sub>2</sub>H<sub>5</sub>Cl ✔</p>\n<p><br/><strong>·</strong>C<sub>2</sub>H<sub>5</sub> + Cl<strong>·</strong> → C<sub>2</sub>H<sub>5</sub>Cl<br/><em><strong>OR</strong></em><br/>Cl<strong>·</strong> + Cl<strong>·</strong> → Cl<sub>2</sub><br/><em><strong>OR</strong></em><br/><strong>·</strong>C<sub>2</sub>H<sub>5</sub> + <strong>·</strong>C<sub>2</sub>H<sub>5</sub> → C<sub>4</sub>H<sub>10</sub> ✔</p>\n<p><em><br/>Do not penalize incorrectly placed radical sign, eg </em>C<sub>2</sub>H<sub>5</sub><em><strong>·</strong>.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-1-measuring-enthalpy-changes",
|
||
"reactivity-3-3-electron-sharing-reactions",
|
||
"tool-1-experimental-techniques"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21N.2.SL.TZ0.8",
|
||
"Question": "<div class=\"specification\">\n<p>Fast moving helium nuclei (<sup>4</sup>He<sup>2+</sup>) were fired at a thin piece of gold foil with most passing undeflected but a few deviating largely from their path. The diagram illustrates this historic experiment.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n<p style=\"text-align: center;\"><em>Figure from PPLATO / FLAP (Flexible Learning Approach To Physics), http://www.met.reading.ac.uk/pplato2/h-flap/</em><br/><em>phys8_1.html#top 1996 The Open University and The University of Reading.</em></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest what can be concluded about the gold atom from this experiment.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Subsequent experiments showed electrons existing in energy levels occupying various orbital shapes.</p>\n<p>Sketch diagrams of 1s, 2s and 2p.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the electron configuration of copper.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Most <sup>4</sup>He<sup>2+</sup> passing straight through:</em></p>\n<p>most of the atom is empty space<br/><em><strong>OR</strong></em><br/>the space between nuclei is much larger than <sup>4</sup>He<sup>2+</sup> particles<br/><em><strong>OR</strong></em><br/>nucleus/centre is «very» small «compared to the size of the atom» ✔</p>\n<p> </p>\n<p><em>Very few <sup>4</sup>He<sup>2+</sup> deviating largely from their path:</em></p>\n<p>nucleus/centre is positive «and repels <sup>4</sup>He<sup>2+</sup> particles»<br/><em><strong>OR</strong></em><br/>nucleus/centre is «more» dense/heavy «than <sup>4</sup>He<sup>2+</sup> particles and deflects them»<br/><em><strong>OR</strong></em><br/>nucleus/centre is «very» small «compared to the size of the atom» ✔</p>\n<p> </p>\n<p><em>Do <strong>not</strong> accept the same reason for both <strong>M1</strong> and <strong>M2</strong>.</em></p>\n<p><em>Accept “most of the atom is an electron cloud” for <strong>M1</strong>.</em></p>\n<p><em>Do not accept only “nucleus repels <sup>4</sup>He<sup>2+</sup> particles” for <strong>M2</strong>.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"174\" src=\"\" width=\"372\"/></p>\n<p>1s <em><strong>AND</strong> </em>2s as spheres ✔</p>\n<p>one or more 2p orbital(s) as figure(s) of 8 shape(s) of any orientation (p<sub>x</sub>, p<sub>y</sub> p<sub>z</sub>) ✔</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>4s<sup>1</sup>3d<sup>10</sup></p>\n<p><em><strong>OR</strong></em></p>\n<p>[Ar] 4s<sup>1</sup>3d<sup>10</sup> ✔</p>\n<p> </p>\n<p><em>Accept configuration with 3d before 4s.</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
|
||
"topics": [
|
||
"structure-1-models-of-the-particulate-nature-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"structure-1-2-the-nuclear-atom",
|
||
"structure-1-3-electron-configurations"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "21N.2.SL.TZ0.9",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest what can be concluded about the gold atom from this experiment.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b(i))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Subsequent experiments showed electrons existing in energy levels occupying various orbital shapes.\n </p>\n <p>\n Sketch diagrams of 1s, 2s and 2p.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the electron configuration of copper.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <em>\n Most\n <sup>\n 4\n </sup>\n He\n <sup>\n 2+\n </sup>\n passing straight through:\n </em>\n </p>\n <p>\n most of the atom is empty space\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n the space between nuclei is much larger than\n <sup>\n 4\n </sup>\n He\n <sup>\n 2+\n </sup>\n particles\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n nucleus/centre is «very» small «compared to the size of the atom» ✔\n </p>\n <p>\n <em>\n <br/>\n Very few\n <sup>\n 4\n </sup>\n He\n <sup>\n 2+\n </sup>\n deviating largely from their path:\n </em>\n </p>\n <p>\n nucleus/centre is positive «and repels\n <sup>\n 4\n </sup>\n He\n <sup>\n 2+\n </sup>\n particles»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n nucleus/centre is «more» dense/heavy «than\n <sup>\n 4\n </sup>\n He\n <sup>\n 2+\n </sup>\n particles and deflects them»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n nucleus/centre is «very» small «compared to the size of the atom» ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept the same reason for both\n <strong>\n M1\n </strong>\n and\n <strong>\n M2\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n Accept “most of the atom is an electron cloud” for\n <strong>\n M1\n </strong>\n .\n </em>\n </p>\n <p>\n <em>\n Do not accept only “nucleus repels\n <sup>\n 4\n </sup>\n He\n <sup>\n 2+\n </sup>\n particles” for\n <strong>\n M2\n </strong>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b(i))\n </div><div class=\"card-body\">\n <p>\n <img height=\"174\" src=\"\" width=\"372\"/>\n </p>\n <p>\n 1s\n <em>\n <strong>\n AND\n </strong>\n </em>\n 2s as spheres ✔\n </p>\n <p>\n one or more 2p orbital(s) as figure(s) of 8 shape(s) of any orientation (p\n <sub>\n x\n </sub>\n , p\n <sub>\n y\n </sub>\n p\n <sub>\n z\n </sub>\n ) ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b(ii))\n </div><div class=\"card-body\">\n <p>\n 1s\n <sup>\n 2\n </sup>\n 2s\n <sup>\n 2\n </sup>\n 2p\n <sup>\n 6\n </sup>\n 3s\n <sup>\n 2\n </sup>\n 3p\n <sup>\n 6\n </sup>\n 4s\n <sup>\n 1\n </sup>\n 3d\n <sup>\n 10\n </sup>\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n [Ar] 4s\n <sup>\n 1\n </sup>\n 3d\n <sup>\n 10\n </sup>\n ✔\n </p>\n <p>\n <em>\n <br/>\n Accept configuration with 3d before 4s.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"structure-1-models-of-the-particulate-nature-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"structure-1-2-the-nuclear-atom",
|
||
"structure-1-3-electron-configurations"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.HL.TZ1.3",
|
||
"Question": "<div class=\"specification\">\n<p>Ammonia is produced by the Haber–Bosch process which involves the equilibrium:</p>\n<p style=\"text-align: center;\">N<sub>2 </sub>(g) + 3 H<sub>2 </sub>(g) <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⇌</mo></math> 2 NH<sub>3 </sub>(g)</p>\n<p>The percentage of ammonia at equilibrium under various conditions is shown:</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n<p style=\"text-align: center;\"><sup>[The Haber Bosch Process [graph] Available at: https://commons.wikimedia.org/wiki/File:Ammonia_yield.png</sup><br/><sup>[Accessed: 16/07/2022].]</sup></p>\n</div><div class=\"specification\">\n<p>One factor affecting the position of equilibrium is the enthalpy change of the reaction.</p>\n</div><div class=\"specification\">\n<p>The standard free energy change, Δ<em>G</em><sup>⦵</sup>, for the Haber–Bosch process is –33.0 kJ at 298 K.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the expression for the equilibrium constant, <em>K</em><sub>c</sub>, for this equation.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State how the use of a catalyst affects the position of the equilibrium.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>With reference to the reaction quotient, Q, explain why the percentage yield increases as the pressure is increased at constant temperature.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the enthalpy change, Δ<em>H</em>, for the Haber–Bosch process, in kJ. Use Section 11 of the data booklet.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline why the value obtained in (b)(i) might differ from a value calculated using Δ<em>H</em><sub>f</sub> data.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Demonstrate that your answer to (b)(i) is consistent with the effect of an increase in temperature on the percentage yield, as shown in the graph.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State, giving a reason, whether the reaction is spontaneous or not at 298 K.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the value of the equilibrium constant, <em>K</em>, at 298 K. Use sections 1 and 2 of the data booklet.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the entropy change for the Haber–Bosch process, in J mol<sup>–1 </sup>K<sup>–1</sup> at 298 K. Use your answer to (b)(i) and section 1 of the data booklet.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline, with reference to the reaction equation, why this sign for the entropy change is expected.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(iv).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>K</mi><mi>c</mi></msub><mo>=</mo><mfrac><msup><mfenced close=\"]\" open=\"[\"><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></mfenced><mn>2</mn></msup><mrow><mfenced close=\"]\" open=\"[\"><msub><mi>N</mi><mn>2</mn></msub></mfenced><msup><mfenced close=\"]\" open=\"[\"><msub><mi>H</mi><mn>2</mn></msub></mfenced><mn>3</mn></msup></mrow></mfrac></math> ✔</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>same/unaffected/unchanged ✔</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>increasing pressure increases «all» concentrations<br/><em><strong>OR</strong></em><br/>increasing pressure decreases volume ✔</p>\n<p><em><br/>Q</em> becomes less than <em>K</em><sub>c</sub><br/><em><strong>OR</strong></em><br/>affects the lower line/denominator of Q expression more than upper line/numerator ✔</p>\n<p><br/>«for <em>Q</em> to once again equal <em>K</em><sub>c</sub>,» ratio of products to reactants increases<br/><em><strong>OR</strong></em><br/>«for <em>Q</em> to once again equal <em>K</em><sub>c</sub>,» equilibrium shifts to right/products ✔</p>\n<p> </p>\n<p><em>Award <strong>[2 max]</strong> for answers that do not refer to Q.</em></p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>bonds broken</em>: N≡N + 3(H-H) /«1 mol×»945 «kJ mol<sup>–1</sup>» + 3«mol»×436 «kJ mol<sup>–1</sup>» / 945 «kJ» + 1308 «kJ» / 2253 «kJ» ✔</p>\n<p><em>bonds formed</em>: 6(N-H) / 6«mol»×391 «kJ mol<sup>–1</sup>» / 2346 «kJ» ✔</p>\n<p>Δ<em>H</em> = «2253 kJ - 2346 kJ = » -93 «kJ» ✔</p>\n<p> </p>\n<p><em>Award <strong>[2 max]</strong> for (+)93 «kJ».</em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«N-H» bond enthalpy is an average «and may not be the precise value in NH<sub>3</sub>» ✔</p>\n<p> </p>\n<p><em>Accept ΔH<sub>f</sub> data are more accurate / are not average values.</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>increased temperature decreases yield «as shown on graph» ✔</p>\n<p>shifts equilibrium in endothermic/reverse direction ✔</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>spontaneous <em><strong>AND</strong> </em>Δ<em>G</em> < 0 ✔</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ln</mi><mo> </mo><mi>K</mi><mo>=</mo><mo>⟨</mo><mo>⟨</mo><mfrac><mrow><mo>∆</mo><mi>G</mi></mrow><mrow><mi>R</mi><mo>.</mo><mi>T</mi></mrow></mfrac><mo>=</mo><mo>⟩</mo><mo>⟩</mo><mo> </mo><mo>-</mo><mfrac><mrow><mo>-</mo><mn>33000</mn></mrow><mrow><mn>8</mn><mo>.</mo><mn>31</mn><mi>x</mi><mn>298</mn></mrow></mfrac><mo> </mo><mo>/</mo><mo>«</mo><mo>+</mo><mo>»</mo><mn>13</mn><mo>.</mo><mn>3</mn></math> ✔</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi><mo> </mo><mo>=</mo><mo> </mo><mn>6</mn><mo>.</mo><mn>13</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup></math> ✔</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>\n<p><em>Accept answers in the range 4.4×10<sup>5</sup> to 6.2×10<sup>5</sup> (arises from rounding of ln K).</em></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Δ<em>G</em> = «Δ<em>H</em> – <em>T</em>Δ<em>S</em> =» –93000 «J» – 298«K» × Δ<em>S</em> = –33000 ✔</p>\n<p>Δ<em>S</em> = 〈〈<math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mo>-</mo><mn>93000</mn><mo> </mo><mi mathvariant=\"normal\">J</mi><mo> </mo><mo>-</mo><mfenced><mrow><mo>-</mo><mn>33000</mn><mo> </mo><mi mathvariant=\"normal\">J</mi></mrow></mfenced></mrow><mrow><mn>298</mn><mo> </mo><mi mathvariant=\"normal\">K</mi></mrow></mfrac></math>〉〉 = –201 «J mol<sup>–1 </sup>K<sup>–1</sup>» ✔</p>\n<p> </p>\n<p><em>Do <strong>not</strong> penalize failure to convert kJ to J in <strong>both</strong> (c)(ii) and (c)(iii).</em></p>\n<p><em>Award <strong>[2]</strong> for correct final answer</em></p>\n<p><em>Award<strong> [1 max]</strong> for (+) 201 «J mol<sup>–1</sup> K<sup>–1</sup>».</em></p>\n<p><em>Award [2] for –101 or –100.5 «J mol<sup>–1</sup> K<sup>–1</sup>».</em></p>\n<div class=\"question_part_label\">c(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«forward reaction involves» decrease in number of moles «of gas» ✔</p>\n<div class=\"question_part_label\">c(iv).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Deducing the equilibrium constant expression for the given equation was done very well.</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Good performance; however, some misread the question as asking for the effect of a catalyst on equilibrium, rather than on the position of equilibrium.</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Mediocre performance; very few identified the effect of increasing pressure on all concentrations. Consequently, <em>Q</em> becomes less than <em>K</em><sub>c</sub> (it affects the denominator of <em>Q</em> expression more than the numerator) was not addressed. Question was often answered with respect to kinetics, namely greater frequency of collisions and speed of reaction rather than from equilibrium perspective based on effect of increase in pressure on concentrations.</p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Good performance; often the bond energy for single N–N bond instead of using it for the triple bond and not taking into consideration the coefficient of three in calculation of bond enthalpies of ammonia. Also, instead of using BE of bonds broken minus those that were formed, the operation was often reversed. Students should be encouraged to draw the Lewis structures in the equations first to determine the bonds being broken and formed.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Outlining why Δ<em>H</em><sub>rxn</sub> based on BE values differ due to being average compared to using Δ<em>H</em><sub>f</sub> values was generally done well.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Good performance; some did not relate that increased temperature decreases yield «as shown on graph» and others arrived at incorrect shift in equilibrium for the reaction.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Reason for the reaction being spontaneous was generally very done well indeed.</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Good performance; for ln<em>K</em> calculation in the equation ΔG = RTln<em>K</em>, ΔG unit had to be converted from kJ to J. This led to an error of 1000 in the value of ln<em>K</em> for some.</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Very good performance; since the unit for <em>S</em> is J mol<sup>˗1</sup> K<sup>˗1</sup>, Δ<em>G</em> and Δ<em>H</em> needed to be converted from kJ to J, but that was not done in some cases.</p>\n<div class=\"question_part_label\">c(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Average performance for sign of the entropy change expected for the reaction. Some answers were based on Δ<em>G</em> value rather than in terms of decrease in number of moles of gas or had no idea how to address the question.</p>\n<div class=\"question_part_label\">c(iv).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-2-energy-cycles-in-reactions",
|
||
"reactivity-1-4-entropy-and-spontaneity",
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-4-electron-pair-sharing-reactions"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.HL.TZ1.5",
|
||
"Question": "<div class=\"specification\">\n<p>Organomagnesium compounds can react with carbonyl compounds. One overall equation is:</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"specification\">\n<p>Compound B can also be prepared by reacting an alkene with water.</p>\n</div><div class=\"specification\">\n<p>Iodomethane is used to prepare CH<sub>3</sub>Mg<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>I</mtext></math>. It can also be converted into methanol:</p>\n<p style=\"text-align: center;\">CH<sub>3</sub><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>I</mtext></math> + HO<sup>–</sup> → CH<sub>3</sub>OH + <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>I</mtext></math><sup>–</sup></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the name of Compound B, applying International Union of Pure and Applied Chemistry (IUPAC) rules.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Compound A and Compound B are both liquids at room temperature and pressure. Identify the strongest intermolecular force between molecules of Compound A.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the number of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>σ</mtext></math> (sigma) and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">π</mi></math> (pi) bonds in Compound A.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the hybridization of the central carbon atom in Compound A.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Identify the isomer of Compound B that exists as optical isomers (enantiomers).</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw the structural formula of the alkene required.</p>\n<p style=\"text-align:left;\"><img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why the reaction produces more (CH<sub>3</sub>)<sub>3</sub>COH than (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>OH.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the structural formula of the repeating unit of the polymer formed from this alkene.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce what would be observed when Compound B is warmed with acidified aqueous potassium dichromate (VI).</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Identify the type of reaction.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline the requirements for a collision between reactants to yield products.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain the mechanism of the reaction using curly arrows to represent the movement of electron pairs.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The polarity of the carbon–halogen bond, C–X, facilitates attack by HO<sup>–</sup>.</p>\n<p>Outline, giving a reason, how the bond polarity changes going down group 17.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(iv).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>2-methylpropan-2-ol /2-methyl-2-propanol ✔</p>\n<p> </p>\n<p><em>Accept methylpropan-2-ol/ methyl-2-propanol.</em></p>\n<p><em>Do <strong>not</strong> accept 2-methylpropanol.</em></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>dipole-dipole ✔</p>\n<p> </p>\n<p><em>Do not accept van der Waals’ forces.</em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>σ</mtext></math>: 9<br/><em><strong>AND</strong></em><br/><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">π</mi></math>: 1 ✔</p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>sp<sup>2</sup> ✔</p>\n<div class=\"question_part_label\">a(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>butan-2-ol/CH<sub>3</sub>CH(OH)C<sub>2</sub>H<sub>5</sub> ✔</p>\n<div class=\"question_part_label\">a(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>carbocation formed from (CH<sub>3</sub>)<sub>3</sub>COH is more stable / (CH<sub>3</sub>)<sub>3</sub>C<sup>+</sup> is more stable than (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub><sup>+</sup> ✔</p>\n<p><br/>«because carbocation has» greater number of alkyl groups/lower charge on the atom/higher e<sup>-</sup> density<br/><em><strong>OR</strong></em><br/>«greater number of alkyl groups» are more electron releasing<br/><em><strong>OR</strong></em><br/>«greater number of alkyl groups creates» greater inductive/+I effect ✔</p>\n<p> </p>\n<p><em>Do <strong>not</strong> award any marks for simply quoting Markovnikov’s rule.</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"183\" src=\"\" width=\"213\"/></p>\n<p><em>Do <strong>not</strong> penalize missing brackets or n.</em></p>\n<p><em>Do <strong>not</strong> award mark if continuation bonds are not shown.</em></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>no change «in colour/appearance/solution» ✔</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«nucleophilic» substitution<br/><em><strong>OR</strong></em><br/>SN2 ✔</p>\n<p><em><br/>Accept “hydrolysis”.</em></p>\n<p><em>Accept SN1</em></p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>energy/E ≥ activation energy/E<sub>a</sub> ✔</p>\n<p>correct orientation «of reacting particles»<br/><em><strong>OR</strong></em><br/>correct geometry «of reacting particles» ✔</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"106\" src=\"\" width=\"551\"/></p>\n<p>curly arrow going from lone pair/negative charge on O in <sup>-</sup>OH to C ✔</p>\n<p>curly arrow showing I leaving ✔</p>\n<p>representation of transition state showing negative charge, square brackets and partial bonds ✔</p>\n<p> </p>\n<p><em>Accept OH<sup>-</sup> with or without the lone pair.</em></p>\n<p><em>Do <strong>not</strong> allow curly arrows originating on H, rather than the -, in OH<sup>-</sup>.</em></p>\n<p><em>Accept curly arrows in the transition state.</em></p>\n<p><em>Do not penalize if HO and I are not at 180°.</em></p>\n<p><em>Do not award M3 if OH–C bond is represented.</em></p>\n<p><em>Award <strong>[2 max]</strong> if S<sub>N</sub>1 mechanism shown.</em></p>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>decreases/less polar <em><strong>AND</strong> </em>electronegativity «of the halogen» decreases ✔</p>\n<p> </p>\n<p><em>Accept “decreases” <strong>AND</strong> a correct comparison of the electronegativity of two halogens.</em></p>\n<p><em>Accept “decreases” <strong>AND</strong> “attraction for valence electrons decreases”.</em></p>\n<div class=\"question_part_label\">d(iv).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Naming the organic compound using IUPAC rules was generally done well.</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Mediocre performance in stating the number of σ (sigma) and π (pi) bonds in propanone; the common answer was 3 σ and 1 π instead of 9 σ and 1 π, suggesting the three C-H σ bonds in each of the two methyl groups were ignored.</p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>sp<sup>2</sup> hybridization of the central carbon atom in the ketone was very done well.</p>\n<div class=\"question_part_label\">a(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Mediocre performance; some identified 2-methylpropan-1-ol or -2-ol, instead butan-2-ol/CH<sub>3</sub>CH(OH)C<sub>2</sub>H<sub>5</sub> as the isomer that exists as an optical isomer.</p>\n<div class=\"question_part_label\">a(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Good performance; some had a H and CH<sub>3</sub> group on each C atom across double bond instead of having two H atoms on one C and two CH<sub>3</sub> groups on the other.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Poor performance, particularly in light of past feedback provided in similar questions since there was repeated reference simply to Markovnikov's rule, without any explanation.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Mediocre performance; deducing structural formula of repeating unit of the polymer was challenging in which continuation bonds were sometimes missing, or structure included a double bond or one of the CH<sub>3</sub> group was missing.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Mediocre performance; deducing whether the tertiary alcohol could be oxidized solicited mixed responses ranging from the correct one, namely no change (in colour, appearance or solution), to tertiary alcohol will be reduced, or oxidized, or colour will change will occur, and such.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Excellent performance on the type of reaction but with some incorrect answers such as alkane substitution, free radical substitution or electrophilic substitution.</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Good performance. For the requirements for a collision between reactants to yield products, some suggested necessary, sufficient or enough energy or even enough activation energy instead of energy/<em>E ≥ </em>activation energy/<em>E</em><sub>a</sub>.</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Mechanism for SN2 not done well. Often the negative charge on OH was missing, the curly arrow was not going from lone pair/negative charge on O in -OH to C, or the curly arrow showing I leaving placed incorrectly and specially the negative charge was missing in the transition state. Formation of a carbocation intermediate indicating SN1 mechanism could score a maximum of 2 marks.</p>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Good performance on how the polarity of C-X bond changes going down group 17.</p>\n<div class=\"question_part_label\">d(iv).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-2-4-from-models-to-materials",
|
||
"structure-3-1-the-periodic-table-classification-of-elements",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.HL.TZ1.6",
|
||
"Question": "<div class=\"specification\">\n<p>Nitric acid is usually produced by the oxidation of ammonia.</p>\n</div><div class=\"specification\">\n<p>A mixture of nitric acid and sulfuric acid can be used to convert benzene to nitrobenzene, C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub>.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw arrows in the boxes to represent the electron configuration of a nitrogen atom.</p>\n<p style=\"text-align:left;\"><img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce a Lewis (electron dot) structure of the nitric acid molecule, HNO<sub>3</sub>, that obeys the octet rule, showing any non-zero formal charges on the atoms.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain the relative lengths of the three bonds between N and O in nitric acid.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State a technique used to determine the length of the bonds between N and O in solid HNO<sub>3</sub>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Write an equation for the reaction between the acids to produce the electrophile, NO<sub>2</sub><sup>+</sup>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw the structural formula of the carbocation intermediate produced when this electrophile attacks benzene.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the number of signals that you would expect in the <sup>1</sup>H NMR spectrum of nitrobenzene and the relative areas of these.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p><em><br/>Accept <strong>all</strong> 2p electrons pointing downwards.</em></p>\n<p><em>Accept half arrows instead of full arrows.</em></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"139\" src=\"\" width=\"188\"/></p>\n<p>bonds and non-bonding pairs correct ✔</p>\n<p>formal charges correct ✔</p>\n<p> </p>\n<p><em>Accept dots, crosses or lines to represent electron pairs.</em></p>\n<p><em>Do <strong>not</strong> accept resonance structures with delocalised bonds/electrons.</em></p>\n<p><em>Accept + and – sign respectively.</em></p>\n<p><em>Do not accept a bond between nitrogen and hydrogen.</em></p>\n<p><em>For an incorrect Lewis structure, allow ECF for non-zero formal charges.</em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Any three of:</em></p>\n<p>two N-O same length/order ✔<br/>delocalization/resonance ✔</p>\n<p>N-OH longer «than N-O»<br/><em><strong>OR</strong></em><br/>N-OH bond order 1 <em><strong>AND</strong> </em>N-O bond order 1½ ✔</p>\n<p> </p>\n<p><em>Award <strong>[2 max]</strong> if bond strength, rather than bond length discussed.</em></p>\n<p><em>Accept N-O between single and double bond <strong>AND</strong> N-OH single bond.</em></p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>X-ray crystallography ✔</p>\n<div class=\"question_part_label\">a(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>HNO<sub>3</sub> + 2H<sub>2</sub>SO<sub>4</sub> <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⇌</mo></math> NO<sub>2</sub><sup>+</sup> + H<sub>3</sub>O<sup>+</sup> + 2HSO<sub>4</sub><sup>-</sup> ✔</p>\n<p> </p>\n<p><em>Accept “HNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⇌</mo></math> NO<sub>2</sub><sup>+</sup> + H<sub>2</sub>O + HSO<sub>4</sub><sup>-</sup>”.</em></p>\n<p><em>Accept “HNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⇌</mo></math> H<sub>2</sub>NO<sub>3</sub><sup>+</sup> + HSO<sub>4</sub><sup>-</sup>” <strong>AND</strong> “H<sub>2</sub>NO<sub>3</sub><sup>+</sup> <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⇌</mo></math> NO<sub>2</sub><sup>+</sup> + H<sub>2</sub>O”.</em></p>\n<p><em>Accept single arrows instead of equilibrium signs.</em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"200\" src=\"\" width=\"243\"/></p>\n<p> </p>\n<p><em>Accept any of the five structures.</em></p>\n<p><em>Do <strong>not</strong> accept structures missing the positive charge.</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Number of signals</em>: three/3 ✔</p>\n<p><em>Relative areas</em>: 2 : 2 : 1 ✔</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Drawing arrows in the boxes to represent the electron configuration of a nitrogen atom was done extremely well.</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Drawing the Lewis structure of HNO<sub>3</sub> was performed extremely poorly with structures that included H bonded to N, no double bond or a combination of single, double and even a triple bond or incorrect structures with dotted lines to reflect resonance. Many did not calculate non-zero formal charges.</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Poorly done; some explained relative bond strengths between N and O in HNO<sub>3</sub>, not relative lengths; others included generic answers such as triple bond is shortest, double bond is longer, single longest.</p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>A majority could not state the technique to determine length of bonds; answers included NMR, IR, and such instead of X-ray crystallography.</p>\n<div class=\"question_part_label\">a(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many had difficulties writing the balanced equation(s) for the formation of the nitronium ion.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Again, many had difficulty drawing the structural formula of the carbocation intermediate produced in the reaction.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Deducing the number of signals in the 1H NMR spectrum of nitrobenzene, which depend on the number of different hydrogen environments, was done poorly. Also, instead of relative areas, the common answer included chemical shift (ppm) values.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"structure-1-3-electron-configurations",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.HL.TZ2.3",
|
||
"Question": "<div class=\"specification\">\n<p>Standard electrode potential values, <em>E</em><sup>⦵</sup>, can be used to predict spontaneity.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Iron(II) is oxidized by bromine.</p>\n<p style=\"text-align:center;\">2Fe<sup>2+</sup> (aq) + Br<sub>2</sub> (l) <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⇌</mo></math> 2Fe<sup>3+</sup> (aq) + 2Br<sup>−</sup> (aq)</p>\n<p>Calculate the <em>E</em><sup>⦵</sup><sub>cell</sub>, in V, for the reaction using section 24 of the data booklet.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine, giving a reason, if iodine will also oxidize iron(II). </p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Molten zinc chloride undergoes electrolysis in an electrolytic cell at 450 °C.</p>\n<p>Deduce the half-equations for the reaction at each electrode.</p>\n<p><img src=\"\"/></p>\n<p> </p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the overall cell reaction including state symbols. Use section 7 of the data booklet.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>«<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><msup><mi>E</mi><mo>⦵</mo></msup><mtext>cell</mtext></msub></math> = 1.09 – 0.77 =» 0.32 «V» ✔</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«2Fe<sup>2+</sup> (aq) + <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>I</mtext></math><sub>2 </sub>(s) → 2Fe<sup>3+</sup> (aq) + 2<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>I</mtext></math><sup>–</sup> (aq) »</p>\n<p>no/non-spontaneous <em><strong>AND</strong> </em><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><msup><mi>E</mi><mover><mtext>O</mtext><mo>¨</mo></mover></msup><mtext>cell</mtext></msub></math> «= 0.54 – 0.77 »= –0.23 «V»/ <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>E</mi><mover><mtext>O</mtext><mo>¨</mo></mover></msup><mo><</mo><mn>0</mn></math><br/><em><strong>OR</strong></em><br/>no <em><strong>AND</strong> </em>reduction potential of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>I</mtext></math><sub>2</sub> lower «than Fe3<sup>+</sup> »/ 0.54 <0.77 ✔</p>\n<p> </p>\n<p><em>Accept “standard electrode potential of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>I</mi></math><sub>2</sub> lower /less positive than iron”.</em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Cathode (negative electrode):</p>\n<p>Zn<sup>2+</sup> + 2e<sup>−</sup> → Zn (l) ✔</p>\n<p> </p>\n<p>Anode (positive electrode):</p>\n<p>2Cl<sup>−</sup> → Cl<sub>2</sub> (g) + 2e<sup>−</sup><br/><em><strong>OR</strong></em><br/>Cl<sup>−</sup> → ½ Cl<sub>2</sub> (g) + e<sup>−</sup> ✔</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>ZnCl<sub>2</sub> (l) → Zn (l) + Cl<sub>2</sub> (g)</p>\n<p>balanced equation ✔</p>\n<p>correct state symbols ✔</p>\n<p> </p>\n<p><em>Accept ionic equation.</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Only 50% got this straightforward calculation right, the most common error being to multiply both <em>E</em><sub>0</sub> values by 2, reflecting a lack of practice with this type of exercises.</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Only 10% were able to correctly justify the feasibility of the reaction with I<sub>2</sub>; the MS showed the best answer using the E(v) values but also allowed simpler explanations referring to E<sub>0</sub> of iron; even then many candidates wrote Fe<sup>+2</sup> instead of Fe<sup>+3</sup>, understandably perhaps as this was mentioned in the question. However, it also revealed some difficulty in using and understanding data from the <em>E</em><sub>0</sub> table in the data booklet.</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>3(bi)/(bii) Answers to both these questions revealed that many candidates struggle to conceptualize the equations that describe electrolysis. The question asked for products of the easiest case of electrolysis, a molten salt. However, many candidates proposed oxidation or reduction equations at both electrodes, or Zn and Cl<sub>2</sub> (with no charge) as the initial species rather than the product; the average mark was 1.2/2 as only 55% answered correctly.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>3(bi)/(bii) Answers to both these questions revealed that many candidates struggle to conceptualize the equations that describe electrolysis. The question asked for products of the easiest case of electrolysis, a molten salt. However, many candidates proposed oxidation or reduction equations at both electrodes, or Zn and Cl<sub>2</sub> (with no charge) as the initial species rather than the product; the average mark was 1.2/2 as only 55% answered correctly.</p>\n<p>The determination of the states proved to be even more difficult, with many stating the ions were aqueous in spite of the fact that the question is clearly about molten zinc chloride. Allowing ECF for the overall equation allowed marks for many candidates, but very few realised that both ionic species in ZnCl<sub>2</sub> were actually liquid (being a molten salt). As a result, correct answers were below 45% and the average mark was 0.9/2.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div>",
|
||
"topics": [
|
||
"structure-2-models-of-bonding-and-structure"
|
||
],
|
||
"subtopics": [
|
||
"structure-2-2-the-covalent-model"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.HL.TZ2.4",
|
||
"Question": "<div class=\"specification\">\n<p>Hydrogen and iodine react to form hydrogen iodide.</p>\n<p style=\"text-align: center;\">H<sub>2</sub> (g) + <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>I</mtext></math><sub>2</sub> (g) <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⇌</mo></math> 2H<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>I</mtext></math> (g)</p>\n</div><div class=\"specification\">\n<p>The following experimental data was obtained.</p>\n<p><img src=\"\"/></p>\n</div><div class=\"specification\">\n<p>Consider the reaction of hydrogen with solid iodine.</p>\n<p style=\"text-align: center;\">H<sub>2</sub> (g) + <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>I</mtext></math><sub>2</sub> (s) <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⇌</mo></math> 2H<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>I</mtext></math> (g) Δ<em>H</em><sup>⦵</sup> = +53.0 kJ mol<sup>−1</sup></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the order of reaction with respect to hydrogen.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the rate expression for the reaction.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the value of the rate constant stating its units.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State <strong>two</strong> conditions necessary for a successful collision between reactants.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the equilibrium constant expression, <em>K</em><sub>c</sub>, for this reaction.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the entropy change of reaction, Δ<em>S</em><sup>⦵</sup>, in J K<sup>−1</sup> mol<sup>−1</sup>.</p>\n<p style=\"text-align:center;\"><img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Predict, giving a reason, how the value of the ΔS<sup>⦵</sup><sub>reaction</sub> would be affected if <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mtext>I</mtext><mn>2</mn></msub></math> (g) were used as a reactant.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the Gibbs free energy change, Δ<em>G</em><sup>⦵</sup>, in kJ mol<sup>−1</sup>, for the reaction at 298 K. Use section 1 of the data booklet.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the equilibrium constant, <em>K</em><sub>c</sub>, for this reaction at 298 K. Use your answer to (d)(iii) and sections 1 and 2 of the data booklet.</p>\n<p>(If you did not obtain an answer to (d)(iii) use a value of 2.0 kJ mol<sup>−1</sup>, although this is not the correct answer).</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(iv).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>first order ✔</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Rate=<em>k</em> [H<sub>2</sub>] [<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>I</mtext></math><sub>2</sub>]</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><msup><mi mathvariant=\"normal\">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>2</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>20</mn></math> ✔</p>\n<p>mol<sup>–1</sup> dm<sup>3</sup> s<sup>–1</sup> ✔</p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>E</em> ≥ <em>E</em><sub>a</sub> <em><strong>AND</strong> </em>appropriate «collision» geometry/correct orientation ✔</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>K</mi><mi mathvariant=\"normal\">c</mi></msub><mo>=</mo><mfrac><msup><mfenced close=\"]\" open=\"[\"><mi>HI</mi></mfenced><mn>2</mn></msup><mrow><mfenced close=\"]\" open=\"[\"><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></mfenced><mfenced close=\"]\" open=\"[\"><msub><mi mathvariant=\"normal\">I</mi><mn>2</mn></msub></mfenced></mrow></mfrac></math> ✔</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«Δ<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><msup><mi>S</mi><mo>⦵</mo></msup><mtext>reaction</mtext></msub></math> = 2 × 206.6 – (130.6 + 116.1) =» 166.5 «J K<sup>–1</sup> mol<sup>–1</sup>» ✔</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Δ<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><msup><mi>S</mi><mo>⦵</mo></msup><mtext>reaction</mtext></msub></math> lower/less positive <em><strong>AND</strong> </em>same number of moles of gas</p>\n<p><em><strong>OR</strong></em></p>\n<p>Δ<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><msup><mi>S</mi><mo>⦵</mo></msup><mtext>reaction</mtext></msub></math> lower/less positive <em><strong>AND</strong> </em>a solid has less entropy than a gas ✔</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«Δ<em>G</em><sup>⦵</sup> = 53.0 kJ mol<sup>–1</sup> – (298K × 0.1665 kJ K<sup>–1</sup> mol<sup>–1</sup>) =» 3.4 «kJ mol<sup>–1</sup>» ✔</p>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«ln <em>K</em><sub>c</sub>= – (3.4 × 10<sup>3</sup> J mol<sup>–1</sup> /8.31 J K<sup>–1</sup> mol<sup>–1</sup> × 298 K)» = –1.37 ✔</p>\n<p>«<em>K</em><sub>c</sub> =» 0.25 ✔</p>\n<p><em>Award <strong>[2]</strong> for “0.45” for the use of 2.0 kJ mol<sup>–1</sup> for ΔG</em><sup>⦵</sup><em>.</em></p>\n<div class=\"question_part_label\">d(iv).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>4(a)(i)-(iii): Deduction of rate orders and rate expression were very well done overall, with occasional errors in the units of the rate constant, but clearly among the best answered questions.</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Generally well answered by all but very weak candidates. Some teachers thought this should be a 2-mark question but actually the marks were generally missed when students mentioned both required conditions but failed to refer the necessary energy to <em>E<sub>a</sub></em>.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>One of the best answered questions.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>ΔS was well calculated in general except for some inverted calculations or failure to consider the ratios of the reactants.<br/><br/></p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Some candidates confused the entropy change in this situation with absolute entropy of a solid and gas, or having realised that entropy would decrease lacked clarity in their explanations and lost the mark.</p>\n<p>4(d)(ii)-(d)(iv): marks were lost due to inconsistency of units throughout, i.e., not because answers were given in different units to those required, but because candidates failed to convert all data to the same unit for calculations.</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(iv).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-2-how-much-how-fast-and-how-far"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-4-entropy-and-spontaneity",
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.HL.TZ2.5",
|
||
"Question": "<div class=\"specification\">\n<p>Iron(II) disulfide, FeS<sub>2</sub>, has been mistaken for gold.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the full electronic configuration of Fe<sup>2+</sup>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why there is a large increase from the 8th to the 9th ionization energy of iron.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the oxidation state of sulfur in iron(II) disulfide, FeS<sub>2</sub>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Describe the bonding in iron, Fe (s).</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>6</sup> ✔</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Any two of:</em></p>\n<p>IE<sub>9</sub>: electron in lower energy level<br/><em><strong>OR</strong></em><br/>IE<sub>9</sub>: more stable/full electron level ✔</p>\n<p><br/>IE<sub>9</sub>: electron closer to nucleus<br/><em><strong>OR</strong></em><br/>IE<sub>9</sub>: electron more tightly held by nucleus ✔</p>\n<p><br/>IE<sub>9</sub>: less shielding by «complete» inner levels ✔</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>–1 ✔</p>\n<p> </p>\n<p><em>Accept “– I”.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>electrostatic attraction/hold between «lattice of» positive ions/cations <em><strong>AND</strong> </em>delocalized «valence» electrons ✔</p>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Mostly well done which was a pleasant surprise since this is not overly easy, predictably some gave [Ar] 4s<sup>2</sup> 3d<sup>4</sup>.</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Despite some confusion regarding which sub-level the electrons were being removed from, many candidates were able to make at least one valid point, commonly in terms of lower energy/ full sub level/closer to nucleus.</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was an easy question, yet 30% of the candidates were unable to work it out; some wrote the oxidation state in the conventionally incorrect format, 1- and lost the mark.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates knew the bonding in Fe is metallic but some did not “describe” it or missed the type of attraction, a minor mistake; others referred to nuclei or protons instead of cations/positive ions. In some cases, candidates referred too ionic bonding, probably still thinking of FeS<sub>2</sub> (not reading the question well). Overall, only 30% answered satisfactorily.</p>\n<div class=\"question_part_label\">c.</div>\n</div>",
|
||
"topics": [
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"structure-1-3-electron-configurations",
|
||
"structure-2-3-the-metallic-model",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.HL.TZ2.6",
|
||
"Question": "<div class=\"specification\">\n<p>Sulfur trioxide is produced from sulfur dioxide.</p>\n<p style=\"text-align: center;\">2SO<sub>2 </sub>(g) + O<sub>2 </sub>(g) <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⇌</mo></math> 2SO<sub>3 </sub>(g) Δ<em>H</em> = −196 kJ mol<sup>−1</sup></p>\n</div><div class=\"specification\">\n<p>The reaction between sulfur dioxide and oxygen can be carried out at different temperatures.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline, giving a reason, the effect of a catalyst on a reaction.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>On the axes, sketch Maxwell–Boltzmann energy distribution curves for the reacting species at two temperatures T<sub>1</sub> <strong>and</strong> T<sub>2</sub>, where T<sub>2</sub> > T<sub>1</sub>.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain the effect of increasing temperature on the yield of SO<sub>3</sub>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw the Lewis structure of SO<sub>3</sub>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain the electron domain geometry of SO<sub>3</sub>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the product formed from the reaction of SO<sub>3</sub> with water.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the meaning of a strong Brønsted–Lowry acid.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>increases rate <em><strong>AND</strong> </em>lower <em>E</em><sub>a</sub> ✔</p>\n<p>provides alternative pathway «with lower <em>E</em><sub>a</sub>»<br/><em><strong>OR</strong></em><br/>more/larger fraction of molecules have the «lower» <em>E</em><sub>a</sub> ✔</p>\n<p> </p>\n<p><em>Accept description of how catalyst lowers E<sub>a</sub> for M2 (e.g. “reactants adsorb on surface «of catalyst»”, “reactant bonds weaken «when adsorbed»”, “helps favorable orientation of molecules”).</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"243\" src=\"\" width=\"344\"/></p>\n<p>both axes correctly labelled ✔</p>\n<p>peak of T<sub>2</sub> curve lower <em><strong>AND</strong> </em>to the right of T<sub>1</sub> curve ✔</p>\n<p>lines begin at origin <em><strong>AND</strong> </em>correct shape of curves <em><strong>AND</strong> </em>T<sub>2</sub> must finish above T<sub>1</sub> ✔</p>\n<p> </p>\n<p><em>Accept “probability «density» / number of particles / N / fraction” on y-axis.</em></p>\n<p><em>Accept “kinetic E/KE/E<sub>k</sub>” but not just “Energy/E” on x-axis.</em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>decrease <em><strong>AND</strong> </em>equilibrium shifts left / favours reverse reaction ✔</p>\n<p>«forward reaction is» exothermic / ΔH is negative ✔</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img height=\"112\" src=\"\" width=\"133\"/>✔</p>\n<p> </p>\n<p><em>Note:</em></p>\n<p><img height=\"244\" src=\"\" width=\"489\"/></p>\n<p><em>Accept any of the above structures as formal charge is not being assessed.</em></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>three electron domains «attached to the central atom» ✔</p>\n<p>repel/as far away as possible /120° «apart» ✔</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>sulfuric acid/H<sub>2</sub>SO<sub>4</sub> ✔</p>\n<p><em><br/>Accept “disulfuric acid/H<sub>2</sub>S<sub>2</sub>O<sub>7</sub>”.</em></p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>fully ionizes/dissociates ✔</p>\n<p>proton/H<sup>+</sup> «donor »✔</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Overall well answered though some answers were directed to explain the specific example rather than the simple and standard definition of the effect of a catalyst.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Few got the 3 marks for this standard question (average mark 1.7), the most common error being incomplete/incorrect labelling of axes, curves beginning above 0 on y-axis or inverted curves.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates got one mark at least, sometimes failing to state the effect on the production of SO<sub>3</sub> though they knew this quite obviously. This failure to read the question properly also resulted in an incorrect prediction based exclusively on kinetics instead of using the information provided to guide their answers.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Drawing the Lewis structure of SO<sub>3</sub> proved to be challenging, with lots of incorrect shapes, lone pair on S, etc.; accepting all resonant structures allowed many candidates to get the mark which was fair considering no formal charge estimation was required.</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most were focussed on the shape itself instead of explaining what led them to suggest that shape; number of electron domains allowed most candidates to get one mark and eventually a mention of bond angles resulted in only 35% getting both marks. In general, students were not able to provide clear explanations for the shape (not a language issue) but rather were happy to state the molecular geometry which they knew, but wasn't what was actually required for the mark.</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>6(d)(i)-(ii): These simple questions could be expected to be answered by all HL candidates. However 20% of the candidates suggested hydroxides or hydrogen as products of an aqueous dissolution of sulphur oxide. In the case of the definition of a strong Brønsted-Lowry acid, only 50% got both marks, often failing to define \"strong\" but in other cases defining them as bases even.</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d(ii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.HL.TZ2.7",
|
||
"Question": "<div class=\"specification\">\n<p>The overall equation for the production of hydrogen cyanide, HCN, is shown below.</p>\n<p style=\"text-align: center;\">CH<sub>4</sub> (g) + NH<sub>3</sub> (g) +<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>3</mn><mn>2</mn></mfrac></math>O<sub>2</sub> (g) → HCN (g) + 3H<sub>2</sub>O (g)</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State why NH<sub>3</sub> is a Lewis base.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the pH of a 1.00 × 10<sup>−2</sup> mol dm<sup>−3</sup> aqueous solution of ammonia.</p>\n<p style=\"text-align:center;\">p<em>K</em><sub>b</sub> = 4.75 at 298 K.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Justify whether a 1.0 dm<sup>3</sup> solution made from 0.10 mol NH<sup>3</sup> and 0.20 mol HCl will form a buffer solution.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Sketch the shape of one sigma (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>σ</mtext></math>) and one pi (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">π</mi></math>) bond.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Identify the number of sigma and pi bonds in HCN.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the hybridization of the carbon atom in HCN.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest why hydrogen chloride, HCl, has a lower boiling point than hydrogen cyanide, HCN.</p>\n<p style=\"text-align:center;\"><img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why transition metal cyanide complexes are coloured.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>donates «lone/non-bonding» pair of electrons ✔</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Kb</em> = 10<sup>-4.75</sup> /1.78 x 10<sup>-5</sup><br/><em><strong>OR</strong></em><br/><em>Kb</em> = <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><msup><mfenced close=\"]\" open=\"[\"><msup><mi>OH</mi><mo>-</mo></msup></mfenced><mn>2</mn></msup><mfenced close=\"]\" open=\"[\"><msub><mi>NH</mi><mn>3</mn></msub></mfenced></mfrac></math> ✔</p>\n<p> </p>\n<p>[OH<sup>–</sup>] = « <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mfenced><mrow><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>75</mn></mrow></msup></mrow></mfenced></msqrt></math> =» 4.22 × 10<sup>–4</sup> «(mol dm<sup>–3</sup>)» ✔</p>\n<p> </p>\n<p>pOH« = –log<sub>10</sub> (4.22 × 10<sup>–4</sup>)» = 3.37<br/><em><strong>AND</strong></em><br/>pH = «14 – 3.37» = 10.6<br/><em><strong><br/>OR</strong></em><br/><br/>[H<sup>+</sup>]« =<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>14</mn></mrow></msup></mrow><mrow><mn>4</mn><mo>.</mo><mn>22</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup></mrow></mfrac></math>» = 2.37 × 10<sup>–11</sup><br/><em><strong>AND</strong></em><br/>pH« = –log<sub>10</sub> 2.37 × 10<sup>–11</sup>» = 10.6 ✔</p>\n<p> </p>\n<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>no <em><strong>AND</strong> </em>is not a weak acid conjugate base system</p>\n<p><em><strong>OR</strong></em></p>\n<p>no <em><strong>AND</strong> </em>weak base «totally» neutralized/ weak base is not in excess</p>\n<p><em><strong>OR</strong></em></p>\n<p>no <em><strong>AND</strong> </em>will not neutralize small amount of acid ✔</p>\n<p> </p>\n<p><em>Accept “no <strong>AND</strong> contains 0.10 mol NH<sub>4</sub>Cl + 0.10 mol HCl”.</em></p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Sigma (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>σ</mi></math>):</em></p>\n<p> <img src=\"\"/></p>\n<p> </p>\n<p><em>Pi (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math>):</em></p>\n<p><img src=\"\"/></p>\n<p> </p>\n<p><em>Accept overlapping p-orbital(s) with both lobes of equal size/shape.</em></p>\n<p><em>Shaded areas are not required in either diagram.</em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Sigma (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>σ</mtext></math>): 2 <em><strong>AND</strong> </em>Pi (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">π</mi></math>): 2 ✔</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>sp ✔</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>HCN has stronger dipole–dipole attraction ✔</p>\n<p> </p>\n<p><em>Do <strong>not</strong> accept reference to H-bonds.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Any three from:</em></p>\n<p>partially filled d-orbitals ✔</p>\n<p>«CN- causes» d-orbitals «to» split ✔</p>\n<p>light is absorbed as electrons transit to a higher energy level «in d–d transitions»<br/><em><strong>OR</strong></em><br/>light is absorbed as electrons are promoted ✔</p>\n<p>energy gap corresponds to light in the visible region of the spectrum ✔</p>\n<p> </p>\n<p><em>Do <strong>not</strong> accept “colour observed is the complementary colour” for M4.</em></p>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>The main error was the omission of lone electron \"pair\", though there was also a worrying amount of very confused answers for a very basic chemistry concept where 40% provided very incorrect answers.</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Rather surprisingly, many students got full marks for this multi-step calculation; others went straight to the pH/pKa acid/base equation so lost at least one of the marks: students often seem less prepared for base calculations, as opposed to acid calculations.</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Poorly answered revealing little understanding of buffering mechanisms, which is admittedly a difficult topic.</p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This proved to be the most challenging question (10%). It was a good question, where candidates had to explain a huge difference in boiling point of two covalent compounds, requiring solid understanding of change of state where breaking bonds cannot be involved). Yet most considered the triple bonds in HCN as the cause, suggesting covalent bonds break when substance boil, which is very worrying. Others considered H-bonds which at least is an intermolecular force, but shows they are not too familiar with the conditions necessary for H-bonding.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This question appears frequently in exams but with slightly different approaches. In general candidates ignore the specific question and give the same answers, failing in this case to describe why complexes are coloured rather than what colour is seen. These answers appear to reveal that many candidates don't really understand this phenomenon, but learn the answer by heart and make mistakes when repeating it, for example, stating that the ‘d-orbitals of the ligands were split’- an obvious misconception. The average mark was 1.6/3, with a MS providing 4 ideas that would merit a mark</p>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.HL.TZ2.8",
|
||
"Question": "<div class=\"specification\">\n<p>Carbon forms many compounds.</p>\n</div><div class=\"specification\">\n<p>C<sub>60</sub> and diamond are allotropes of carbon.</p>\n</div><div class=\"specification\">\n<p>Chlorine reacts with methane.</p>\n<p style=\"text-align: center;\">CH<sub>4</sub> (g) + Cl<sub>2 </sub>(g) → CH<sub>3</sub>Cl (g) + HCl (g)</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline <strong>two</strong> differences between the bonding of carbon atoms in C<sub>60</sub> and diamond.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why C<sub>60</sub> and diamond sublime at different temperatures and pressures.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State two features showing that propane and butane are members of the same homologous series.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Describe a test and the expected result to indicate the presence of carbon–carbon double bonds.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw the full structural formula of (Z)-but-2-ene.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Write the equation for the reaction between but-2-ene and hydrogen bromide.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the type of reaction.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest <strong>two</strong> differences in the <sup>1</sup>H NMR of but-2-ene and the organic product from (d)(ii).</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Predict, giving a reason, the major product of reaction between but-1-ene and steam.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain the mechanism of the reaction between 1-bromopropane, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>Br, and aqueous sodium hydroxide, NaOH (aq), using curly arrows to represent the movement of electron pairs.</p>\n<div class=\"marks\">[4]</div>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the splitting pattern in the <sup>1</sup>H NMR spectrum for 1-bromopropane.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the enthalpy change of the reaction, Δ<em>H</em>, using section 11 of the data booklet.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">f(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw and label an enthalpy level diagram for this reaction.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">f(ii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Any <strong>two</strong> of:</p>\n<p>C<sub>60</sub> fullerene: bonded to 3 C <em><strong>AND</strong> </em>diamond: bonded to 4 C ✔</p>\n<p>C<sub>60</sub> fullerene: delocalized/resonance <em><strong>AND</strong> </em>diamond: not delocalized / no resonance ✔</p>\n<p>C<sub>60</sub> fullerene: <em>sp<sup>2</sup> <strong>AND</strong> </em>diamond: <em>sp<sup>3 </sup></em>✔</p>\n<p>C<sub>60</sub> fullerene: bond angles between 109–120° <em><strong>AND</strong> </em>diamond: 109° ✔</p>\n<p> </p>\n<p><em>Accept \"bonds in fullerene are shorter/stronger/have higher bond order <strong>OR</strong> bonds in diamond longer/weaker/have lower bond order\".</em></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>diamond giant/network covalent <em><strong>AND</strong></em> sublimes at higher temperature ✔</p>\n<p>C<sub>60</sub> molecular/London/dispersion/intermolecular «forces» ✔</p>\n<p> </p>\n<p><em>Accept “diamond has strong covalent bonds <strong>AND</strong> require more energy to break «than intermolecular forces»” for M1.</em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>same general formula / C<sub>n</sub>H<sub>2n+2</sub> ✔</p>\n<p>differ by CH<sub>2</sub>/common structural unit ✔</p>\n<p> </p>\n<p><em>Accept \"similar chemical properties\".</em></p>\n<p><em>Accept “gradation/gradual change in physical properties”.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><strong>ALTERNATIVE 1:</strong></p>\n<p><em>Test:</em></p>\n<p>add bromine «water»/Br<sub>2</sub> (aq) ✔</p>\n<p><em>Result:</em></p>\n<p>«orange/brown/yellow» to colourless/decolourised ✔</p>\n<p><em><br/>Do not accept “clear” for M2.</em></p>\n<p><strong><br/>ALTERNATIVE 2:</strong></p>\n<p><em>Test:</em></p>\n<p>add «acidified» KMnO<sub>4</sub> ✔</p>\n<p><em>Result:</em></p>\n<p>«purple» to colourless/decolourised/brown ✔</p>\n<p><em><br/>Accept “colour change” for M2.</em></p>\n<p><strong><br/>ALTERNATIVE 3:</strong></p>\n<p><em>Test:</em></p>\n<p>add iodine /<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mtext>I</mtext><mn>2</mn></msub></math> ✔</p>\n<p><em>Result:</em></p>\n<p>«brown» to colourless/decolourised ✔<br/><br/></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p> </p>\n<p><em>Accept</em></p>\n<p><img src=\"\"/></p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>CH<sub>3</sub>CH=CHCH<sub>3</sub> + HBr (g) → CH<sub>3</sub>CH<sub>2</sub>CHBrCH<sub>3</sub></p>\n<p>Correct reactants ✔</p>\n<p>Correct products ✔</p>\n<p> </p>\n<p><em>Accept molecular formulas for both reactants and product</em></p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«electrophilic» addition/EA ✔</p>\n<p> </p>\n<p><em>Do <strong>not</strong> accept nucleophilic or free radical addition.</em></p>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong>ALTERNATIVE 1:</strong> Any two of:</em></p>\n<p>but-2-ene: 2 signals <em><strong>AND</strong> </em>product: 4 signals ✔</p>\n<p>but-2-ene: «area ratio» 3:1/6:2 <em><strong>AND</strong> </em>product: «area ratio» 3:3:2:1 ✔</p>\n<p>product: «has signal at» 3.5-4.4 ppm «and but-2-ene: does not» ✔</p>\n<p>but-2-ene: «has signal at» 4.5-6.0 ppm «and product: does not» ✔</p>\n<p> </p>\n<p><em><strong>ALTERNATIVE 2:</strong></em></p>\n<p>but-2-ene: doublet <em><strong>AND</strong> </em>quartet/multiplet/4 ✔</p>\n<p>product: doublet <em><strong>AND</strong> </em>triplet <em><strong>AND</strong> </em>quintet/5/multiplet <em><strong>AND</strong> </em>sextet/6/multiplet ✔</p>\n<p> </p>\n<p><em>Accept “product «has signal at» 1.3–1.4 ppm «and but-2-ene: does not»”.</em></p>\n<div class=\"question_part_label\">d(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>CH<sub>3</sub>CH<sub>2</sub>CH(OH)CH<sub>3</sub> ✔</p>\n<p>«secondary» carbocation/CH<sub>3</sub>CH<sub>2</sub>CH<sup>+</sup>CH<sub>3</sub> more stable ✔</p>\n<p> </p>\n<p><em>Do <strong>not</strong> accept “Markovnikov’s rule” without reference to carbocation stability.</em></p>\n<div class=\"question_part_label\">d(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p>curly arrow going from lone pair/negative charge on O in HO<sup>–</sup> to C ✔</p>\n<p>curly arrow showing Br breaking ✔</p>\n<p>representation of transition state showing negative charge, square brackets and partial bonds ✔</p>\n<p>formation of organic product CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH <em><strong>AND</strong> </em>Br– ✔</p>\n<p> </p>\n<p><em>Do not allow curly arrow originating on H in HO<sup>–</sup>.</em></p>\n<p><em>Accept curly arrow either going from bond between C and Br to Br in 1-bromopropane or in the transition</em><br/><em>state.</em></p>\n<p><em>Do <strong>not</strong> penalize if HO and Br are not at 180° to each other. </em></p>\n<p><em>Award <strong>[3 max]</strong> for S<sub>N</sub>1 mechanism.</em></p>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>triplet/3 <em><strong>AND</strong> </em>multiplet/6 <em><strong>AND</strong> </em>triplet/3 ✔</p>\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>bond breaking: C–H + Cl–Cl / 414 «kJ mol<sup>–1</sup>» + 242 «kJ mol<sup>–1</sup>»/656 «kJ»<br/><em><strong>OR</strong></em><br/>bond breaking: 4C–H + Cl–Cl / 4 × 414 «kJ mol<sup>–1</sup>» + 242 «kJ mol<sup>–1</sup>» / 1898 «kJ» ✔</p>\n<p> </p>\n<p>bond forming: «C–Cl + H–Cl / 324 kJ mol<sup>–1</sup> + 431 kJ mol<sup>–1</sup>» / 755 «kJ»<br/><em><strong>OR</strong></em><br/>bond forming: «3C–H + C–Cl + H–Cl / 3 × 414 «kJ mol<sup>–1</sup>» + 324 «kJ mol<sup>–1</sup>» + 431 kJ mol<sup>–1</sup>» / 1997 «kJ» ✔</p>\n<p> </p>\n<p>«ΔH = bond breaking – bond forming = 656 kJ – 755 kJ» = –99 «kJ» ✔</p>\n<p> </p>\n<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>\n<p><em>Award <strong>[2 max]</strong> for 99 «kJ».</em></p>\n<div class=\"question_part_label\">f(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p>reactants at higher enthalpy than products ✔</p>\n<p><br/>ΔH/-99 «kJ» labelled on arrow from reactants to products<br/><em><strong>OR</strong></em><br/>activation energy/<em>E</em><sub>a</sub> labelled on arrow from reactant to top of energy profile ✔</p>\n<p> </p>\n<p><em>Accept a double headed arrow between reactants and products labelled as ΔH for M2.</em></p>\n<div class=\"question_part_label\">f(ii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>A challenging question, requiring accurate knowledge of the bonding in these allotropes (some referred to graphite, clearly the most familiar allotrope). The most frequent (correct) answer was the difference in number of bonded C atoms and hybridisation in second place. However, only 30% got a mark.</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Again, this was a struggle between intermolecular forces and covalent bonds and this proved to be even harder than (a)(i) with only 25% of candidates getting full marks. The distinction between giant covalent/covalent network in diamond and molecular in C60 and hence resultant sublimation points, was rarely explained. There were many general and vague answers given, as well as commonly (incorrectly) stating that intermolecular forces are present in diamond. As another example of insufficient attention to the question itself, many candidates failed to say which would sublime at a higher temperature and so missed even one mark.</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This easy question was quite well answered; same/similar physical properties and empirical formula were common errors.</p>\n<p>Candidates misinterpreted the question and mentioned CH3<sup>+</sup>, i.e., the lost fragment; the other very common error was -COOH which shows a complete lack of understanding of MS considering the question is about butane so O should never appear.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Well answered by most, but some basic chemistry was missing when reporting results, perhaps as a result of little practical work due to COVID. A significant number suggested IR spectrometry, very likely because the question followed one on H NMR spectroscopy, thus revealing a failure to read the question properly (which asks for a test). Some teachers felt that adding \"chemical\" would have avoided some confusion.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most were able to draw this isomer correctly, though a noticeable number of students included the Z as an atom in the structural formula, showing they were completely unfamiliar with E/Z notation.</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Well done in general and most candidates wrote correct reagents, eventually losing a mark when considering H<sub>2</sub> to be a product alongside 2-bromobutane.</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Very well answered, some mentioned halogenation which is a different reaction.</p>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>A considerable number of students (40%) got at least 1 mark here, but marks were low (average mark 0.9/2). Common errors were predicting 3 peaks, rather than 4 for 2 -bromobutane and vague / unspecific answers, such as ‘different shifts’ or ‘different intensities’. It is surprising that more did not use H NMR data from the booklet; they were not directed to the section as is generally done in this type of question to allow for more general answers regarding all information that can be obtained from an H NMR spectrum.</p>\n<div class=\"question_part_label\">d(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Product was correctly predicted by many, but most used Markovnikov's Rule to justify this, failing to mention the stability of the secondary carbocation, i.e., the chemistry behind the rule.</p>\n<div class=\"question_part_label\">d(v).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>As usual, good to excellent candidates (47.5%) were able to get 3/4 marks for this mechanism, while most lost marks for carelessness in drawing arrows and bond connectivity, issues with the lone pair or negative charge on the nucleophile, no negative charge on transition state, or incorrect haloalkane. The average mark was thus 1.9/4.</p>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Another of the very poorly answered questions where most candidates (90%) failed to predict 3 peaks and when they did, considered there would be a quartet instead of multiplet/sextet; other candidates seemed to have no idea at all. This is strange because the compound is relatively simple and while some teachers considered that predicting a sextet may be beyond the current curriculum or just too difficult, they could refer to a multiplet; a quartet is clearly incorrect.</p>\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Only the very weak candidates were unable to calculate the enthalpy change correctly, eventually missing 1 mark for inverted calculations.</p>\n<div class=\"question_part_label\">f(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates drew correct energy profiles, consistent with the sign of the energy change calculated in the previous question. And again, only very weak candidate failed to get at least 1 mark for correct profiles.</p>\n<div class=\"question_part_label\">f(ii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-2-energy-cycles-in-reactions",
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"structure-1-1-introduction-to-the-particulate-nature-of-matter",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds",
|
||
"tool-1-experimental-techniques"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.SL.TZ1.1",
|
||
"Question": "<div class=\"specification\">\n<p>When heated in air, magnesium ribbon reacts with oxygen to form magnesium oxide.</p>\n</div><div class=\"specification\">\n<p>The reaction in (a)(i) was carried out in a crucible with a lid and the following data was recorded:</p>\n<p style=\"text-align: right;\">Mass of crucible and lid = 47.372 ±0.001 g</p>\n<p style=\"text-align: right;\">Mass of crucible, lid and magnesium ribbon before heating = 53.726 ±0.001 g</p>\n<p style=\"text-align: right;\">Mass of crucible, lid and product after heating = 56.941 ±0.001 g</p>\n<p style=\"text-align: left;\"> </p>\n</div><div class=\"specification\">\n<p>When magnesium is burnt in air, some of it reacts with nitrogen to form magnesium nitride according to the equation:</p>\n<p style=\"text-align: center;\">3 Mg (s) + N<sub>2 </sub>(g) → Mg<sub>3</sub>N<sub>2 </sub>(s)</p>\n</div><div class=\"specification\">\n<p>The presence of magnesium nitride can be demonstrated by adding water to the product. It is hydrolysed to form magnesium hydroxide and ammonia.</p>\n</div><div class=\"specification\">\n<p>Most nitride ions are <sup>14</sup>N<sup>3–</sup>.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Write a balanced equation for the reaction that occurs.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the block of the periodic table in which magnesium is located.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Identify a metal, in the same period as magnesium, that does <strong>not</strong> form a basic oxide.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the amount of magnesium, in mol, that was used.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the percentage uncertainty of the mass of product after heating.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Assume the reaction in (a)(i) is the only one occurring and it goes to completion, but some product has been lost from the crucible. Deduce the percentage yield of magnesium oxide in the crucible.</p>\n<p> </p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Evaluate whether this, rather than the loss of product, could explain the yield found in (b)(iii).</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest an explanation, other than product being lost from the crucible or reacting with nitrogen, that could explain the yield found in (b)(iii).</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate coefficients that balance the equation for the following reaction.</p>\n<p style=\"text-align:center;\">__ Mg<sub>3</sub>N<sub>2 </sub>(s) + __ H<sub>2</sub>O (l) → __ Mg(OH)<sub>2 </sub>(s) + __ NH<sub>3 </sub>(aq)</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the oxidation state of nitrogen in Mg<sub>3</sub>N<sub>2</sub> and in NH<sub>3</sub>.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce, giving reasons, whether the reaction of magnesium nitride with water is an acid–base reaction, a redox reaction, neither or both.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the number of subatomic particles in this ion.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Some nitride ions are <sup>15</sup>N<sup>3–</sup>. State the term that describes the relationship between <sup>14</sup>N<sup>3–</sup> and <sup>15</sup>N<sup>3–</sup>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The nitride ion and the magnesium ion are isoelectronic (they have the same electron configuration). Determine, giving a reason, which has the greater ionic radius.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest <strong>two</strong> reasons why atoms are no longer regarded as the indivisible units of matter.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">f.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the types of bonding in magnesium, oxygen and magnesium oxide, and how the valence electrons produce these types of bonding.</p>\n<p><img height=\"367\" src=\"\" width=\"644\"/></p>\n<div class=\"marks\">[4]</div>\n<div class=\"question_part_label\">g.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>2 Mg(s) + O<sub>2</sub>(g) → 2 MgO(s) ✔</p>\n<p><em><br/>Do not accept equilibrium arrows. Ignore state symbols</em></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>s ✔</p>\n<p><em><br/>Do not allow group 2</em></p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>aluminium/Al ✔</p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⟨</mo><mo>⟨</mo><mfrac><mrow><mn>53</mn><mo>.</mo><mn>726</mn><mo> </mo><mi mathvariant=\"normal\">g</mi><mo>-</mo><mn>47</mn><mo>.</mo><mn>372</mn><mo> </mo><mi mathvariant=\"normal\">g</mi></mrow><mrow><mn>244</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant=\"normal\">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>354</mn><mo> </mo><mi mathvariant=\"normal\">g</mi></mrow><mrow><mn>24</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant=\"normal\">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo></math> «mol» ✔</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>mass of product <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mo>=</mo><mn>56</mn><mo>.</mo><mn>941</mn><mo> </mo><mi mathvariant=\"normal\">g</mi><mo>-</mo><mn>47</mn><mo>.</mo><mn>372</mn><mo> </mo><mi mathvariant=\"normal\">g</mi><mo>»</mo><mo>=</mo><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mo>«</mo><mi mathvariant=\"normal\">g</mi><mo>»</mo></math> ✔</p>\n<p><math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>⟨⟨100 × </mtext><mfrac><mrow><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>001</mn><mo> </mo><mi mathvariant=\"normal\">g</mi></mrow><mrow><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mi mathvariant=\"normal\">g</mi></mrow></mfrac><mtext>=0.0209⟩⟩ = 0.02 «%»</mtext></math> ✔</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> for correct final answer </em></p>\n<p><em>Accept 0.021%</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⟨</mo><mo>⟨</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo><mi>mol</mi><mo> </mo><mo>×</mo><mo> </mo><mo>(</mo><mn>24</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant=\"normal\">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mn>16</mn><mo>.</mo><mn>00</mn><mo> </mo><mi mathvariant=\"normal\">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>40</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant=\"normal\">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>10</mn><mo>.</mo><mn>536</mn><mo> </mo><mo>«</mo><mi mathvariant=\"normal\">g</mi><mo>»</mo></math> ✔</p>\n<p><math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⟨</mo><mo>⟨</mo><mn>100</mn><mo>×</mo><mfrac><mrow><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mi mathvariant=\"normal\">g</mi></mrow><mrow><mn>10</mn><mo>.</mo><mn>536</mn><mo> </mo><mi mathvariant=\"normal\">g</mi></mrow></mfrac><mo>=</mo><mo> </mo><mn>90</mn><mo>.</mo><mn>822</mn><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>91</mn><mo> </mo><mo>«</mo><mo>%</mo><mo>»</mo></math> ✔</p>\n<p> </p>\n<p><em>Award «0.2614 mol x 40.31 g mol<sup>–1</sup>»</em></p>\n<p><em>Accept alternative methods to arrive at the correct answer.</em></p>\n<p><em>Accept final answers in the range 91-92%</em></p>\n<p><em><strong>[2]</strong> for correct final answer.</em></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>yes<br/><em><strong>AND</strong></em><br/>«each Mg combines with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle displaystyle=\"false\"><mfrac bevelled=\"true\"><mn>2</mn><mn>3</mn></mfrac></mstyle></math> N, so» mass increase would be 14x<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle displaystyle=\"false\"><mfrac bevelled=\"true\"><mn>2</mn><mn>3</mn></mfrac></mstyle></math> which is less than expected increase of 16x<br/><em><strong>OR</strong></em><br/>3 mol Mg would form 101g of Mg<sub>3</sub>N<sub>2</sub> but would form 3 x MgO = 121 g of MgO<br/><em><strong>OR</strong></em><br/>0.2614 mol forms 10.536 g of MgO, but would form 8.796 g of Mg<sub>3</sub>N<sub>2</sub> ✔</p>\n<p> </p>\n<p><em>Accept Yes <strong>AND</strong> “the mass of N/N<sub>2</sub> that combines with each g/mole of Mg is lower than that of O/O<sub>2</sub>”</em></p>\n<p><em>Accept YES<strong> AND</strong> “molar mass of nitrogen less than of oxygen”.</em></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>incomplete reaction<br/><em><strong>OR</strong></em><br/>Mg was partially oxidised already<br/><em><strong>OR</strong></em><br/>impurity present that evaporated/did not react ✔</p>\n<p> </p>\n<p><em>Accept “crucible weighed before fully cooled”.</em></p>\n<p><em>Accept answers relating to a higher atomic mass impurity consuming less O/O<sub>2</sub>.</em></p>\n<p><em>Accept “non-stoichiometric compounds formed”.</em></p>\n<p><em>Do <strong>not</strong> accept \"human error\", \"wrongly calibrated balance\" or other non-chemical reasons.</em></p>\n<p><em>If answer to (b)(iii) is >100%, accept appropriate reasons, such as product absorbed moisture before being weighed.</em></p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«1» Mg<sub>3</sub>N<sub>2 </sub>(s) + <strong>6</strong> H<sub>2</sub>O (l) → <strong>3</strong> Mg(OH)<sub>2 </sub>(s) + <strong>2</strong> NH<sub>3 </sub>(aq)</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Mg<sub>3</sub>N<sub>2</sub>: -3</em><br/><strong><em>AND</em></strong><br/><em>NH<sub>3</sub>: -3 ✔</em></p>\n<p><em><br/>Do not accept 3 or 3-</em></p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Acid–base:</em><br/>yes <strong>AND</strong> N<sup>3-</sup> accepts H<sup>+</sup>/donates electron pair«s»<br/><strong><em>OR</em></strong><br/>yes <strong>AND</strong> H<sub>2</sub>O loses H<sup>+</sup> «to form OH<sup>-</sup>»/accepts electron pair«s» ✔</p>\n<p><em>Redox:</em><br/>no <strong>AND</strong> no oxidation states change ✔</p>\n<p> </p>\n<p><em>Accept “yes <strong>AND</strong> proton transfer takes place”</em></p>\n<p><em>Accept reference to the oxidation state of specific elements not changing.</em></p>\n<p><em>Accept “not redox as no electrons gained/lost”.</em></p>\n<p><em>Award <strong>[1 max]</strong> for Acid–base: yes <strong>AND</strong> Redox: no without correct reasons, if no other mark has been awarded</em></p>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Protons</em>: 7 <em><strong>AND</strong> Neutrons</em>: 7 <em><strong>AND</strong> Electrons</em>: 10 ✔</p>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><span style=\"text-decoration:underline;\">isotope</span>«s» ✔</p>\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>nitride <em><strong>AND</strong> </em>smaller nuclear charge/number of protons/atomic number ✔</p>\n<div class=\"question_part_label\">e(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Any two of:</em><br/><br/>subatomic particles «discovered»<br/><em><strong>OR</strong></em><br/>particles smaller/with masses less than atoms «discovered»<br/><em><strong>OR</strong></em><br/>«existence of» isotopes «same number of protons, different number of neutrons» ✔</p>\n<p><br/>charged particles obtained from «neutral» atoms<br/><em><strong>OR</strong></em><br/>atoms can gain or lose electrons «and become charged» ✔</p>\n<p><br/>atom «discovered» to have structure ✔</p>\n<p><br/>fission<br/><em><strong>OR</strong></em><br/>atoms can be split ✔</p>\n<p> </p>\n<p><em>Accept atoms can undergo fusion «to produce heavier atoms»</em></p>\n<p><em>Accept specific examples of particles.</em></p>\n<p><em>Award <strong>[2]</strong> for “atom shown to have a nucleus with electrons around it” as both M1 and M3.</em></p>\n<div class=\"question_part_label\">f.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p><em><br/>Award <strong>[1]</strong> for all bonding types correct.</em></p>\n<p><em>Award <strong>[1]</strong> for <strong>each</strong> correct description.</em></p>\n<p><em>Apply ECF for M2 only once.</em></p>\n<div class=\"question_part_label\">g.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was not as well done as one might have expected with the most common errors being O instead of O<sub>2</sub> oxygen and MgO rather than MgO<sub>2</sub>.</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many students did not know what \"block\" meant, and often guessed group 2 etc.</p>\n<div class=\"question_part_label\">a(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many students confused \"period\" and \"group\" and also many did not read metal, so aluminium was not chosen by the majority.</p>\n<div class=\"question_part_label\">a(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>A number of students were not able to interpret the results and hence find the gain in mass and calculate the moles correctly.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Only a handful could work out the correct answer. Most had no real idea and quite a lot of blank responses. There also seems to be significant confusion between \"percent uncertainty\" and \"percent error\".</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was not well answered, but definitely better than the previous question with quite a few gaining some credit for correctly determining the theoretical yield.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This proved to be a very difficult question to answer in the quantitative manner required, with hardly any correct responses.</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Quite a few students realised that incomplete reaction would lead to this, but only 30% of students gave a correct answer rather than a non-specific guess, such as \"misread balance\" or \"impurities\".</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was generally very well done with almost all candidates being able to determine the correct coefficients.</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>About 40% of students managed to correctly determine both the oxidation states, as -3, with errors being about equally divided between the two compounds.</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Probably only about 10% could explain why this was an acid-base reaction. Rather more made valid deductions about redox, based on their answer to the previous question.</p>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Most candidates could answer the question about subatomic particles correctly.</p>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Identification of isotopes was answered correctly by most students.</p>\n<div class=\"question_part_label\">e(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>In spite of being given the meaning of \"isoelectronic\", many candidates talked about the differing number of electrons and only about 30% could correctly analyse the situation in terms of nuclear charge.</p>\n<div class=\"question_part_label\">e(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The question was marked quite leniently so that the majority of candidates gained at least one of the marks by mentioning a subatomic particle. A significant number read \"indivisible\" as \"invisible\" however.</p>\n<div class=\"question_part_label\">f.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>About a quarter of the students gained full marks and probably a similar number gained no marks. Metallic bonding was the type that seemed least easily recognised and least easily described. Another common error was to explain ionic bonding in terms of attraction of ions rather than describing electron transfer.</p>\n<div class=\"question_part_label\">g.</div>\n</div>",
|
||
"topics": [
|
||
"empty-topic",
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"structure-1-2-the-nuclear-atom",
|
||
"structure-1-3-electron-configurations",
|
||
"structure-2-1-the-ionic-model",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-2-3-the-metallic-model",
|
||
"structure-3-1-the-periodic-table-classification-of-elements",
|
||
"tool-1-experimental-techniques",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.SL.TZ1.3",
|
||
"Question": "<div class=\"specification\">\n<p>Magnesium is a reactive metal often found in alloys.</p>\n</div><div class=\"specification\">\n<p>Organomagnesium compounds can react with carbonyl compounds. One overall equation is:</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"specification\">\n<p>Compound B can also be prepared by reacting an alkene with water.</p>\n</div><div class=\"specification\">\n<p>Iodomethane is used to prepare CH<sub>3</sub>Mg<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>I</mtext></math>. It can also be converted into methanol:</p>\n<p style=\"text-align: center;\">CH<sub>3</sub><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>I</mtext></math> + HO<sup>–</sup> → CH<sub>3</sub>OH + <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>I</mtext></math><sup>–</sup></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Magnesium can be produced by the electrolysis of molten magnesium chloride.</p>\n<p>Write the half-equation for the formation of magnesium.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest an experiment that shows that magnesium is more reactive than zinc, giving the observation that would confirm this.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the name of Compound A, applying International Union of Pure and Applied Chemistry (IUPAC) rules.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Identify the strongest force between the molecules of Compound B.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw the structural formula of the alkene required.</p>\n<p style=\"text-align:left;\"><img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the structural formula of the repeating unit of the polymer formed from this alkene.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce what would be observed when Compound B is warmed with acidified aqueous potassium dichromate (VI).</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">e.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Identify the type of reaction.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">f(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline the requirements for a collision between reactants to yield products.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">f(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The polarity of the carbon–halogen bond, C–X, facilitates attack by HO<sup>–</sup>.</p>\n<p>Outline, giving a reason, how the bond polarity changes going down group 17.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">f(iii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Mg<sup>2+</sup> + 2 e<sup>-</sup> → Mg ✔</p>\n<p> </p>\n<p><em>Do <strong>not</strong> penalize missing charge on electron.</em></p>\n<p><em>Accept equation with equilibrium arrows.</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong>Alternative 1</strong></em></p>\n<p>put Mg in Zn<sup>2+</sup>(aq) ✔</p>\n<p>Zn/«black» layer forms «on surface of Mg» ✔</p>\n<p><em><br/>Award <strong>[1 max]</strong> for “no reaction when Zn placed in Mg<sup>2+</sup>(aq)”.</em></p>\n<p> </p>\n<p><em><strong>Alternative 2</strong></em></p>\n<p>place both metals in acid ✔</p>\n<p>bubbles evolve more rapidly from Mg<br/><em><strong>OR</strong></em><br/>Mg dissolves faster ✔</p>\n<p> </p>\n<p><em><strong>Alternative 3</strong></em></p>\n<p>construct a cell with Mg and Zn electrodes ✔</p>\n<p>bulb lights up<br/><em><strong>OR</strong></em><br/>shows (+) voltage<br/><em><strong>OR</strong></em><br/>size/mass of Mg(s) decreases «over time»<br/><em><strong>OR</strong></em><br/>size/mass of Zn increases «over time»</p>\n<p><em><br/></em><em>Accept “electrons flow from Mg to Zn”. </em></p>\n<p><em>Accept Mg is negative electrode/anode </em><br/><em><strong>OR</strong> </em><br/><em>Zn is positive electrode/cathode</em></p>\n<p><em><br/>Accept other correct methods.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>propanone ✔</p>\n<p><em><br/>Accept 2-propanone and propan-2-one.</em></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>hydrogen bonds ✔</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p> </p>\n<p><em>Do <strong>not</strong> penalize missing brackets or n.</em></p>\n<p><em>Do <strong>not</strong> award mark if continuation bonds are not shown.</em></p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>no change «in colour/appearance/solution» ✔</p>\n<div class=\"question_part_label\">e.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«nucleophilic» substitution<br/><em><strong>OR</strong></em><br/>SN2 ✔</p>\n<p><em><br/>Accept “hydrolysis”.</em></p>\n<p><em>Accept SN1</em></p>\n<div class=\"question_part_label\">f(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>energy/E ≥ activation energy/E<sub>a</sub> ✔</p>\n<p>correct orientation «of reacting particles»<br/><em><strong>OR</strong></em><br/>correct geometry «of reacting particles» ✔</p>\n<div class=\"question_part_label\">f(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>decreases/less polar <em><strong>AND</strong> </em>electronegativity «of the halogen» decreases ✔</p>\n<p> </p>\n<p><em>Accept “decreases” <strong>AND</strong> a correct comparison of the electronegativity of two halogens.</em></p>\n<p><em>Accept “decreases” <strong>AND</strong> “attraction for valence electrons decreases”.</em></p>\n<div class=\"question_part_label\">f(iii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Unfortunately, only 40% of the students could write this quite straightforward half equation.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Many candidates gained some credit by suggesting voltaic cell or a displacement reaction, but most could not gain the second mark and the reason was often a failure to be able to differentiate between \"what occurs\" and \"what is observed\".</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Even though superfluous numbers (2-propanone, propan-2-one) were overlooked, only about half of the students could correctly name this simple molecule.</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Probably just over half the students correctly identified hydrogen bonding, with dipole-dipole being the most common wrong answer, though a significant number identified an intramolecular bond.</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Few candidates could correctly eliminate water to deduce the identity of the required reactant.</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Correct answers to this were very scarce and even when candidates had an incorrect alkene for the previous part, they were unable to score an ECF mark, by deducing the formula of the polymer it would produce.</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Some students deduced that, as it was a tertiary alcohol, there would be no reaction, but almost all were lucky that this was accepted as well as the correct <em>observation</em> - \"it would remain orange\".</p>\n<div class=\"question_part_label\">e.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>About a quarter of the students identified this as a substitution reaction, though quite a number then lost the mark by incorrectly stating it was either \"free radical\" or \"electrophilic\". A very common wrong answer was \"displacement\" or \"single displacement\" and this makes one wonder whether this terminology is being taught instead of substitution</p>\n<div class=\"question_part_label\">f(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Generally well done with the vast majority of students correctly citing \"correct orientation\" and many only failed to gain the second mark through failing to equate the energy required to the activation energy.</p>\n<div class=\"question_part_label\">f(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Another question that was not well answered with probably only a quarter of candidates stating that the polarity would decrease because of decreasing electronegativity down the group.</p>\n<div class=\"question_part_label\">f(iii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-2-energy-cycles-in-reactions",
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-2-4-from-models-to-materials",
|
||
"structure-3-1-the-periodic-table-classification-of-elements",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds",
|
||
"tool-1-experimental-techniques"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.SL.TZ1.5",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a(i))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the name of Compound B, applying International Union of Pure and Applied Chemistry (IUPAC) rules.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Compound A and Compound B are both liquids at room temperature and pressure. Identify the strongest intermolecular force between molecules of Compound A.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b(i))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw the structural formula of the alkene required.\n </p>\n <p style=\"text-align:left;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b(iii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Deduce the structural formula of the repeating unit of the polymer formed from this alkene.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline the requirements for a collision between reactants to yield products.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d(iv))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The polarity of the carbon–halogen bond, C–X, facilitates attack by HO\n <sup>\n –\n </sup>\n .\n </p>\n <p>\n Outline, giving a reason, how the bond polarity changes going down group 17.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a(i))\n </div><div class=\"card-body\">\n <p>\n 2-methylpropan-2-ol /2-methyl-2-propanol ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept methylpropan-2-ol/ methyl-2-propanol.\n </em>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept 2-methylpropanol.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a(ii))\n </div><div class=\"card-body\">\n <p>\n dipole-dipole ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Do not accept van der Waals’ forces.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b(i))\n </div><div class=\"card-body\">\n <p>\n <img src=\"\"/>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b(iii))\n </div><div class=\"card-body\">\n <p>\n <img height=\"183\" src=\"\" width=\"213\"/>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n penalize missing brackets or n.\n </em>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n award mark if continuation bonds are not shown.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(ii))\n </div><div class=\"card-body\">\n <p>\n energy/E ≥ activation energy/E\n <sub>\n a\n </sub>\n ✔\n </p>\n <p>\n correct orientation «of reacting particles»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n correct geometry «of reacting particles» ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(iv))\n </div><div class=\"card-body\">\n <p>\n decreases/less polar\n <em>\n <strong>\n AND\n </strong>\n </em>\n electronegativity «of the halogen» decreases ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept “decreases”\n <strong>\n AND\n </strong>\n a correct comparison of the electronegativity of two halogens.\n </em>\n </p>\n <p>\n <em>\n Accept “decreases”\n <strong>\n AND\n </strong>\n “attraction for valence electrons decreases”.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (a(i))\n </div><div class=\"card-body\">\n <p>\n Naming the organic compound using IUPAC rules was generally done well.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b(i))\n </div><div class=\"card-body\">\n <p>\n Good performance; some had a H and CH\n <sub>\n 3\n </sub>\n group on each C atom across double bond instead of having two H atoms on one C and two CH\n <sub>\n 3\n </sub>\n groups on the other.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b(iii))\n </div><div class=\"card-body\">\n <p>\n Mediocre performance; deducing structural formula of repeating unit of the polymer was challenging in which continuation bonds were sometimes missing, or structure included a double bond or one of the CH\n <sub>\n 3\n </sub>\n group was missing.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(ii))\n </div><div class=\"card-body\">\n <p>\n Good performance. For the requirements for a collision between reactants to yield products, some suggested necessary, sufficient or enough energy or even enough activation energy instead of energy/\n <em>\n E ≥\n </em>\n activation energy/\n <em>\n E\n </em>\n <sub>\n a\n </sub>\n .\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(iv))\n </div><div class=\"card-body\">\n <p>\n Good performance on how the polarity of C-X bond changes going down group 17.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-2-4-from-models-to-materials",
|
||
"structure-3-1-the-periodic-table-classification-of-elements",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.SL.TZ1.6",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a(i))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw arrows in the boxes to represent the electron configuration of a nitrogen atom.\n </p>\n <p style=\"text-align:left;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a(iii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain the relative lengths of the three bonds between N and O in nitric acid.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a(i))\n </div><div class=\"card-body\">\n <p>\n <img src=\"\"/>\n </p>\n <p>\n <em>\n <br/>\n Accept\n <strong>\n all\n </strong>\n 2p electrons pointing downwards.\n </em>\n </p>\n <p>\n <em>\n Accept half arrows instead of full arrows.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a(iii))\n </div><div class=\"card-body\">\n <p>\n <em>\n Any three of:\n </em>\n </p>\n <p>\n two N-O same length/order ✔\n <br/>\n delocalization/resonance ✔\n </p>\n <p>\n N-OH longer «than N-O»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n N-OH bond order 1\n <em>\n <strong>\n AND\n </strong>\n </em>\n N-O bond order 1½ ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Award\n <strong>\n [2 max]\n </strong>\n if bond strength, rather than bond length discussed.\n </em>\n </p>\n <p>\n <em>\n Accept N-O between single and double bond\n <strong>\n AND\n </strong>\n N-OH single bond.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (a(i))\n </div><div class=\"card-body\">\n <p>\n Drawing arrows in the boxes to represent the electron configuration of a nitrogen atom was done extremely well.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a(iii))\n </div><div class=\"card-body\">\n <p>\n Poorly done; some explained relative bond strengths between N and O in HNO\n <sub>\n 3\n </sub>\n , not relative lengths; others included generic answers such as triple bond is shortest, double bond is longer, single longest.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"structure-1-3-electron-configurations"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.SL.TZ2.1",
|
||
"Question": "<div class=\"specification\">\n<p>Lithium reacts with water to form an alkaline solution.</p>\n</div><div class=\"specification\">\n<p>A 0.200 g piece of lithium was placed in 500.0 cm<sup>3</sup> of water.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Determine the coefficients that balance the equation for the reaction of lithium with water.</p>\n<p style=\"text-align:left;\"><img src=\"\"/></p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the molar concentration of the resulting solution of lithium hydroxide.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the volume of hydrogen gas produced, in cm<sup>3</sup>, if the temperature was 22.5 °C and the pressure was 103 kPa. Use sections 1 and 2 of the data booklet.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest a reason why the volume of hydrogen gas collected was smaller than predicted.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>The reaction of lithium with water is a redox reaction. Identify the oxidizing agent in the reaction giving a reason.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Describe two observations that indicate the reaction of lithium with water is exothermic.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>2 Li (s) + 2 H<sub>2</sub>O (l) → 2 LiOH (aq) + H<sub>2 </sub>(g) ✔</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>n</mi><mrow><mi>L</mi><mi>i</mi></mrow></msub><mo>«</mo><mfrac><mrow><mn>0200</mn><mo> </mo><mi>g</mi></mrow><mrow><mn>6</mn><mo>.</mo><mn>94</mn><mo> </mo><mi>g</mi></mrow></mfrac><mo>=</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>0288</mn><mo>«</mo><mi>m</mi><mi>o</mi><mi>l</mi><mo>»</mo></math>✔</p>\n<p>«n<sub>LiOH</sub> = n<sub>Li</sub>»</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfenced close=\"]\" open=\"[\"><mi>LiOH</mi></mfenced><mo> </mo><mo>«</mo><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>0288</mn><mo> </mo><mi>m</mi><mi>o</mi><mi>l</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5000</mn><mo> </mo><mi>d</mi><msup><mi>m</mi><mn>3</mn></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>0576</mn><mo> </mo><mo>«</mo><mi>m</mi><mi>o</mi><mi>l</mi><mo> </mo><mi>d</mi><msup><mi>m</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>\n<p> </p>\n<p>Award <strong>[2]</strong> for correct final answer.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><msub><mi>n</mi><msub><mi>H</mi><mn>2</mn></msub></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>0288</mn><mo> </mo><mi>m</mi><mi>o</mi><mi>l</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0144</mn><mo> </mo><mi>m</mi><mi>o</mi><mi>l</mi><mo>»</mo></math></p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>«</mo><mi>V</mi><mo>=</mo><mfrac><mrow><mi>n</mi><mi>R</mi><mi>T</mi></mrow><mi>P</mi></mfrac><mo>=</mo><mo>»</mo><mfenced><mfrac><mrow><mn>0</mn><mo>.</mo><mn>0144</mn><mo> </mo><mi>m</mi><mi>o</mi><mi>l</mi><mo>×</mo><mn>8</mn><mo>.</mo><mn>31</mn><mo> </mo><mi>J</mi><msup><mi>K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi>m</mi><mi>o</mi><msup><mi>l</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>×</mo><mfenced><mrow><mn>22</mn><mo>.</mo><mn>5</mn><mo>+</mo><mn>273</mn></mrow></mfenced><mi>K</mi></mrow><mrow><mn>103</mn><mo> </mo><mi>k</mi><mi>P</mi><mi>a</mi></mrow></mfrac></mfenced><mo> </mo><mo>«</mo><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo>»</mo></math>✔</p>\n<p><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi><mo>=</mo><mn>343</mn><mo> </mo><mo>«</mo><msup><mi>cm</mi><mn>3</mn></msup><mo>»</mo></math>✔</p>\n<p> </p>\n<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>\n<p><em>Accept answers in the range 334 – 344 cm<sup>3</sup>.</em></p>\n<p><em>Award <strong>[1 max]</strong> for 0.343 «cm<sup>3</sup>/dm<sup>3</sup>/m<sup>3</sup>».</em></p>\n<p><em>Award<strong> [1 max]</strong> for 26.1 cm<sup>3</sup> obtained by using 22.5 K.</em></p>\n<p><em>Award<strong> [1 max]</strong> for 687 cm<sup>3</sup> obtained by using 0.0288 mol.</em></p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>lithium was impure/«partially» oxidized</p>\n<p><em><strong>OR</strong></em></p>\n<p>gas leaked/ignited ✔</p>\n<p> </p>\n<p><em>Accept “gas dissolved”.</em></p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>H<sub>2</sub>O <em><strong>AND</strong> </em>hydrogen gains electrons «to form H<sub>2</sub>»</p>\n<p><em><strong>OR</strong></em></p>\n<p>H<sub>2</sub>O <em><strong>AND</strong> </em>H oxidation state changed from +1 to 0 ✔</p>\n<p> </p>\n<p><em>Accept “H<sub>2</sub>O <strong>AND</strong> H/H<sub>2</sub>O is reduced”.</em></p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Any two:</em></p>\n<p>temperature of the water increases ✔</p>\n<p>lithium melts ✔</p>\n<p>pop sound is heard ✔</p>\n<p> </p>\n<p><em>Accept “lithium/hydrogen catches fire”.</em></p>\n<p><em>Do not accept “smoke is observed”.</em></p>\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This part-question was better answered than part (ii). 50% of the candidates drew a correct arrow between n=2 and n=3. Both absorption and emission transitions were accepted since the question did not specify which type of spectrum was required. Some teachers commented on this in their feedback. Mistakes often included transitions between higher energy levels.</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">d.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"structure-1-4-counting-particles-by-mass-the-mole",
|
||
"tool-1-experimental-techniques"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.SL.TZ2.2",
|
||
"Question": "<div class=\"specification\">\n<p>Electrons are arranged in energy levels around the nucleus of an atom.</p>\n</div><div class=\"specification\">\n<p>The diagram represents possible electron energy levels in a hydrogen atom.</p>\n<p style=\"text-align: center;\"><img src=\"\"/></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain why the first ionization energy of calcium is greater than that of potassium.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>All models have limitations. Suggest <strong>two</strong> limitations to this model of the electron energy levels.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw an arrow, labelled <strong>X</strong>, to represent the electron transition for the ionization of a hydrogen atom in the ground state.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw an arrow, labelled <strong>Z</strong>, to represent the lowest energy electron transition in the visible spectrum.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>increasing number of protons/nuclear charge/Z<sub>eff</sub> ✔</p>\n<p><br/>«atomic» radius/size decreases<br/><strong><em>OR</em></strong><br/>same number of energy levels<br/><em><strong>OR</strong></em><br/>similar shielding «by inner electrons» ✔</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em>Any two of:</em></p>\n<p>does not represent sub-levels/orbitals ✔</p>\n<p>only applies to atoms with one electron/hydrogen ✔</p>\n<p>does not explain why only certain energy levels are allowed ✔</p>\n<p>the atom is considered to be isolated ✔</p>\n<p>does not take into account the interactions between atoms/molecules/external fields ✔</p>\n<p>does not consider the number of electrons the energy level can fit ✔</p>\n<p>does not consider probability of finding electron at different positions/<em>OWTTE</em> ✔</p>\n<p> </p>\n<p><em>Do <strong>not</strong> accept “does not represent distance «from nucleus»”.</em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p>upward arrow X <em><strong>AND</strong> </em>starting at n = 1 extending to n = ∞ ✔</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p>downward or upward arrow between n = 3 and n = 2 ✔</p>\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>It was surprising that this question that appears regularly in IB chemistry papers was not better answered. Many candidates only obtained one of the two marks for identifying one factor (often the larger nuclear charge of calcium or that the number of shells was the same for Ca and K). However, a few candidates did write thorough answers reflecting a good understanding of the factors affecting ionization energy. This question had a strong correlation between candidates who scored well and those who had a high score overall. Some candidates did not score any marks by focusing on trends in the Periodic Table without offering an explanation, or by discussing the number of electrons in Ca and K instead of the number of protons.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Only 30% of the candidates drew the correct arrow on the diagram representing the ionization of hydrogen. A few candidates missed the mark by having the arrow pointing downwards. The most common incorrect answer was a transition between n=1 and n=2.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n[N/A]\n<div class=\"question_part_label\">b(iii).</div>\n</div>",
|
||
"topics": [
|
||
"empty-topic",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"structure-1-3-electron-configurations",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.SL.TZ2.3",
|
||
"Question": "<div class=\"specification\">\n<p>Sulfur trioxide is produced from sulfur dioxide.</p>\n<p style=\"text-align: center;\">2SO<sub>2 </sub>(g) + O<sub>2 </sub>(g) <math class=\"wrs_chemistry\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>⇌</mo></math> 2SO<sub>3 </sub>(g) Δ<em>H</em> = −196 kJ mol<sup>−1</sup></p>\n</div><div class=\"specification\">\n<p>The reaction between sulfur dioxide and oxygen can be carried out at different temperatures.</p>\n</div><div class=\"specification\">\n<p>Nitric acid, HNO<sub>3</sub>, is another strong Brønsted–Lowry acid. Its conjugate base is the nitrate ion, NO<sub>3</sub><sup>−</sup></p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline, giving a reason, the effect of a catalyst on a reaction.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>On the axes, sketch Maxwell–Boltzmann energy distribution curves for the reacting species at two temperatures T<sub>1</sub> <strong>and</strong> T<sub>2</sub>, where T<sub>2</sub> > T<sub>1</sub>.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain the effect of increasing temperature on the yield of SO<sub>3</sub>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the product formed from the reaction of SO<sub>3</sub> with water.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the meaning of a strong Brønsted–Lowry acid.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw the Lewis structure of NO<sub>3</sub><sup>−</sup>.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Explain the electron domain geometry of NO<sub>3</sub><sup>−</sup>.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>increases rate <em><strong>AND</strong> </em>lower <em>E</em><sub>a</sub> ✔</p>\n<p>provides alternative pathway «with lower <em>E</em><sub>a</sub>»<br/><em><strong>OR</strong></em><br/>more/larger fraction of molecules have the «lower» <em>E</em><sub>a</sub> ✔</p>\n<p> </p>\n<p><em>Accept description of how catalyst lowers E<sub>a</sub> for M2 (e.g. “reactants adsorb on surface «of catalyst»”, “reactant bonds weaken «when adsorbed»”, “helps favorable orientation of molecules”).</em></p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p>both axes correctly labelled ✔</p>\n<p>peak of T<sub>2</sub> curve lower <em><strong>AND</strong> </em>to the right of T<sub>1</sub> curve ✔</p>\n<p>lines begin at origin <em><strong>AND</strong> </em>correct shape of curves <em><strong>AND</strong> </em>T<sub>2</sub> must finish above T<sub>1</sub> ✔</p>\n<p> </p>\n<p><em>Accept “probability «density» / number of particles / N / fraction” on y-axis.</em></p>\n<p><em>Accept “kinetic E/KE/E<sub>k</sub>” but not just “Energy/E” on x-axis.</em></p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>decrease <em><strong>AND</strong> </em>equilibrium shifts left / favours reverse reaction ✔</p>\n<p>«forward reaction is» exothermic / ΔH is negative ✔</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>sulfuric acid/H<sub>2</sub>SO<sub>4</sub> ✔</p>\n<p> </p>\n<p><em>Accept “disulfuric acid/H<sub>2</sub>S<sub>2</sub>O<sub>7</sub>”.</em></p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>fully ionizes/dissociates ✔</p>\n<p>proton/H<sup>+</sup> «donor » ✔</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p> </p>\n<p><em>Do <strong>not</strong> accept the delocalised structure.</em></p>\n<p><em>Accept any combination of dots, crosses and lines.</em></p>\n<p><em>Coordinate/dative bond may be represented by an arrow.</em></p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>three electron domains repel</p>\n<p><em><strong>OR</strong></em></p>\n<p>three electron domains as far away as possible ✔</p>\n<p> </p>\n<p>trigonal planar</p>\n<p><em><strong>OR</strong></em></p>\n<p>«all» angles are 120° ✔</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>A generally well-answered question. Most candidates explained the effect of a catalyst on a reaction correctly. A small proportion of candidates thought the catalyst increased the frequency of collisions. Some candidates focussed on the effect of the catalyst on an equilibrium since the equation above the question was that of a reversible reaction. These candidates usually still managed to gain at least the first marking point by stating that both forward and reverse reaction rates were increased due to the lower activation energy. Most candidates mentioned the alternative pathway for the second mark, and some gave a good discussion about the increase in the number of molecules or collisions with E≥E<sub>a</sub>. A few candidates lost one of the marks for not explicitly stating the effect of a catalyst (that it increases the rate of the reaction).</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The average mark scored for the Maxwell-Boltzmann distribution curves sketch was 1.5 out of 3 marks and the question had a strong correlation with the candidates who did well overall. The majority of candidates were familiar with the shapes of the curves. The most commonly lost mark was missing or incorrect labels on the axes. Sometimes candidates added the labels but did not specify “kinetic” energy for the x-axis. As for the curves, some candidates reversed the labels T<sub>1</sub> and T<sub>2</sub>, some made the two curves meet at high energy or even cross, and some did not have the correct relationship between the peaks of T<sub>1</sub> and T<sub>2</sub>.</p>\n<div class=\"question_part_label\">b(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Another question that showed a strong correlation with the candidates who did well overall. The average mark was 1 out of 2 marks. Many candidates explained the effect of an increase in temperature on the yield of SO<sub>3</sub> correctly and thoroughly. One of the common mistakes was to miss the fact that it was an equilibrium and reason that yield would not change due to an increase in the rate of reaction. Unfortunately, a number of candidates also deduced that yield would increase due to the increase in rate. Other candidates recognized that it was an exothermic reaction but deduced the equilibrium would shift to the right giving a higher yield of SO<sub>3</sub>.</p>\n<div class=\"question_part_label\">b(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>A very well answered question. 70% of the candidates stated H2SO4 as the product from the reaction of SO<sub>3</sub> with water.</p>\n<div class=\"question_part_label\">c(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>While a straightforward question, many candidates only answered part of the question - either focussing on the “strong” or on the “Brønsted-Lowry acid”. The average mark on this question was 1.2 out of 2 marks.</p>\n<div class=\"question_part_label\">c(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Only 20% of the candidates scored the mark for the Lewis structure of NO<sub>3</sub><sup>-</sup>. Mistakes included: missing charge, missing lone pairs, 3 single bonds, 2 double bonds.</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The majority of candidates deduced the correct electron domain geometry scoring the first mark including cases of ECF. Only a small number of candidates satisfied the requirements of the markscheme for the explanation.</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.SL.TZ2.4",
|
||
"Question": "<div class=\"specification\">\n<p>Carbon forms many compounds.</p>\n</div><div class=\"specification\">\n<p>C<sub>60</sub> and diamond are allotropes of carbon.</p>\n</div><div class=\"specification\">\n<p>But-2-ene reacts with hydrogen bromide.</p>\n</div><div class=\"specification\">\n<p>Chlorine reacts with methane.</p>\n<p style=\"text-align: center;\">CH<sub>4</sub> (g) + Cl<sub>2 </sub>(g) → CH<sub>3</sub>Cl (g) + HCl (g)</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Outline <strong>one</strong> difference between the bonding of carbon atoms in C<sub>60</sub> and diamond.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State two features showing that propane and butane are members of the same homologous series.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Describe a test and the expected result to indicate the presence of carbon–carbon double bonds.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw the full structural formula of but-2-ene.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Write the equation for the reaction between but-2-ene and hydrogen bromide.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>State the type of reaction.</p>\n<div class=\"marks\">[1]</div>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Suggest <strong>two</strong> differences in the <sup>1</sup>H NMR of but-2-ene and the organic product from (d)(ii).</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">d(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Calculate the enthalpy change of the reaction, Δ<em>H</em>, using section 11 of the data booklet.</p>\n<div class=\"marks\">[3]</div>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Draw and label an enthalpy level diagram for this reaction.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">e(ii).</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>C<sub>60</sub> fullerene: «each carbon is» bonded to 3 C <em><strong>AND</strong> </em>diamond: bonded to 4 C<br/><em><strong>OR</strong></em><br/>C<sub>60</sub> fullerene: delocalized/resonance <em><strong>AND</strong> </em>diamond: not delocalized/no resonance<br/><em><strong>OR</strong></em><br/>C<sub>60</sub> fullerene: single and double bonds <em><strong>AND</strong> </em>diamond: single bonds ✔</p>\n<p> </p>\n<p><em>Accept “C<sub>60</sub> fullerene: sp<sup>2</sup> <strong>AND</strong> diamond: sp<sup>3</sup>”.</em></p>\n<p><em>Accept “C<sub>60</sub> fullerene: trigonal planar geometry / bond angles between 109.5°/109°/108°–120° <strong>AND</strong> diamond: tetrahedral geometry / bond angle 109.5°/109°”.</em></p>\n<p><em>Accept \"bonds in fullerene are shorter/stronger/have higher bond order\".</em></p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>same general formula / C<sub>n</sub>H<sub>2n+2</sub> ✔</p>\n<p>differ by CH<sub>2</sub>/common structural unit ✔</p>\n<p> </p>\n<p><em>Accept \"similar chemical properties\".</em></p>\n<p><em>Accept “gradation/gradual change in physical properties”.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><strong>ALTERNATIVE 1:</strong></p>\n<p><em>Test:</em></p>\n<p>add bromine «water»/Br<sub>2</sub> (aq) ✔</p>\n<p><em>Result:</em></p>\n<p>«orange/brown/yellow» to colourless/decolourised ✔</p>\n<p> </p>\n<p><em>Do <strong>not</strong> accept “clear” for M2.</em></p>\n<p> </p>\n<p><strong>ALTERNATIVE 2:</strong></p>\n<p><em>Test:</em></p>\n<p>add «acidified» KMnO<sub>4</sub> ✔</p>\n<p><em>Result:</em></p>\n<p>«purple» to colourless/decolourised/brown ✔</p>\n<p> </p>\n<p><em>Accept “colour change” for M2.</em></p>\n<p> </p>\n<p><strong>ALTERNATIVE 3:</strong></p>\n<p><em>Test:</em></p>\n<p>add iodine /<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mtext>I</mtext><mn>2</mn></msub></math> ✔</p>\n<p><em>Result:</em></p>\n<p>«brown» to colourless/decolourised ✔</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p> </p>\n<p><em>Accept</em></p>\n<p><img src=\"\"/></p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>CH<sub>3</sub>CH=CHCH<sub>3</sub> (g) + HBr (g) → CH<sub>3</sub>CH<sub>2</sub>CHBrCH<sub>3</sub> (l)</p>\n<p><em><strong>OR</strong></em></p>\n<p>C<sub>4</sub>H<sub>8</sub> (g) + HBr (g) → C<sub>4</sub>H<sub>9</sub>Br (l) ✔</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>«electrophilic» addition/E<sub>A</sub> ✔</p>\n<p><em><br/>Do <strong>not</strong> accept nucleophilic or free radical addition.</em></p>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><em><strong>ALTERNATIVE 1:</strong> Any two of:</em></p>\n<p>but-2-ene: 2 signals <em><strong>AND</strong> </em>product: 4 signals ✔</p>\n<p>but-2-ene: «area ratio» 3:1/6:2 <em><strong>AND</strong> </em>product: «area ratio» 3:3:2:1 ✔</p>\n<p>product: «has signal at» 3.5-4.4 ppm «and but-2-ene: does not» ✔</p>\n<p>but-2-ene: «has signal at» 4.5-6.0 ppm «and product: does not» ✔</p>\n<p> </p>\n<p><strong>ALTERNATIVE 2:</strong></p>\n<p>but-2-ene: doublet <em><strong>AND</strong> </em>quartet/multiplet/4 ✔</p>\n<p>product: doublet <em><strong>AND</strong> </em>triplet <em><strong>AND</strong> </em>quintet/5/multiplet <em><strong>AND</strong> </em>sextet/6/multiplet ✔</p>\n<p> </p>\n<p><em>Accept “product «has signal at» 1.3–1.4 ppm «and but-2-ene: does not»”.</em></p>\n<div class=\"question_part_label\">d(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>bond breaking: C–H + Cl–Cl / 414 «kJ mol<sup>–1</sup>» + 242 «kJ mol<sup>–1</sup>»/656 «kJ»<br/><em><strong>OR</strong></em><br/>bond breaking: 4C–H + Cl–Cl / 4 × 414 «kJ mol<sup>–1</sup>» + 242 «kJ mol<sup>–1</sup>» / 1898 «kJ» ✔</p>\n<p><br/>bond forming: «C–Cl + H–Cl / 324 kJ mol<sup>–1</sup> + 431 kJ mol<sup>–1</sup>» / 755 «kJ»<br/><em><strong>OR</strong></em><br/>bond forming: «3C–H + C–Cl + H–Cl / 3 × 414 «kJ mol<sup>–1</sup>» + 324 «kJ mol<sup>–1</sup>» + 431 kJ mol<sup>–1</sup>» / 1997 «kJ» ✔</p>\n<p><br/>«ΔH = bond breaking – bond forming = 656 kJ – 755 kJ» = –99 «kJ» ✔</p>\n<p><em><br/>Award <strong>[3]</strong> for correct final answer.</em></p>\n<p><em>Award <strong>[2 max]</strong> for 99 «kJ».</em></p>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p><img src=\"\"/></p>\n<p>reactants at higher enthalpy than products ✔</p>\n<p><br/>ΔH/-99 «kJ» labelled on arrow from reactants to products<br/><em><strong>OR</strong></em><br/>activation energy/<em>E</em><sub>a</sub> labelled on arrow from reactant to top of energy profile ✔</p>\n<p> </p>\n<p><em>Accept a double headed arrow between reactants and products labelled as ΔH for M2.</em></p>\n<div class=\"question_part_label\">e(ii).</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was a challenging question that asked about the difference between the bonding of carbon atoms in C<sub>60</sub> and diamond. 20% of the candidates gained the mark. The majority of the candidates did not have a specific enough answer for C<sub>60</sub> and mentioned the pentagons and hexagons but not the number of bonds or the geometry or the bond order or the electron delocalisation. Diamond was better known to candidates as expected.</p>\n<div class=\"question_part_label\">a(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>About two-thirds of the candidates scored one of the two marks and stronger candidates scored both. The most common answers were the same general formula/C<sub>n</sub>H<sub>2n+2</sub>, the difference between the compounds was CH<sub>2</sub> and similar chemical properties. The same functional group was not accepted since alkanes do not have a functional group. Some candidates only stated that they are saturated hydrocarbons not gaining any marks.</p>\n<div class=\"question_part_label\">b.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>About half of the candidates gave the bromine water test with the correct results. Iodine and KMnO4 were rarely seen in the scripts. There were candidates who used the term “clear” to mean “colourless” which was not accepted. Some candidates referred to the presence of UV light in a correct way and others in an incorrect way which was not penalized in this case. 10% of the candidates left the question blank. The most common incorrect answer was in terms of the IR absorptions. Other candidates referred to enthalpies of combustion and formation.</p>\n<div class=\"question_part_label\">c.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>A well answered question. 70% of the candidates gave the correct structural formula for but-2-ene. Mistakes included too many hydrogens in the structure and an incorrect position of the C=C. Candidates should be reminded that the full structural formula requires all covalent bonds to be shown.</p>\n<div class=\"question_part_label\">d(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Half of the candidates wrote the correct equation for the reaction of but-2-ene with hydrogen bromide. Incorrect answers included hydrogen as a product. As expected, the question correlated well with highly achieving candidates.</p>\n<div class=\"question_part_label\">d(ii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>Well answered. 60% of candidates identified the type of reaction between but-2-ene and HBr, some of them including the term “electrophilic”. ECF was generously awarded when substitution was stated based on the equation where H<sub>2</sub> was produced in part (ii). Candidates lost the mark if they only stated “hydrobromination” without mentioning addition. Some candidates lost the mark for stating “nucleophilic” or “free radical” addition.</p>\n<div class=\"question_part_label\">d(iii).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The comparison of the <sup>1</sup>H NMR spectra of the two organic compounds was more challenging and 10% of the candidates left this question blank. The average mark was 0.7 out of 2 marks. Mistakes included non-specific answers that just stated “more signals” or “higher chemical shift”, and stating 3 signals in 2-bromobutane instead of 4 signals. Standard level candidates were expected to use the number of signals and the ratio of the areas under the signals to answer the question since they do not cover chemical shift, however, many of them did use the <sup>1</sup>H NMR section in the data booklet to obtain correct answers in terms of chemical shift.</p>\n<div class=\"question_part_label\">d(iv).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>This was the best answered question on the paper. Candidates identified the bonds and used bond enthalpies to calculate the enthalpy of reaction accurately. The most common mistakes were reversing the signs of bonds broken and bonds formed, assuming two Cl-Cl bonds were broken and using an incorrect value of bond enthalpy for one of the bonds.</p>\n<div class=\"question_part_label\">e(i).</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The majority of candidates drew the enthalpy level diagram and labelled it correctly based on their answer to part (i). Some candidates reversed the products and reactants. A few candidates did not add any labels which prevented the awarding of the second mark. With 2 marks allocated to the question the second mark was awarded for correct labeling of either ΔH or E<sub>a</sub>.</p>\n<div class=\"question_part_label\">e(ii).</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.SL.TZ2.5",
|
||
"Question": "<div class=\"specification\">\n<p>Molten zinc chloride undergoes electrolysis in an electrolytic cell at 450 °C.</p>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the half-equations for the reaction at each electrode.</p>\n<p><img src=\"\"/></p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px; padding-right: 20px;\">\n<p>Deduce the overall cell reaction including state symbols. Use section 7 of the data booklet.</p>\n<div class=\"marks\">[2]</div>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Markscheme": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>Cathode (negative electrode):</p>\n<p>Zn<sup>2+</sup> + 2e<sup>−</sup> → Zn (l) ✔</p>\n<p> </p>\n<p>Anode (positive electrode):</p>\n<p>2Cl<sup>−</sup> → Cl<sub>2</sub> (g) + 2e<sup>−</sup></p>\n<p><em><strong>OR</strong></em></p>\n<p>Cl<sup>−</sup> → ½ Cl<sub>2</sub> (g) + e<sup>−</sup> ✔</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>ZnCl<sub>2</sub> (l) → Zn (l) + Cl<sub>2</sub> (g)</p>\n<p><br/>balanced equation ✔<br/>correct state symbols ✔</p>\n<p> </p>\n<p><em>Accept ionic equation.</em></p>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"Examiners report": "<div class=\"question\" style=\"padding-left: 20px;\">\n<p>The half-equations were often incorrect. The average mark was 0.8 out of 2, and the correlation to high scoring candidates was strong as expected. Many candidates started the half-equations with the elements and gave the ions as products. We also saw some scripts with Cl instead of Cl2 as the product. Some of the candidates thought the zinc ion was Zn<sup>+</sup> instead of Zn<sup>2+</sup>. Some candidates reversed the anode and cathode equations earning only 1 of the 2 marks.</p>\n<div class=\"question_part_label\">a.</div>\n</div><div class=\"question\" style=\"padding-left: 20px;\">\n<p>The performance was weak on this part-question as well. The overall equations did not balance atoms or charges on many of the incorrect answers. For the state symbols, many candidates used the aqueous state symbol, some gave the chloride ion a gaseous state symbol, and some candidates still had a solid zinc product even though they were directed to use the melting point of zinc in the data booklet. 12% of the candidates did not answer the question and the average mark was 0.5 out of 2 marks.</p>\n<div class=\"question_part_label\">b.</div>\n</div>",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"structure-1-3-electron-configurations",
|
||
"structure-2-3-the-metallic-model",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.SL.TZ2.6",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline, giving a reason, the effect of a catalyst on a reaction.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b(i))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n On the axes, sketch Maxwell–Boltzmann energy distribution curves for the reacting species at two temperatures T\n <sub>\n 1\n </sub>\n <strong>\n and\n </strong>\n T\n <sub>\n 2\n </sub>\n , where T\n <sub>\n 2\n </sub>\n > T\n <sub>\n 1\n </sub>\n .\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain the effect of increasing temperature on the yield of SO\n <sub>\n 3\n </sub>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d(i))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the product formed from the reaction of SO\n <sub>\n 3\n </sub>\n with water.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the meaning of a strong Brønsted–Lowry acid.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n increases rate\n <em>\n <strong>\n AND\n </strong>\n </em>\n lower\n <em>\n E\n </em>\n <sub>\n a\n </sub>\n ✔\n </p>\n <p>\n provides alternative pathway «with lower\n <em>\n E\n </em>\n <sub>\n a\n </sub>\n »\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n more/larger fraction of molecules have the «lower»\n <em>\n E\n </em>\n <sub>\n a\n </sub>\n ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept description of how catalyst lowers E\n <sub>\n a\n </sub>\n for M2 (e.g. “reactants adsorb on surface «of catalyst»”, “reactant bonds weaken «when adsorbed»”, “helps favorable orientation of molecules”).\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b(i))\n </div><div class=\"card-body\">\n <p>\n <img height=\"243\" src=\"\" width=\"344\"/>\n </p>\n <p>\n both axes correctly labelled ✔\n </p>\n <p>\n peak of T\n <sub>\n 2\n </sub>\n curve lower\n <em>\n <strong>\n AND\n </strong>\n </em>\n to the right of T\n <sub>\n 1\n </sub>\n curve ✔\n </p>\n <p>\n lines begin at origin\n <em>\n <strong>\n AND\n </strong>\n </em>\n correct shape of curves\n <em>\n <strong>\n AND\n </strong>\n </em>\n T\n <sub>\n 2\n </sub>\n must finish above T\n <sub>\n 1\n </sub>\n ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept “probability «density» / number of particles / N / fraction” on y-axis.\n </em>\n </p>\n <p>\n <em>\n Accept “kinetic E/KE/E\n <sub>\n k\n </sub>\n ” but not just “Energy/E” on x-axis.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b(ii))\n </div><div class=\"card-body\">\n <p>\n decrease\n <em>\n <strong>\n AND\n </strong>\n </em>\n equilibrium shifts left / favours reverse reaction ✔\n </p>\n <p>\n «forward reaction is» exothermic / ΔH is negative ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(i))\n </div><div class=\"card-body\">\n <p>\n sulfuric acid/H\n <sub>\n 2\n </sub>\n SO\n <sub>\n 4\n </sub>\n ✔\n </p>\n <p>\n <em>\n <br/>\n Accept “disulfuric acid/H\n <sub>\n 2\n </sub>\n S\n <sub>\n 2\n </sub>\n O\n <sub>\n 7\n </sub>\n ”.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(ii))\n </div><div class=\"card-body\">\n <p>\n fully ionizes/dissociates ✔\n </p>\n <p>\n proton/H\n <sup>\n +\n </sup>\n «donor »✔\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Overall well answered though some answers were directed to explain the specific example rather than the simple and standard definition of the effect of a catalyst.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b(i))\n </div><div class=\"card-body\">\n <p>\n Few got the 3 marks for this standard question (average mark 1.7), the most common error being incomplete/incorrect labelling of axes, curves beginning above 0 on y-axis or inverted curves.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b(ii))\n </div><div class=\"card-body\">\n <p>\n Many candidates got one mark at least, sometimes failing to state the effect on the production of SO\n <sub>\n 3\n </sub>\n though they knew this quite obviously. This failure to read the question properly also resulted in an incorrect prediction based exclusively on kinetics instead of using the information provided to guide their answers.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(i))\n </div><div class=\"card-body\">\n <p>\n 6(d)(i)-(ii): These simple questions could be expected to be answered by all HL candidates. However 20% of the candidates suggested hydroxides or hydrogen as products of an aqueous dissolution of sulphur oxide. In the case of the definition of a strong Brønsted-Lowry acid, only 50% got both marks, often failing to define \"strong\" but in other cases defining them as bases even.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-1-proton-transfer-reactions",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22M.2.SL.TZ2.8",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a(i))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline\n <strong>\n two\n </strong>\n differences between the bonding of carbon atoms in C\n <sub>\n 60\n </sub>\n and diamond.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why C\n <sub>\n 60\n </sub>\n and diamond sublime at different temperatures and pressures.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State two features showing that propane and butane are members of the same homologous series.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Describe a test and the expected result to indicate the presence of carbon–carbon double bonds.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Write the equation for the reaction between but-2-ene and hydrogen bromide.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d(iii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the type of reaction.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (f(i))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the enthalpy change of the reaction, Δ\n <em>\n H\n </em>\n , using section 11 of the data booklet.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (f(ii))\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw and label an enthalpy level diagram for this reaction.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a(i))\n </div><div class=\"card-body\">\n <p>\n Any\n <strong>\n two\n </strong>\n of:\n </p>\n <p>\n C\n <sub>\n 60\n </sub>\n fullerene: bonded to 3 C\n <em>\n <strong>\n AND\n </strong>\n </em>\n diamond: bonded to 4 C ✔\n </p>\n <p>\n C\n <sub>\n 60\n </sub>\n fullerene: delocalized/resonance\n <em>\n <strong>\n AND\n </strong>\n </em>\n diamond: not delocalized / no resonance ✔\n </p>\n <p>\n C\n <sub>\n 60\n </sub>\n fullerene:\n <em>\n sp\n <sup>\n 2\n </sup>\n <strong>\n AND\n </strong>\n </em>\n diamond:\n <em>\n sp\n <sup>\n 3\n </sup>\n </em>\n ✔\n </p>\n <p>\n C\n <sub>\n 60\n </sub>\n fullerene: bond angles between 109–120°\n <em>\n <strong>\n AND\n </strong>\n </em>\n diamond: 109° ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept \"bonds in fullerene are shorter/stronger/have higher bond order\n <strong>\n OR\n </strong>\n bonds in diamond longer/weaker/have lower bond order\".\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a(ii))\n </div><div class=\"card-body\">\n <p>\n diamond giant/network covalent\n <em>\n <strong>\n AND\n </strong>\n </em>\n sublimes at higher temperature ✔\n </p>\n <p>\n C\n <sub>\n 60\n </sub>\n molecular/London/dispersion/intermolecular «forces» ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept “diamond has strong covalent bonds\n <strong>\n AND\n </strong>\n require more energy to break «than intermolecular forces»” for M1.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n same general formula / C\n <sub>\n n\n </sub>\n H\n <sub>\n 2n+2\n </sub>\n ✔\n </p>\n <p>\n differ by CH\n <sub>\n 2\n </sub>\n /common structural unit ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept \"similar chemical properties\".\n </em>\n </p>\n <p>\n <em>\n Accept “gradation/gradual change in physical properties”.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <strong>\n ALTERNATIVE 1:\n </strong>\n </p>\n <p>\n <em>\n Test:\n </em>\n </p>\n <p>\n add bromine «water»/Br\n <sub>\n 2\n </sub>\n (aq) ✔\n </p>\n <p>\n <em>\n Result:\n </em>\n </p>\n <p>\n «orange/brown/yellow» to colourless/decolourised ✔\n </p>\n <p>\n <em>\n <br/>\n Do not accept “clear” for M2.\n </em>\n </p>\n <p>\n <strong>\n <br/>\n ALTERNATIVE 2:\n </strong>\n </p>\n <p>\n <em>\n Test:\n </em>\n </p>\n <p>\n add «acidified» KMnO\n <sub>\n 4\n </sub>\n ✔\n </p>\n <p>\n <em>\n Result:\n </em>\n </p>\n <p>\n «purple» to colourless/decolourised/brown ✔\n </p>\n <p>\n <em>\n <br/>\n Accept “colour change” for M2.\n </em>\n </p>\n <p>\n <strong>\n <br/>\n ALTERNATIVE 3:\n </strong>\n </p>\n <p>\n <em>\n Test:\n </em>\n </p>\n <p>\n add iodine /\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msub>\n <mtext>\n I\n </mtext>\n <mn>\n 2\n </mn>\n </msub>\n </math>\n ✔\n </p>\n <p>\n <em>\n Result:\n </em>\n </p>\n <p>\n «brown» to colourless/decolourised ✔\n <br/>\n <br/>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(ii))\n </div><div class=\"card-body\">\n <p>\n CH\n <sub>\n 3\n </sub>\n CH=CHCH\n <sub>\n 3\n </sub>\n + HBr (g) → CH\n <sub>\n 3\n </sub>\n CH\n <sub>\n 2\n </sub>\n CHBrCH\n <sub>\n 3\n </sub>\n </p>\n <p>\n Correct reactants ✔\n </p>\n <p>\n Correct products ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept molecular formulas for both reactants and product\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(iii))\n </div><div class=\"card-body\">\n <p>\n «electrophilic» addition/EA ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept nucleophilic or free radical addition.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (f(i))\n </div><div class=\"card-body\">\n <p>\n bond breaking: C–H + Cl–Cl / 414 «kJ mol\n <sup>\n –1\n </sup>\n » + 242 «kJ mol\n <sup>\n –1\n </sup>\n »/656 «kJ»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n bond breaking: 4C–H + Cl–Cl / 4 × 414 «kJ mol\n <sup>\n –1\n </sup>\n » + 242 «kJ mol\n <sup>\n –1\n </sup>\n » / 1898 «kJ» ✔\n </p>\n <p>\n </p>\n <p>\n bond forming: «C–Cl + H–Cl / 324 kJ mol\n <sup>\n –1\n </sup>\n + 431 kJ mol\n <sup>\n –1\n </sup>\n » / 755 «kJ»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n bond forming: «3C–H + C–Cl + H–Cl / 3 × 414 «kJ mol\n <sup>\n –1\n </sup>\n » + 324 «kJ mol\n <sup>\n –1\n </sup>\n » + 431 kJ mol\n <sup>\n –1\n </sup>\n » / 1997 «kJ» ✔\n </p>\n <p>\n </p>\n <p>\n «ΔH = bond breaking – bond forming = 656 kJ – 755 kJ» = –99 «kJ» ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Award\n <strong>\n [3]\n </strong>\n for correct final answer.\n </em>\n </p>\n <p>\n <em>\n Award\n <strong>\n [2 max]\n </strong>\n for 99 «kJ».\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (f(ii))\n </div><div class=\"card-body\">\n <p>\n <img src=\"\"/>\n </p>\n <p>\n reactants at higher enthalpy than products ✔\n </p>\n <p>\n <br/>\n ΔH/-99 «kJ» labelled on arrow from reactants to products\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n activation energy/\n <em>\n E\n </em>\n <sub>\n a\n </sub>\n labelled on arrow from reactant to top of energy profile ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept a double headed arrow between reactants and products labelled as ΔH for M2.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (a(i))\n </div><div class=\"card-body\">\n <p>\n A challenging question, requiring accurate knowledge of the bonding in these allotropes (some referred to graphite, clearly the most familiar allotrope). The most frequent (correct) answer was the difference in number of bonded C atoms and hybridisation in second place. However, only 30% got a mark.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a(ii))\n </div><div class=\"card-body\">\n <p>\n Again, this was a struggle between intermolecular forces and covalent bonds and this proved to be even harder than (a)(i) with only 25% of candidates getting full marks. The distinction between giant covalent/covalent network in diamond and molecular in C60 and hence resultant sublimation points, was rarely explained. There were many general and vague answers given, as well as commonly (incorrectly) stating that intermolecular forces are present in diamond. As another example of insufficient attention to the question itself, many candidates failed to say which would sublime at a higher temperature and so missed even one mark.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n This easy question was quite well answered; same/similar physical properties and empirical formula were common errors.\n </p>\n <p>\n Candidates misinterpreted the question and mentioned CH3\n <sup>\n +\n </sup>\n , i.e., the lost fragment; the other very common error was -COOH which shows a complete lack of understanding of MS considering the question is about butane so O should never appear.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Well answered by most, but some basic chemistry was missing when reporting results, perhaps as a result of little practical work due to COVID. A significant number suggested IR spectrometry, very likely because the question followed one on H NMR spectroscopy, thus revealing a failure to read the question properly (which asks for a test). Some teachers felt that adding \"chemical\" would have avoided some confusion.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(ii))\n </div><div class=\"card-body\">\n <p>\n Well done in general and most candidates wrote correct reagents, eventually losing a mark when considering H\n <sub>\n 2\n </sub>\n to be a product alongside 2-bromobutane.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d(iii))\n </div><div class=\"card-body\">\n <p>\n Very well answered, some mentioned halogenation which is a different reaction.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (f(i))\n </div><div class=\"card-body\">\n <p>\n Only the very weak candidates were unable to calculate the enthalpy change correctly, eventually missing 1 mark for inverted calculations.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (f(ii))\n </div><div class=\"card-body\">\n <p>\n Most candidates drew correct energy profiles, consistent with the sign of the energy change calculated in the previous question. And again, only very weak candidate failed to get at least 1 mark for correct profiles.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-1-models-of-the-particulate-nature-of-matter",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-1-2-energy-cycles-in-reactions",
|
||
"reactivity-2-2-how-fast-the-rate-of-chemical-change",
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"structure-1-1-introduction-to-the-particulate-nature-of-matter",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds",
|
||
"tool-1-experimental-techniques"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22N.2.SL.TZ0.4",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Deduce the structural and empirical formulas of\n <strong>\n B\n </strong>\n .\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain, with reference to Le Châtelier’s principle, the effect of using dilute rather than concentrated sulfuric acid as the catalyst on the yield of the reaction.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain, with reference to intermolecular forces, why\n <strong>\n B\n </strong>\n is more volatile than\n <strong>\n A\n </strong>\n .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Compound\n <strong>\n A\n </strong>\n can also react with bromine. Describe the change observed if\n <strong>\n A\n </strong>\n is reacted with bromine.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n <em>\n Structure:\n </em>\n </p>\n <p>\n <img src=\"\"/>\n </p>\n <p>\n ester functional group ✔\n </p>\n <p>\n rest of structure ✔\n </p>\n <p>\n <br/>\n <em>\n Empirical Formula:\n </em>\n </p>\n <p>\n C\n <sub>\n 3\n </sub>\n H\n <sub>\n 5\n </sub>\n O ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept condensed/skeletal formula.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n <em>\n Structure:\n </em>\n </p>\n <p>\n <img src=\"\"/>\n </p>\n <p>\n ester functional group ✔\n </p>\n <p>\n rest of structure ✔\n </p>\n <p>\n <br/>\n <em>\n Empirical Formula:\n </em>\n </p>\n <p>\n C\n <sub>\n 3\n </sub>\n H\n <sub>\n 5\n </sub>\n O ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept condensed/skeletal formula.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a.ii)\n </div><div class=\"card-body\">\n <p>\n dilute adds «excess» water\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n water is a product ✔\n </p>\n <p>\n </p>\n <p>\n shift left\n <em>\n <strong>\n AND\n </strong>\n </em>\n decreases yield ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a.iii)\n </div><div class=\"card-body\">\n <p>\n <strong>\n A\n </strong>\n has hydrogen bonding/bonds «and dipole-dipole and London/dispersion forces»\n <strong>\n <em>\n AND\n </em>\n B\n </strong>\n has dipole-dipole «and London/dispersion forces»\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n <strong>\n A\n </strong>\n has hydrogen bonding/bonds\n <em>\n <strong>\n AND\n </strong>\n </em>\n <strong>\n B\n </strong>\n does not ✔\n </p>\n <p>\n </p>\n <p>\n intermolecular forces are weaker in\n <strong>\n B\n </strong>\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n hydrogen bonding/bonds stronger «than dipole-dipole» ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n brown/orange/red/yellow to colourless ✔\n </p>\n <p>\n <br/>\n <em>\n Do\n <strong>\n not\n </strong>\n accept clear for colourless.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n A question that discriminated well between high-scoring and low-scoring candidates. The average mark on this three-mark question was 1.3. The majority of candidates did not recognize it as an esterification reaction and the ester functional group was only seen in a small proportion of the scripts. Some candidates earned a mark for the remainder of the structure. Only about half of the candidates earned error carried forward for the mark allocated for the empirical formula. Some candidates had the molecular formula instead, and some candidates miscounted the numbers of atoms in the structure they drew.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n A question that discriminated well between high-scoring and low-scoring candidates. The average mark on this three-mark question was 1.3. The majority of candidates did not recognize it as an esterification reaction and the ester functional group was only seen in a small proportion of the scripts. Some candidates earned a mark for the remainder of the structure. Only about half of the candidates earned error carried forward for the mark allocated for the empirical formula. Some candidates had the molecular formula instead, and some candidates miscounted the numbers of atoms in the structure they drew.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a.ii)\n </div><div class=\"card-body\">\n <p>\n This was the most challenging question on the paper according to the difficulty index. Many candidates stated that catalysts do not affect the position of an equilibrium and hence the yield is not changed. Some candidates stated that the rate of reaction would be slower and the yield per unit time would be lower. Only a few candidates recognized that the dilute sulfuric acid catalyst would introduce more water, and since water is a product it would shift the equilibrium to the left and lower the yield of the ester. 23% of the candidates did not answer the question. Some teachers commented in their feedback that it was not fair to expect the students to know about the dehydrating property of H\n <sub>\n 2\n </sub>\n SO\n <sub>\n 4\n </sub>\n , but this was not intended. The students were expected to deduce the effect.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a.iii)\n </div><div class=\"card-body\">\n <p>\n This question about intermolecular forces discriminated well between high-achieving and low-achieving candidates. Stronger candidates showed excellent understanding of the types of intermolecular forces found between the molecules of each compound and how they compared in strength. They gave more detail than the markscheme required. The average mark on the question was 0.8 out of 2. 21% of the candidates left the question blank. Error carried forward was applied whenever it was possible based on the answer in (a)(i).\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n Although it was a straightforward organic question, 22% of the candidates left it blank, indicating less confidence in answering the organic chemistry questions. 40% of the candidates gained the mark for the decolourization of bromine. One of the common mistakes was reversing the colour change and another was using the term \"clear\" instead of \"colourless\".\n </p>\n</div>\n",
|
||
"topics": [
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-2-3-how-far-the-extent-of-chemical-change",
|
||
"reactivity-3-4-electron-pair-sharing-reactions",
|
||
"structure-2-2-the-covalent-model",
|
||
"structure-2-4-from-models-to-materials",
|
||
"structure-3-2-functional-groups-classification-of-organic-compounds"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "22N.2.SL.TZ0.5",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the amount, in mol, of sulfur dioxide produced when 500.0 g of lignite undergoes combustion.\n </p>\n <p style=\"text-align:center;\">\n S (s) + O\n <sub>\n 2\n </sub>\n (g) → SO\n <sub>\n 2\n </sub>\n (g)\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Write an equation that shows how sulfur dioxide can produce acid rain.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Sodium thiosulfate reacts with hydrochloric acid as shown:\n </p>\n <p style=\"text-align:center;\">\n Na\n <sub>\n 2\n </sub>\n S\n <sub>\n 2\n </sub>\n O\n <sub>\n 3\n </sub>\n (aq) + 2HCl (aq) → S (s) + SO\n <sub>\n 2\n </sub>\n (aq) + 2NaCl (aq) + H\n <sub>\n 2\n </sub>\n O (l)\n </p>\n <p>\n The precipitate of sulfur makes the mixture cloudy, so a mark underneath the reaction mixture becomes invisible with time.\n </p>\n <p>\n <img src=\"\" style=\"display:block;margin-left:auto;margin-right:auto;\"/>\n </p>\n <p>\n Suggest\n <strong>\n two\n </strong>\n variables, other than concentration, that should be controlled when comparing relative rates at different temperatures.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (d)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Discuss\n <strong>\n two\n </strong>\n different ways to reduce the environmental impact of energy production from coal.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 40\n </mn>\n <mo>\n %\n </mo>\n <mo>\n ×\n </mo>\n <mn>\n 500\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n </mo>\n <mi>\n g\n </mi>\n <mo>\n =\n </mo>\n </math>\n » 2.0 «g» ✔\n </p>\n <p>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n </mo>\n <mi>\n g\n </mi>\n <mo>\n ×\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n </mo>\n <mi>\n m\n </mi>\n <mi>\n o\n </mi>\n <mi>\n l\n </mi>\n <mo>\n </mo>\n <mi>\n S\n </mi>\n </mrow>\n <mrow>\n <mn>\n 32\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 07\n </mn>\n <mo>\n </mo>\n <mi>\n g\n </mi>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 062\n </mn>\n <mo>\n </mo>\n <mi>\n m\n </mi>\n <mi>\n o\n </mi>\n <mi>\n l\n </mi>\n <mo>\n </mo>\n <mi>\n o\n </mi>\n <mi>\n f\n </mi>\n <mo>\n </mo>\n <mi>\n S\n </mi>\n </math>\n » = 0.062 «mol of SO\n <sub>\n 2\n </sub>\n » ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for correct final answer.\n </em>\n </p>\n <p>\n <em>\n Accept 0.063 «mol».\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 40\n </mn>\n <mo>\n %\n </mo>\n <mo>\n ×\n </mo>\n <mn>\n 500\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n </mo>\n <mi>\n g\n </mi>\n <mo>\n =\n </mo>\n </math>\n » 2.0 «g» ✔\n </p>\n <p>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 2\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n </mo>\n <mi>\n g\n </mi>\n <mo>\n ×\n </mo>\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n </mo>\n <mi>\n m\n </mi>\n <mi>\n o\n </mi>\n <mi>\n l\n </mi>\n <mo>\n </mo>\n <mi>\n S\n </mi>\n </mrow>\n <mrow>\n <mn>\n 32\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 07\n </mn>\n <mo>\n </mo>\n <mi>\n g\n </mi>\n </mrow>\n </mfrac>\n <mo>\n =\n </mo>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 062\n </mn>\n <mo>\n </mo>\n <mi>\n m\n </mi>\n <mi>\n o\n </mi>\n <mi>\n l\n </mi>\n <mo>\n </mo>\n <mi>\n o\n </mi>\n <mi>\n f\n </mi>\n <mo>\n </mo>\n <mi>\n S\n </mi>\n </math>\n » = 0.062 «mol of SO\n <sub>\n 2\n </sub>\n » ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for correct final answer.\n </em>\n </p>\n <p>\n <em>\n Accept 0.063 «mol».\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n SO\n <sub>\n 2\n </sub>\n (g) + H\n <sub>\n 2\n </sub>\n O (l) → H\n <sub>\n 2\n </sub>\n SO\n <sub>\n 3\n </sub>\n (aq)\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n SO\n <sub>\n 2\n </sub>\n (g) + ½O\n <sub>\n 2\n </sub>\n (g) → SO\n <sub>\n 3\n </sub>\n (g)\n <em>\n <strong>\n AND\n </strong>\n </em>\n SO\n <sub>\n 3\n </sub>\n (g) + H\n <sub>\n 2\n </sub>\n O (l) → H\n <sub>\n 2\n </sub>\n SO\n <sub>\n 4\n </sub>\n (aq)\n </p>\n <p>\n <em>\n <strong>\n OR\n </strong>\n </em>\n </p>\n <p>\n SO\n <sub>\n 2\n </sub>\n (g) + ½O\n <sub>\n 2\n </sub>\n (g) + H\n <sub>\n 2\n </sub>\n O (l) → H\n <sub>\n 2\n </sub>\n SO\n <sub>\n 4\n </sub>\n (aq) ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept ionized forms of acids.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n <em>\n Any two of:\n </em>\n </p>\n <p>\n depth/volume «of solution» ✔\n </p>\n <p>\n colour/darkness/thickness/size/background of mark ✔\n </p>\n <p>\n intensity of lighting in the lab ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept same size flask.\n </em>\n </p>\n <p>\n <em>\n Accept position of observation/person observing.\n </em>\n </p>\n <p>\n <em>\n Accept same equipment/apparatus.\n </em>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept catalyst/particle size/pressure/time.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n <em>\n Any\n <strong>\n two\n </strong>\n of:\n </em>\n </p>\n <p>\n remove sulfur from coal ✔\n </p>\n <p>\n add lime during combustion ✔\n </p>\n <p>\n not allow sulfur oxides to be released into the environment ✔\n </p>\n <p>\n reduce proportion/percentage of energy/power produced by «the combustion of» coal ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept any valid method to wash coal and remove sulfur content for M1.\n </em>\n </p>\n <p>\n <em>\n Accept any valid combustion/post-combustion method to remove sulfur oxides.\n </em>\n </p>\n <p>\n <em>\n Accept any suggestion that would reduce the amount of coal that is burnt or would reduce the damage caused.\n </em>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept answers that only reduce production of SO\n <sub>\n 2\n </sub>\n /CO\n <sub>\n 2\n </sub>\n from other fuels.\n </em>\n </p>\n <p>\n <em>\n Accept “improve efficiency of energy production from coal”.\n </em>\n </p>\n <p>\n <em>\n Accept “use coal of lower sulfur content”\n <strong>\n OR\n </strong>\n “cleaner coal”.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n A question that discriminated well between high-achieving and low-achieving candidates. The majority of the candidates were able to achieve one mark for determining the number of moles using 500g, while stronger candidates determined 0.40% of 500g to determine the correct number of moles. A number of candidates had a power of ten error in the first step.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n A question that discriminated well between high-achieving and low-achieving candidates. The majority of the candidates were able to achieve one mark for determining the number of moles using 500g, while stronger candidates determined 0.40% of 500g to determine the correct number of moles. A number of candidates had a power of ten error in the first step.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n This question was poorly answered and only 30% of the candidates wrote a correct equation for the formation of acid rain from SO\n <sub>\n 2\n </sub>\n . Mistakes included unbalanced equations and hydrogen added as a product.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n Most candidates mentioned \"volume\" as a variable that should be controlled gaining one of the two marks, while only a small proportion of candidates seemed to understand how the experiment worked and discussed the lighting in the room and the thickness of the mark. The most common incorrect answer was \"pressure\" which was irrelevant to this experiment.\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (d)\n </div><div class=\"card-body\">\n <p>\n Some candidates referred to the pre-combustion and post combustion methods of minimizing the release of SO\n <sub>\n 2\n </sub>\n . Some candidates focused on using cleaner coal, other fuels or renewable energy sources. Some mentioned increasing the efficiency of power stations to reduce the amount of coal burned. Some focused on removing the CO\n <sub>\n 2\n </sub>\n released by planting trees. All these options were valid with sufficient detail. But answers that were not relevant to coal, such as fitting catalytic converters on cars, were not accepted. 15% of the candidates did not answer the question, and the average mark was 0.8 out of 2 marks.\n </p>\n</div>\n",
|
||
"topics": [
|
||
"inquiry",
|
||
"reactivity-1-what-drives-chemical-reactions",
|
||
"reactivity-2-how-much-how-fast-and-how-far",
|
||
"structure-3-classification-of-matter"
|
||
],
|
||
"subtopics": [
|
||
"inquiry-1-exploring-and-designing",
|
||
"reactivity-1-3-energy-from-fuels",
|
||
"reactivity-2-1-how-much-the-amount-of-chemical-change",
|
||
"structure-3-1-the-periodic-table-classification-of-elements"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ1.1",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Deduce the ionic equation, including state symbols, for the reaction of hydrogen chloride gas with water.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n H\n <sub>\n 2\n </sub>\n O\n <sub>\n (l)\n </sub>\n + HCl\n <sub>\n (g)\n </sub>\n → Cl\n <sup>\n −\n </sup>\n <sub>\n (aq)\n </sub>\n + H\n <sub>\n 3\n </sub>\n O\n <sup>\n +\n </sup>\n <sub>\n (aq) ✓✓\n </sub>\n </p>\n <p>\n </p>\n <p>\n <em>\n One for the equation and one for the state symbols.\n <br/>\n Do not accept\n </em>\n H\n <sub>\n 2\n </sub>\n O\n <sub>\n (l)\n </sub>\n + H\n <sup>\n +\n </sup>\n <sub>\n (g)\n </sub>\n →\n <sub>\n </sub>\n H\n <sub>\n 3\n </sub>\n O\n <sup>\n +\n </sup>\n <sub>\n (aq)\n </sub>\n <em>\n <br/>\n Do not accept equilibrium sign.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ1.2",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Annotate and label the ground state orbital diagram of boron, using arrows to represent electrons.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The results are given where ✓ = reaction occurred and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n = no reaction.\n </p>\n <table border=\"1\" cellpadding=\"2\" cellspacing=\"0\" style=\"height:171px;\" width=\"552\">\n <tbody>\n <tr>\n <td style=\"width:50.7639px;text-align:center;\">\n <strong>\n Metal\n </strong>\n </td>\n <td style=\"width:93.7269px;text-align:center;\">\n <strong>\n ASO\n <sub>\n 4\n </sub>\n (aq)\n </strong>\n </td>\n <td style=\"width:93.4954px;text-align:center;\">\n <strong>\n BSO\n <sub>\n 4\n </sub>\n (aq)\n </strong>\n </td>\n <td style=\"width:92.8704px;text-align:center;\">\n <strong>\n CSO\n <sub>\n 4\n </sub>\n (aq)\n </strong>\n </td>\n <td style=\"width:94.6065px;text-align:center;\">\n <strong>\n DSO\n <sub>\n 4\n </sub>\n (aq)\n </strong>\n </td>\n <td style=\"width:92.2685px;text-align:center;\">\n <strong>\n ESO\n <sub>\n 4\n </sub>\n (aq)\n </strong>\n </td>\n </tr>\n <tr>\n <td style=\"text-align:center;width:50.7639px;\">\n <strong>\n A\n </strong>\n </td>\n <td style=\"text-align:center;width:93.7269px;\">\n —\n </td>\n <td style=\"text-align:center;width:93.4954px;\">\n ✓\n </td>\n <td style=\"text-align:center;width:92.8704px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:94.6065px;\">\n ✓\n </td>\n <td style=\"text-align:center;width:92.2685px;\">\n ✓\n </td>\n </tr>\n <tr>\n <td style=\"text-align:center;width:50.7639px;\">\n <strong>\n B\n </strong>\n </td>\n <td style=\"text-align:center;width:93.7269px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:93.4954px;\">\n —\n </td>\n <td style=\"text-align:center;width:92.8704px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:94.6065px;\">\n ✓\n </td>\n <td style=\"text-align:center;width:92.2685px;\">\n ✓\n </td>\n </tr>\n <tr>\n <td style=\"text-align:center;width:50.7639px;\">\n <strong>\n C\n </strong>\n </td>\n <td style=\"text-align:center;width:93.7269px;\">\n ✓\n </td>\n <td style=\"text-align:center;width:93.4954px;\">\n ✓\n </td>\n <td style=\"text-align:center;width:92.8704px;\">\n —\n </td>\n <td style=\"text-align:center;width:94.6065px;\">\n ✓\n </td>\n <td style=\"text-align:center;width:92.2685px;\">\n ✓\n </td>\n </tr>\n <tr>\n <td style=\"text-align:center;width:50.7639px;\">\n <strong>\n D\n </strong>\n </td>\n <td style=\"text-align:center;width:93.7269px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:93.4954px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:92.8704px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:94.6065px;\">\n —\n </td>\n <td style=\"text-align:center;width:92.2685px;\">\n ✓\n </td>\n </tr>\n <tr>\n <td style=\"text-align:center;width:50.7639px;\">\n <strong>\n E\n </strong>\n </td>\n <td style=\"text-align:center;width:93.7269px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:93.4954px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:92.8704px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:94.6065px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:92.2685px;\">\n —\n </td>\n </tr>\n </tbody>\n </table>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n <img src=\"\"/>\n </p>\n <p>\n arrows\n <em>\n <strong>\n AND\n </strong>\n </em>\n identifies 2s\n <em>\n <strong>\n AND\n </strong>\n </em>\n 2p sub orbitals ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept “hooks” to represent the electrons.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n +2/II ✓\n </p>\n <p>\n <br/>\n <em>\n Do\n <strong>\n not\n </strong>\n accept A\n <sup>\n 2+\n </sup>\n , A\n <sup>\n +2\n </sup>\n , 2\n <strong>\n OR\n </strong>\n 2+.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ1.3",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline the meaning of homologous series.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n High-pressure carbon monoxide disproportionation (HiPco) produces carbon atoms that react with nano catalysts to produce carbon nanotubes.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n compounds of the same family\n <em>\n <strong>\n AND\n </strong>\n </em>\n general formula\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n compounds of the same family\n <em>\n <strong>\n AND\n </strong>\n </em>\n differ by a common structural unit/\n <em>\n CH\n </em>\n <sub>\n 2\n </sub>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept contains the same functional group for same family.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 2CO(g) → C(s) + CO\n <sub>\n 2\n </sub>\n (g) ✓\n </p>\n <p>\n <br/>\n <em>\n Accept reversible arrows.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ1.4",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the oxidation state of sulfur in copper (II) sulfate.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why metals alloyed with another metal are usually harder and stronger but poorer conductors than the pure metal.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n +6/VI ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept 6/6\n <sup>\n +\n </sup>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n metal ions/atoms have different sizes ✓\n <br/>\n cations/atoms/layers do not slide over each other as easily ✓\n <br/>\n «irregularities» obstruct free movement of electrons ✓\n </p>\n <p>\n <br/>\n <em>\n Accept electrons move less easily/less delocalized for M3.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ1.5",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Draw\n <strong>\n one\n </strong>\n Lewis (electron dot) structure of the sulfate ion.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The\n <em>\n K\n </em>\n <sub>\n sp\n </sub>\n of copper (II) hydroxide is 2.2 × 10\n <sup>\n −20\n </sup>\n . Calculate the molar solubility of Cu\n <sup>\n 2+\n </sup>\n (aq) ions in a solution of pH 9.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n <img src=\"\"/>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept any combination of dots, crosses and lines.\n <br/>\n Double bonds do not have to be opposite each other.\n <br/>\n Do\n <strong>\n not\n </strong>\n penalise missing square brackets.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <em>\n K\n </em>\n <sub>\n sp\n </sub>\n =[Cu\n <sup>\n 2+\n </sup>\n ][OH\n <sup>\n −\n </sup>\n ]\n <sup>\n 2\n </sup>\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n 2.2 × 10\n <sup>\n −20\n </sup>\n =[Cu\n <sup>\n 2+\n </sup>\n ] × (10\n <sup>\n −5\n </sup>\n )\n <sup>\n 2\n </sup>\n ✓\n </p>\n <p>\n [Cu2+] «= Ksp/[OH−]2 =2.2 x 10−20/(10−5)2»\n <br/>\n = 2.2 ×10\n <sup>\n −10\n </sup>\n «mol dm\n <sup>\n −3\n </sup>\n » ✓\n </p>\n <p>\n <br/>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for correct final answer.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ1.6",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the standard enthalpy of reaction (\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n Δ\n </mtext>\n <msubsup>\n <mi>\n H\n </mi>\n <mtext>\n r\n </mtext>\n <mo>\n ⦵\n </mo>\n </msubsup>\n </math>\n ), in kJ mol\n <sup>\n −1\n </sup>\n , for the oxidation of SO\n <sub>\n 2\n </sub>\n to SO\n <sub>\n 3\n </sub>\n .\n </p>\n <table border=\"1\" cellpadding=\"2\" cellspacing=\"0\" style=\"width:500px;height:127px;margin-left:90px;\">\n <tbody>\n <tr>\n <td style=\"width:106.91px;text-align:center;\">\n <strong>\n Substance\n </strong>\n </td>\n <td style=\"width:380.208px;text-align:center;\">\n <strong>\n Enthalpy of formation, (\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext mathvariant=\"bold\">\n Δ\n </mtext>\n <msubsup>\n <mi mathvariant=\"bold-italic\">\n H\n </mi>\n <mtext mathvariant=\"bold\">\n f\n </mtext>\n <mo mathvariant=\"bold\">\n ⦵\n </mo>\n </msubsup>\n </math>\n ), in kJ mol\n <sup>\n −1\n </sup>\n </strong>\n </td>\n </tr>\n <tr>\n <td style=\"text-align:center;width:106.91px;\">\n SO\n <sub>\n 2\n </sub>\n </td>\n <td style=\"text-align:center;width:380.208px;\">\n −296.8\n </td>\n </tr>\n <tr>\n <td style=\"text-align:center;width:106.91px;\">\n SO\n <sub>\n 3\n </sub>\n </td>\n <td style=\"text-align:center;width:380.208px;\">\n −395.8\n </td>\n </tr>\n </tbody>\n </table>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline why vitamins usually need to be obtained from food sources.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n «Δ\n <em>\n H\n </em>\n °\n <em>\n rxn\n </em>\n = ΣΔ\n <em>\n H\n </em>\n °f (Products) − ΣΔ\n <em>\n H\n </em>\n °f (Reactants) =»\n <br/>\n −395.8 − (−296.8)» = −99.0«kJ mol\n <sup>\n −1\n </sup>\n » ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n cannot be synthesized «by the human body» ✓\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ1.7",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Deduce the number of signals you would expect to find in the\n <sup>\n 1\n </sup>\n H NMR spectrum of each compound.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Glucose, an isomer of fructose, exists as two isomeric ring forms. Annotate the diagram below to complete the structure of β-glucose. Use section 34 of the data booklet.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <table border=\"1\" cellpadding=\"2\" cellspacing=\"0\" style=\"height:88px;\" width=\"313\">\n <tbody>\n <tr>\n <td style=\"width:148.275px;\">\n Name\n </td>\n <td style=\"width:151.852px;\">\n Number of signals\n </td>\n </tr>\n <tr>\n <td style=\"width:148.275px;\">\n Ethyl methanoate\n </td>\n <td style=\"width:151.852px;\">\n 3\n </td>\n </tr>\n <tr>\n <td style=\"width:148.275px;\">\n Methyl ethanoate\n </td>\n <td style=\"width:151.852px;\">\n <em>\n <strong>\n AND\n </strong>\n </em>\n 2\n </td>\n </tr>\n </tbody>\n </table>\n <p>\n ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <img src=\"\"/>\n </p>\n <p>\n </p>\n <p>\n <em>\n Entire structure must be correct to score the mark.\n </em>\n </p>\n <p>\n <em>\n Ignore incorrect connectivity.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ1.9",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why a colorimeter set at a wavelength of 500 nm is not suitable to investigate reactions of Zn\n <sup>\n 2+\n </sup>\n compounds. Use section 3 of the data booklet.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the\n <strong>\n three\n </strong>\n components of a monomer of DNA (a nucleotide).\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Zn\n <sup>\n 2+\n </sup>\n does not form coloured compounds/ has a complete d subshell/orbital ✓\n <br/>\n <br/>\n 500 nm/«the setting on the colorimeter» in visible region\n <em>\n <strong>\n AND\n </strong>\n </em>\n no absorbance will be seen ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n phosphate\n <em>\n <strong>\n AND\n </strong>\n </em>\n deoxyribose\n <em>\n <strong>\n AND\n </strong>\n </em>\n nitrogenous base ✓\n </p>\n <p>\n <br/>\n <em>\n Accept named base.\n <br/>\n Do\n <strong>\n not\n </strong>\n accept ‘sugar’ or ‘pentose sugar’ in place of deoxyribose.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ2.1",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n An unknown organic compound,\n <strong>\n X\n </strong>\n , comprising of only carbon, hydrogen and oxygen was found to contain 48.6 % of carbon and 43.2 % of oxygen.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n «n(C) =» 4.05 «mol»\n <br/>\n <em>\n <strong>\n AND\n </strong>\n </em>\n <br/>\n «n(O) =» 2.70 «mol» ✓\n </p>\n <p>\n «% H =» 8.2 %\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n «n(H) =» 8.12 «mol» ✓\n </p>\n <p>\n «empirical formula =» C\n <sub>\n 3\n </sub>\n H\n <sub>\n 6\n </sub>\n O\n <sub>\n 2\n </sub>\n ✓\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for the simplest ratio ″1.5 C: 3 H: 1 O″.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ2.2",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Nitrogen (IV) oxide exists in equilibrium with dinitrogen tetroxide, N\n <sub>\n 2\n </sub>\n O\n <sub>\n 4\n </sub>\n (g), which is colourless.\n </p>\n <p style=\"text-align:center;\">\n 2NO\n <sub>\n 2\n </sub>\n (g) ⇌ N\n <sub>\n 2\n </sub>\n O\n <sub>\n 4\n </sub>\n (g)\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n All species are almost colourless except for MnO\n <sub>\n 4\n </sub>\n <sup>\n −\n </sup>\n , which has an intense purple colour, though the kale extract is coloured by the chlorophyll present.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n reaction hardly proceeds\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n reverse reaction/formation of NO\n <sub>\n 2\n </sub>\n is favoured\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n «concentration of» reactants greater than «concentration of» products «at equilibrium» ✓\n </p>\n <p>\n <em>\n Accept equilibrium lies to the left.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n green to purple\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n green to brown\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n green to purple-green ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept “colourless to purple”.\n <br/>\n Accept “green to grey/blueish”.\n <br/>\n Do\n <strong>\n not\n </strong>\n accept “clear” for “colourless”.\n <br/>\n Do\n <strong>\n not\n </strong>\n accept “purple to “brown”.\n <br/>\n Do\n <strong>\n not\n </strong>\n accept blue as final colour.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ2.3",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n An electrolytic cell was set up using inert electrodes and a dilute aqueous solution of magnesium chloride, MgCl\n <sub>\n 2\n </sub>\n (aq).\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <img src=\"\"/>\n </p>\n <p>\n electron flow from anode to battery\n <em>\n <strong>\n OR\n </strong>\n </em>\n from battery to cathode ✓\n </p>\n <p>\n Mg\n <sup>\n 2+\n </sup>\n /H\n <sup>\n +\n </sup>\n ions to − electrode\n <br/>\n <em>\n <strong>\n AND\n </strong>\n </em>\n <br/>\n Cl\n <sup>\n −\n </sup>\n /OH\n <sup>\n −\n </sup>\n ions to + electrode ✓\n </p>\n <p>\n <em>\n Do not award M1 if electrons are shown in electrolyte.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ2.4",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Bismuth has atomic number 83. Deduce\n <strong>\n two\n </strong>\n pieces of information about the electron configuration of bismuth from its position on the periodic table.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain how a substance in the same phase as the reactants can reduce the activation energy and act as a catalyst.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <em>\n Any two of the following:\n </em>\n <br/>\n «group 15 so Bi has» 5 valence electrons ✓\n <br/>\n «period 6 so Bi has» 6 «occupied» electron shells/energy levels ✓\n <br/>\n «in p-block so» p orbitals are highest occupied ✓\n <br/>\n occupied d/f orbitals ✓\n <br/>\n has unpaired electrons ✓\n <br/>\n has incomplete shell(s)/subshell(s) ✓\n </p>\n <p>\n <em>\n Award\n <strong>\n [1]\n </strong>\n for full or condensed electron configuration, [Xe] 4f\n <sup>\n 14\n </sup>\n 5d\n <sup>\n 10\n </sup>\n 6s\n <sup>\n 2\n </sup>\n 6p\n <sup>\n 3\n </sup>\n .\n <br/>\n </em>\n </p>\n <p>\n <em>\n Accept other valid statements about the electron configuration.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n forms an intermediate/activated complex ✓\n <br/>\n «intermediate/activated complex» dissociates to form product «\n <em>\n <strong>\n AND\n </strong>\n </em>\n catalyst» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept correct annotated energy profile for either mark.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ2.5",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The concentration of methanoic acid was found by titration with a 0.200 mol dm\n <sup>\n −\n <span style=\"font-size:11.6667px;\">\n 3\n </span>\n </sup>\n standard solution of sodium hydroxide, NaOH (aq), using an indicator to determine the end point.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The unit cell of lead (II) sulfide is shown:\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n «[OH\n <sup>\n −\n </sup>\n ] = 0.200 mol dm\n <sup>\n −3\n </sup>\n »\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 1:\n </strong>\n </em>\n <br/>\n «pOH = −log\n <sub>\n 10\n </sub>\n (0.200) =» 0.699 ✓\n <br/>\n «pH = 14.000 − 0.699 =» 13.301 ✓\n </p>\n <p>\n <em>\n <strong>\n ALTERNATIVE 2:\n </strong>\n </em>\n <br/>\n «[H\n <sup>\n +\n </sup>\n ] =\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mrow>\n <mn>\n 1\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 00\n </mn>\n <mo>\n ×\n </mo>\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mo>\n -\n </mo>\n <mn>\n 14\n </mn>\n </mrow>\n </msup>\n </mrow>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 200\n </mn>\n </mrow>\n </mfrac>\n </math>\n = » 5.00 × 10\n <sup>\n −14\n </sup>\n «mol dm\n <sup>\n −3\n </sup>\n » ✓\n <br/>\n «pH = −log\n <sub>\n 10\n </sub>\n (5.00 × 10\n <sup>\n −14\n </sup>\n )» = 13.301 ✓\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for correct final answer.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 6 ✓\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ2.7",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Identify the type of reaction.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Describe the interactions between amino acids occurring at the primary, secondary and tertiary levels within a protein.\n </p>\n <table border=\"1\" cellpadding=\"5\" cellspacing=\"0\" style=\"height:146px;\" width=\"500\">\n <tbody>\n <tr>\n <td style=\"text-align:center;width:150.898px;\">\n <strong>\n Structure Level\n </strong>\n </td>\n <td style=\"text-align:center;width:335.143px;\">\n <strong>\n Interactions between amino acids\n </strong>\n </td>\n </tr>\n <tr>\n <td style=\"width:150.898px;\">\n Primary\n </td>\n <td style=\"width:335.143px;text-align:center;\">\n ...........................................................\n </td>\n </tr>\n <tr>\n <td style=\"width:150.898px;\">\n Secondary\n </td>\n <td style=\"width:335.143px;text-align:center;\">\n ...........................................................\n </td>\n </tr>\n <tr>\n <td style=\"width:150.898px;\">\n Tertiary\n </td>\n <td style=\"width:335.143px;text-align:center;\">\n ...........................................................\n </td>\n </tr>\n </tbody>\n </table>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n «electrophilic» addition/A\n <sub>\n E\n </sub>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept nucleophilic addition.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <table border=\"1\" cellpadding=\"5\" cellspacing=\"0\" style=\"height:146px;width:530.866px;\">\n <tbody>\n <tr>\n <td style=\"text-align:center;width:150px;\">\n <strong>\n Structure Level\n </strong>\n </td>\n <td style=\"text-align:center;width:365.866px;\">\n <strong>\n Interactions between amino acids\n </strong>\n </td>\n </tr>\n <tr>\n <td style=\"width:150px;\">\n Primary\n </td>\n <td style=\"width:365.866px;text-align:left;\">\n covalent bonding\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n peptide bond\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n amide bond ✓\n </td>\n </tr>\n <tr>\n <td style=\"width:150px;\">\n Secondary\n </td>\n <td style=\"width:365.866px;text-align:left;\">\n hydrogen bonding ✓\n </td>\n </tr>\n <tr>\n <td style=\"width:150px;\">\n Tertiary\n </td>\n <td style=\"width:365.866px;text-align:left;\">\n interactions between R groups/side chains\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n ionic/electrostatic «attraction»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n hydrogen bonding\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n hydrophobic interactions\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n disulfide bridges\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n London/dispersion/van der Waals/«instantaneous» induced dipole-induced dipole ✓\n </td>\n </tr>\n </tbody>\n </table>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept “amino acid sequence” for M1.\n <br/>\n </em>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept “alpha helix”\n <strong>\n OR\n </strong>\n “beta sheets” for M2.\n <br/>\n </em>\n </p>\n <p>\n <em>\n Accept “covalent bonding” for M3.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.HL.TZ2.8",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Enthalpy of solution, enthalpy of hydration and lattice enthalpy are related in an energy cycle.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Compare the hydrolytic and oxidative rancidity and contrast the site where the chemical changes occur.\n </p>\n <p>\n </p>\n <p>\n Compare rancidity: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .\n </p>\n <p>\n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .\n </p>\n <p>\n Contrast reaction site: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .\n </p>\n <p>\n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <img src=\"\"/>\n </p>\n <p>\n correct boxes ✓\n <br/>\n A: enthalpy of solution / Δ\n <em>\n H\n </em>\n solution / Δ\n <em>\n H\n </em>\n sol\n <br/>\n <em>\n <strong>\n AND\n </strong>\n </em>\n <br/>\n B: lattice enthalpy / Δ\n <em>\n H\n </em>\n lattice\n <br/>\n <em>\n <strong>\n AND\n </strong>\n </em>\n <br/>\n C: enthalpy of hydration / Δ\n <em>\n H\n </em>\n hydration ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <em>\n Compare rancidity:\n </em>\n <br/>\n «both produce» disagreeable smell/taste/texture/appearance ✓\n </p>\n <p>\n <em>\n Contrast reaction site:\n </em>\n <br/>\n hydrolytic reaction occurs at ester link/COOC link\n <em>\n <strong>\n AND\n </strong>\n </em>\n oxidative reaction occurs at carbon-carbon double bond/C=C ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept “double bond” alone for oxidative reaction site.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.SL.TZ1.2",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Annotate and label the ground state orbital diagram of boron, using arrows to represent electrons.\n </p>\n <p>\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The results are given where ✓ = reaction occurred and\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n x\n </mi>\n </math>\n = no reaction.\n </p>\n <table border=\"1\" cellpadding=\"2\" cellspacing=\"0\" style=\"height:171px;\" width=\"552\">\n <tbody>\n <tr>\n <td style=\"width:50.7639px;text-align:center;\">\n <strong>\n Metal\n </strong>\n </td>\n <td style=\"width:93.7269px;text-align:center;\">\n <strong>\n ASO\n <sub>\n 4\n </sub>\n (aq)\n </strong>\n </td>\n <td style=\"width:93.4954px;text-align:center;\">\n <strong>\n BSO\n <sub>\n 4\n </sub>\n (aq)\n </strong>\n </td>\n <td style=\"width:92.8704px;text-align:center;\">\n <strong>\n CSO\n <sub>\n 4\n </sub>\n (aq)\n </strong>\n </td>\n <td style=\"width:94.6065px;text-align:center;\">\n <strong>\n DSO\n <sub>\n 4\n </sub>\n (aq)\n </strong>\n </td>\n <td style=\"width:92.2685px;text-align:center;\">\n <strong>\n ESO\n <sub>\n 4\n </sub>\n (aq)\n </strong>\n </td>\n </tr>\n <tr>\n <td style=\"text-align:center;width:50.7639px;\">\n <strong>\n A\n </strong>\n </td>\n <td style=\"text-align:center;width:93.7269px;\">\n —\n </td>\n <td style=\"text-align:center;width:93.4954px;\">\n ✓\n </td>\n <td style=\"text-align:center;width:92.8704px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:94.6065px;\">\n ✓\n </td>\n <td style=\"text-align:center;width:92.2685px;\">\n ✓\n </td>\n </tr>\n <tr>\n <td style=\"text-align:center;width:50.7639px;\">\n <strong>\n B\n </strong>\n </td>\n <td style=\"text-align:center;width:93.7269px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:93.4954px;\">\n —\n </td>\n <td style=\"text-align:center;width:92.8704px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:94.6065px;\">\n ✓\n </td>\n <td style=\"text-align:center;width:92.2685px;\">\n ✓\n </td>\n </tr>\n <tr>\n <td style=\"text-align:center;width:50.7639px;\">\n <strong>\n C\n </strong>\n </td>\n <td style=\"text-align:center;width:93.7269px;\">\n ✓\n </td>\n <td style=\"text-align:center;width:93.4954px;\">\n ✓\n </td>\n <td style=\"text-align:center;width:92.8704px;\">\n —\n </td>\n <td style=\"text-align:center;width:94.6065px;\">\n ✓\n </td>\n <td style=\"text-align:center;width:92.2685px;\">\n ✓\n </td>\n </tr>\n <tr>\n <td style=\"text-align:center;width:50.7639px;\">\n <strong>\n D\n </strong>\n </td>\n <td style=\"text-align:center;width:93.7269px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:93.4954px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:92.8704px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:94.6065px;\">\n —\n </td>\n <td style=\"text-align:center;width:92.2685px;\">\n ✓\n </td>\n </tr>\n <tr>\n <td style=\"text-align:center;width:50.7639px;\">\n <strong>\n E\n </strong>\n </td>\n <td style=\"text-align:center;width:93.7269px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:93.4954px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:92.8704px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:94.6065px;\">\n ✗\n </td>\n <td style=\"text-align:center;width:92.2685px;\">\n —\n </td>\n </tr>\n </tbody>\n </table>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n <img src=\"\"/>\n </p>\n <p>\n arrows\n <em>\n <strong>\n AND\n </strong>\n </em>\n identifies 2s\n <em>\n <strong>\n AND\n </strong>\n </em>\n 2p sub orbitals ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept “hooks” to represent the electrons.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n +2/II ✓\n </p>\n <p>\n <br/>\n <em>\n Do\n <strong>\n not\n </strong>\n accept A\n <sup>\n 2+\n </sup>\n , A\n <sup>\n +2\n </sup>\n , 2\n <strong>\n OR\n </strong>\n 2+.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.SL.TZ1.3",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline the meaning of homologous series.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n High-pressure carbon monoxide disproportionation (HiPco) produces carbon atoms that react with nano catalysts to produce carbon nanotubes.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n compounds of the same family\n <em>\n <strong>\n AND\n </strong>\n </em>\n general formula\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n compounds of the same family\n <em>\n <strong>\n AND\n </strong>\n </em>\n differ by a common structural unit/\n <em>\n CH\n </em>\n <sub>\n 2\n </sub>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept contains the same functional group for same family.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n 2CO(g) → C(s) + CO\n <sub>\n 2\n </sub>\n (g) ✓\n </p>\n <p>\n <br/>\n <em>\n Accept reversible arrows.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.SL.TZ1.4",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n State the oxidation state of sulfur in copper (II) sulfate.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain why metals alloyed with another metal are usually harder and stronger but poorer conductors than the pure metal.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n +6/VI ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept 6/6\n <sup>\n +\n </sup>\n .\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n metal ions/atoms have different sizes ✓\n <br/>\n cations/atoms/layers do not slide over each other as easily ✓\n <br/>\n «irregularities» obstruct free movement of electrons ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept electrons move less easily/less delocalized for M3.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.SL.TZ1.5",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a.i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the percentage of oxygen present in the double salt.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Outline why vitamins usually need to be obtained from food sources.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a.i)\n </div><div class=\"card-body\">\n <p>\n «100 − (7.09 + 5.11 + 16.22 + 14.91) =» 56.67 «%» ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n cannot be synthesized «by the human body» ✓\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.SL.TZ2.1",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n An unknown organic compound,\n <strong>\n X\n </strong>\n , comprising of only carbon, hydrogen and oxygen was found to contain 48.6 % of carbon and 43.2 % of oxygen.\n </p>\n <p>\n Determine the empirical formula.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n «n(C) =» 4.05 «mol»\n <br/>\n <em>\n <strong>\n AND\n </strong>\n </em>\n <br/>\n «n(O) =» 2.70 «mol» ✓\n <br/>\n «% H =» 8.2 %\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n «n(H) =» 8.12 «mol» ✓\n </p>\n <p>\n «empirical formula =» C\n <sub>\n 3\n </sub>\n H\n <sub>\n 6\n </sub>\n O\n <sub>\n 2\n </sub>\n ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Award\n <strong>\n [2]\n </strong>\n for the simplest ratio ″1.5 C: 3 H: 1 O″.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.SL.TZ2.2",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Nitrogen (IV) oxide exists in equilibrium with dinitrogen tetroxide, N\n <sub>\n 2\n </sub>\n O\n <sub>\n 4\n </sub>\n (g), which is colourless.\n </p>\n <p style=\"text-align:center;\">\n 2NO\n <sub>\n 2\n </sub>\n (g) ⇌ N\n <sub>\n 2\n </sub>\n O\n <sub>\n 4\n </sub>\n (g)\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n All species are almost colourless except for MnO\n <sub>\n 4\n </sub>\n <sup>\n −\n </sup>\n , which has an intense purple colour, though the kale extract is coloured by the chlorophyll present.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n reaction hardly proceeds\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n reverse reaction/formation of NO\n <sub>\n 2\n </sub>\n is favoured\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n «concentration of» reactants greater than «concentration of» products «at equilibrium» ✓\n </p>\n <p>\n <em>\n Accept equilibrium lies to the left.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n green to purple\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n green to brown\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n green to purple-green ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept “colourless to purple”.\n <br/>\n Accept “green to grey/blueish”.\n <br/>\n Do\n <strong>\n not\n </strong>\n accept “clear” for “colourless”.\n <br/>\n Do\n <strong>\n not\n </strong>\n accept “purple to “brown”.\n <br/>\n Do\n <strong>\n not\n </strong>\n accept blue as final colour.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.SL.TZ2.3",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n An electrolytic cell was set up using inert electrodes and molten magnesium chloride, MgCl\n <sub>\n 2\n </sub>\n (l).\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n <p>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n magnesium/Mg «metal» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Do not accept magnesium ions/Mg\n <sup>\n 2+\n </sup>\n .\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.SL.TZ2.4",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Bismuth has atomic number 83. Deduce\n <strong>\n two\n </strong>\n pieces of information about the electron configuration of bismuth from its position on the periodic table.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Explain how a substance in the same phase as the reactants can reduce the activation energy and act as a catalyst.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <em>\n Any two of the following:\n </em>\n <br/>\n «group 15 so Bi has» 5 valence electrons ✓\n <br/>\n «period 6 so Bi has» 6 «occupied» electron shells/energy levels ✓\n <br/>\n «in p-block so» p orbitals are highest occupied ✓\n <br/>\n occupied d/f orbitals ✓\n <br/>\n has unpaired electrons ✓\n <br/>\n has incomplete shell(s)/subshell(s) ✓\n </p>\n <p>\n <em>\n Award\n <strong>\n [1]\n </strong>\n for full or condensed electron configuration, [Xe] 4f\n <sup>\n 14\n </sup>\n 5d\n <sup>\n 10\n </sup>\n 6s\n <sup>\n 2\n </sup>\n 6p\n <sup>\n 3\n </sup>\n .\n <br/>\n </em>\n </p>\n <p>\n <em>\n Accept other valid statements about the electron configuration.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n forms an intermediate/activated complex ✓\n <br/>\n «intermediate/activated complex» dissociates to form product «\n <em>\n <strong>\n AND\n </strong>\n </em>\n catalyst» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept correct annotated energy profile for either mark.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "23M.2.SL.TZ2.6",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest an experimental method that could be used to determine the rate of reaction.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Describe the interactions between amino acids occurring at the primary, secondary and tertiary levels within a protein.\n </p>\n <table border=\"1\" cellpadding=\"5\" cellspacing=\"0\" style=\"height:146px;\" width=\"500\">\n <tbody>\n <tr>\n <td style=\"text-align:center;width:150.898px;\">\n <strong>\n Structure Level\n </strong>\n </td>\n <td style=\"text-align:center;width:335.143px;\">\n <strong>\n Interactions between amino acids\n </strong>\n </td>\n </tr>\n <tr>\n <td style=\"width:150.898px;\">\n Primary\n </td>\n <td style=\"width:335.143px;text-align:center;\">\n ...........................................................\n </td>\n </tr>\n <tr>\n <td style=\"width:150.898px;\">\n Secondary\n </td>\n <td style=\"width:335.143px;text-align:center;\">\n ...........................................................\n </td>\n </tr>\n <tr>\n <td style=\"width:150.898px;\">\n Tertiary\n </td>\n <td style=\"width:335.143px;text-align:center;\">\n ...........................................................\n </td>\n </tr>\n </tbody>\n </table>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n «measure change in»\n <br/>\n mass\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n pressure\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n volume of gas/CO\n <sub>\n 2\n </sub>\n produced\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n «intensity of» colour\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n «electrical» conductivity\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n pH ✓\n </p>\n <p>\n with time ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept any of the following for M1:\n <br/>\n perform experiment on balance\n <br/>\n <strong>\n OR\n </strong>\n <br/>\n use pressure probe\n <br/>\n <strong>\n OR\n </strong>\n <br/>\n collect gas/gas syringe\n <br/>\n <strong>\n OR\n </strong>\n <br/>\n use colorimeter\n <br/>\n <strong>\n OR\n </strong>\n <br/>\n use conductivity meter\n <br/>\n <strong>\n OR\n </strong>\n <br/>\n use pH meter\n </em>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept “measure rate of change” for M2.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <table border=\"1\" cellpadding=\"5\" cellspacing=\"0\" style=\"height:146px;width:530.866px;\">\n <tbody>\n <tr>\n <td style=\"text-align:center;width:150px;\">\n <strong>\n Structure Level\n </strong>\n </td>\n <td style=\"text-align:center;width:365.866px;\">\n <strong>\n Interactions between amino acids\n </strong>\n </td>\n </tr>\n <tr>\n <td style=\"width:150px;\">\n Primary\n </td>\n <td style=\"width:365.866px;text-align:left;\">\n covalent bonding\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n peptide bond\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n amide bond ✓\n </td>\n </tr>\n <tr>\n <td style=\"width:150px;\">\n Secondary\n </td>\n <td style=\"width:365.866px;text-align:left;\">\n hydrogen bonding ✓\n </td>\n </tr>\n <tr>\n <td style=\"width:150px;\">\n Tertiary\n </td>\n <td style=\"width:365.866px;text-align:left;\">\n interactions between R groups/side chains\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n ionic/electrostatic «attraction»\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n hydrogen bonding\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n hydrophobic interactions\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n disulfide bridges\n <br/>\n <em>\n <strong>\n OR\n </strong>\n </em>\n <br/>\n London/dispersion/van der Waals/«instantaneous» induced dipole-induced dipole ✓\n </td>\n </tr>\n </tbody>\n </table>\n <p>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept “amino acid sequence” for M1.\n <br/>\n </em>\n </p>\n <p>\n <em>\n Do\n <strong>\n not\n </strong>\n accept “alpha helix”\n <strong>\n OR\n </strong>\n “beta sheets” for M2.\n <br/>\n </em>\n </p>\n <p>\n <em>\n Accept “covalent bonding” for M3.\n </em>\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"empty-topic"
|
||
],
|
||
"subtopics": []
|
||
},
|
||
{
|
||
"question_id": "EXM.1B.HL.TZ0.1",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The student reported the volumes of titrant used per trial for samples collected each day in the following table:\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The candidate used a 25 cm\n <sup>\n 3\n </sup>\n burette with an uncertainty of ±0.05 cm\n <sup>\n 3\n </sup>\n . Comment on the uncertainty recorded for the titrant volumes.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the initial % content of Fe\n <sup>\n 2+\n </sup>\n in the raw spinach, showing your working.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The results calculated for the subsequent days are shown.\n </p>\n <p>\n <img height=\"166\" src=\"\" width=\"205\"/>\n </p>\n <p>\n Comment on the significance of the difference in Fe\n <sup>\n 2+\n </sup>\n content measured for day 4 and 5.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest\n <strong>\n two\n </strong>\n flaws in the design that could have contributed to the random error in the investigation.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The student did not standardise the KMnO\n <sub>\n 4\n </sub>\n solution used for titration. Suggest what type of error this may have caused, giving your reasons.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The titration of Fe(II) with MnO\n <sub>\n 4\n </sub>\n in acid medium is a redox reaction. State the oxidised and reduced species, including their change in oxidation states.\n </p>\n <p>\n <br/>\n Oxidised: ........................................................................................................................................\n </p>\n <p>\n <br/>\n Reduced: ........................................................................................................................................\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Spinach contains a large amount of antioxidant compounds, including ascorbic acid and oxalic acid. Predict how this will affect the accuracy of the results, mentioning the type and direction of the error.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Incorrect\n <strong>\n <em>\n AND\n </em>\n </strong>\n two readings, uncertainty is ±0.1 ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Incorrect\n <strong>\n <em>\n AND\n </em>\n </strong>\n two readings, uncertainty is ±0.1 ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n «mol» MnO\n <sup>\n 4−\n </sup>\n «=0.00339 × 0.01» = 3.38 × 10\n <sup>\n −5\n </sup>\n «mol» ✓\n </p>\n <p>\n «mol MnO\n <sup>\n 4−\n </sup>\n : mol Fe\n <sup>\n +2\n </sup>\n = 1:5»\n </p>\n <p>\n «mol» Fe\n <sup>\n 2+\n </sup>\n = 1.95 × 10\n <sup>\n −4\n </sup>\n ✓\n </p>\n <p>\n % Fe\n <sup>\n 2+\n </sup>\n «= 1.95 × 10\n <sup>\n −4\n </sup>\n × 55.8 × 100/2.0»= 0.47«%» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Must show working for the marks.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n no difference\n <strong>\n <em>\n AND\n </em>\n </strong>\n uncertainty larger than difference ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept other explanations referred to overlapping.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n dilute the titrant to use larger volumes «of titrant» ✔\n </p>\n <p>\n ensure spinach leaf fragments are the same size ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n systematic error\n <strong>\n <em>\n AND\n </em>\n </strong>\n all values «equally» inaccurate ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Oxidised: Fe\n <sup>\n +2\n </sup>\n → Fe\n <sup>\n +3\n </sup>\n ✔\n </p>\n <p>\n Reduced: Mn\n <sup>\n 7+\n </sup>\n → Mn\n <sup>\n 2+\n </sup>\n ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n systematic error\n <strong>\n <em>\n AND\n </em>\n </strong>\n lower accuracy ✔\n </p>\n <p>\n overestimation of [Fe(II)] ✔\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"inquiry",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"inquiry-3-concluding-and-evaluating",
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "EXM.1B.HL.TZ0.2",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n A calibration curve with pure ascorbic acid and appropriate amounts of the reagent, R, was prepared by dilutions with water of an initial aqueous solution of\n <strong>\n 100\n </strong>\n <strong>\n μg/cm\n <sup>\n −3\n </sup>\n </strong>\n ascorbic acid in water, AA (aq)\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the volumes of pure ascorbic acid solution required for each point of the calibration curve; point 4 of the curve is shown as an example.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The resulting calibration curve is shown:\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n <p>\n Suggest a range of absorbance values for which this curve can be used to calculate ascorbic acid of broccoli accurately.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest what should be used as a blank for spectrophotometric reading.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iv)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Discuss why it is important to obtain a value of R\n <sup>\n 2\n </sup>\n close to 1 for a calibration curve.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The sample stored at 5 °C showed an absorbance of 0.600. Determine the concentration of ascorbic acid in the sample solution by interpolation and using the line equation.\n </p>\n <p>\n <br/>\n interpolation in graph: ..........................................................................................................................\n </p>\n <p>\n <br/>\n using line equation: .............................................................................................................................\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest which of the two methods will provide a more accurate value.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest why water was chosen to extract ascorbic acid from the spinach leaves with reference to its structure.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Estimate the % change in ascorbic acid concentration when stored for 3 days storage at 5 °C and 20 °C.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Estimate how much ascorbic acid will remain after 6 days storage at 20 °C in the same experimental conditions, stating any assumption made for the calculation.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <em>\n 1-\n </em>\n 1.0 cm\n <sup>\n 3\n </sup>\n </p>\n <p>\n <em>\n 2-\n </em>\n 4.0 cm\n <sup>\n 3\n </sup>\n <em>\n </em>\n ✔\n </p>\n <p>\n <em>\n 3-\n </em>\n 8.0 cm\n <sup>\n 3\n </sup>\n </p>\n <p>\n <em>\n 5-\n </em>\n 4.0 cm\n <sup>\n 3\n </sup>\n <em>\n <sup>\n </sup>\n </em>\n ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Award [1] for 2 correct answers\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <em>\n 1-\n </em>\n 1.0 cm\n <sup>\n 3\n </sup>\n </p>\n <p>\n <em>\n 2-\n </em>\n 4.0 cm\n <sup>\n 3\n </sup>\n <em>\n </em>\n ✔\n </p>\n <p>\n <em>\n 3-\n </em>\n 8.0 cm\n <sup>\n 3\n </sup>\n </p>\n <p>\n <em>\n 5-\n </em>\n 4.0 cm\n <sup>\n 3\n </sup>\n <em>\n <sup>\n </sup>\n </em>\n ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Award [1] for 2 correct answers\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n 0.050−1.000 ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n water\n <em>\n <strong>\n AND\n </strong>\n </em>\n all samples dissolved «in water» ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iv)\n </div><div class=\"card-body\">\n <p>\n ensures the line is best-fit ✔\n </p>\n <p>\n line/equation of the line will be used for quantitation ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept any other explanations referring to accuracy.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <em>\n Interpolation:\n </em>\n 9.8 μg cm\n <sup>\n −3\n </sup>\n ✔\n </p>\n <p>\n <em>\n using equation:\n </em>\n 0.600/0.06283 = 9.55 «μg cm\n <sup>\n −3\n </sup>\n »\n <sup>\n </sup>\n ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n line equation\n <em>\n <strong>\n AND\n </strong>\n </em>\n uses the values for 5 determinations ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n «ascorbic acid» has multiple −OH/hydroxyl groups ✔\n </p>\n <p>\n can H-bond with water ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Do not accept OH−/hydroxide for M1\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Δ % = «95.5 - 50.0/95.5 × 100»= 47.6 % ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept calculations using line equation\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n assumption: linear decrease ✔\n </p>\n <p>\n rate «mg 100 g\n <sup>\n −1\n </sup>\n day\n <sup>\n −1\n </sup>\n = 95.5 − 50.0 / 3 » = 15 «mg 100 g\n <sup>\n −1\n </sup>\n day\n <sup>\n −1\n </sup>\n » ✔\n </p>\n <p>\n «95.5 − 15 × 6 = 5.5 «mg 100 g\n <sup>\n −1\n </sup>\n day\n <sup>\n −1\n </sup>\n » ✔\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"inquiry",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"inquiry-1-exploring-and-designing",
|
||
"inquiry-2-collecting-and-processing-data",
|
||
"structure-2-2-the-covalent-model",
|
||
"tool-1-experimental-techniques",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "EXM.1B.SL.TZ0.1",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The student reported the volumes of titrant used per trial for samples collected each day in the following table:\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The candidate used a 25 cm\n <sup>\n 3\n </sup>\n burette with an uncertainty of ±0.05 cm\n <sup>\n 3\n </sup>\n . Comment on the uncertainty recorded for the titrant volumes.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the initial % content of Fe\n <sup>\n 2+\n </sup>\n in the raw spinach, showing your working.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The results calculated for the subsequent days are shown.\n </p>\n <p>\n <img height=\"166\" src=\"\" width=\"205\"/>\n </p>\n <p>\n Comment on the significance of the difference in Fe\n <sup>\n 2+\n </sup>\n content measured for day 4 and 5.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest\n <strong>\n two\n </strong>\n flaws in the design that could have contributed to the random error in the investigation.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The student did not standardise the KMnO\n <sub>\n 4\n </sub>\n solution used for titration. Suggest what type of error this may have caused, giving your reasons.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The titration of Fe(II) with MnO\n <sub>\n 4\n </sub>\n in acid medium is a redox reaction. State the oxidised and reduced species, including their change in oxidation states.\n </p>\n <p>\n <br/>\n Oxidised: ........................................................................................................................................\n </p>\n <p>\n <br/>\n Reduced: ........................................................................................................................................\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Spinach contains a large amount of antioxidant compounds, including ascorbic acid and oxalic acid. Predict how this will affect the accuracy of the results, mentioning the type and direction of the error.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n Incorrect\n <strong>\n <em>\n AND\n </em>\n </strong>\n two readings, uncertainty is ±0.1 ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Incorrect\n <strong>\n <em>\n AND\n </em>\n </strong>\n two readings, uncertainty is ±0.1 ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n «mol» MnO\n <sup>\n 4−\n </sup>\n «=0.00339 × 0.01» = 3.38 × 10\n <sup>\n −5\n </sup>\n «mol» ✓\n </p>\n <p>\n «mol MnO\n <sup>\n 4−\n </sup>\n : mol Fe\n <sup>\n +2\n </sup>\n = 1:5»\n </p>\n <p>\n «mol» Fe\n <sup>\n 2+\n </sup>\n = 1.95 × 10\n <sup>\n −4\n </sup>\n ✓\n </p>\n <p>\n % Fe\n <sup>\n 2+\n </sup>\n «= 1.95 × 10\n <sup>\n −4\n </sup>\n × 55.8 × 100/2.0»= 0.47«%» ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n Must show working for the marks.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n no difference\n <strong>\n <em>\n AND\n </em>\n </strong>\n uncertainty larger than difference ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept other explanations referred to overlapping.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n dilute the titrant to use larger volumes «of titrant» ✔\n </p>\n <p>\n ensure spinach leaf fragments are the same size ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n systematic error\n <strong>\n <em>\n AND\n </em>\n </strong>\n all values «equally» inaccurate ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Oxidised: Fe\n <sup>\n +2\n </sup>\n → Fe\n <sup>\n +3\n </sup>\n ✔\n </p>\n <p>\n Reduced: Mn\n <sup>\n 7+\n </sup>\n → Mn\n <sup>\n 2+\n </sup>\n ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n systematic error\n <strong>\n <em>\n AND\n </em>\n </strong>\n lower accuracy ✔\n </p>\n <p>\n overestimation of [Fe(II)] ✔\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"inquiry",
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"inquiry-3-concluding-and-evaluating",
|
||
"reactivity-3-2-electron-transfer-reactions",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "EXM.1B.SL.TZ0.2",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n A calibration curve with pure ascorbic acid and appropriate amounts of the reagent, R, was prepared by dilutions with water of an initial aqueous solution of\n <strong>\n 100\n </strong>\n <strong>\n μg/cm\n <sup>\n −3\n </sup>\n </strong>\n ascorbic acid in water, AA (aq)\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Calculate the volumes of pure ascorbic acid solution required for each point of the calibration curve; point 4 of the curve is shown as an example.\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n The resulting calibration curve is shown:\n </p>\n <p style=\"text-align:center;\">\n <img src=\"\"/>\n </p>\n <p>\n Suggest a range of absorbance values for which this curve can be used to calculate ascorbic acid of broccoli accurately.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest what should be used as a blank for spectrophotometric reading.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (iv)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Discuss why it is important to obtain a value of R\n <sup>\n 2\n </sup>\n close to 1 for a calibration curve.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n After 3 days, the broccoli samples were removed from storage and 1.0 g of each sample was blended with 100.0 cm\n <sup>\n 3\n </sup>\n of water. The filtered solution was mixed with the reactant in the same proportions as that used for the calibration curve in a cuvette and measured.\n </p>\n <p>\n The sample stored at 5 °C showed an absorbance of 0.600. Determine the concentration of ascorbic acid in the sample solution by interpolation and using the line equation.\n </p>\n <p>\n <br/>\n interpolation in graph: ..........................................................................................................................\n </p>\n <p>\n <br/>\n using line equation: .............................................................................................................................\n </p>\n <p>\n </p>\n <p>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (c)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest why water was chosen to extract ascorbic acid from the spinach leaves with reference to its structure.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (i)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Estimate the % change in ascorbic acid concentration when stored for 3 days storage at 5 °C and 20 °C.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [1]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (ii)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Estimate how much ascorbic acid will remain after 6 days storage at 20 °C in the same experimental conditions, stating any assumption made for the calculation.\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <em>\n 1-\n </em>\n 1.0 cm\n <sup>\n 3\n </sup>\n </p>\n <p>\n <em>\n 2-\n </em>\n 4.0 cm\n <sup>\n 3\n </sup>\n <em>\n </em>\n ✔\n </p>\n <p>\n <em>\n 3-\n </em>\n 8.0 cm\n <sup>\n 3\n </sup>\n </p>\n <p>\n <em>\n 5-\n </em>\n 4.0 cm\n <sup>\n 3\n </sup>\n <em>\n <sup>\n </sup>\n </em>\n ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Award [1] for 2 correct answers\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n <em>\n 1-\n </em>\n 1.0 cm\n <sup>\n 3\n </sup>\n </p>\n <p>\n <em>\n 2-\n </em>\n 4.0 cm\n <sup>\n 3\n </sup>\n <em>\n </em>\n ✔\n </p>\n <p>\n <em>\n 3-\n </em>\n 8.0 cm\n <sup>\n 3\n </sup>\n </p>\n <p>\n <em>\n 5-\n </em>\n 4.0 cm\n <sup>\n 3\n </sup>\n <em>\n <sup>\n </sup>\n </em>\n ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Award [1] for 2 correct answers\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n 0.050−1.000 ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iii)\n </div><div class=\"card-body\">\n <p>\n water\n <em>\n <strong>\n AND\n </strong>\n </em>\n all samples dissolved «in water» ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (iv)\n </div><div class=\"card-body\">\n <p>\n ensures the line is best-fit ✔\n </p>\n <p>\n line/equation of the line will be used for quantitation ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept any other explanations referring to accuracy.\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <em>\n Interpolation:\n </em>\n 9.8\n <strong>\n μg\n </strong>\n cm\n <sup>\n −3\n </sup>\n ✔\n </p>\n <p>\n <em>\n using equation:\n </em>\n 0.600/0.06283 = 9.55 «\n <strong>\n μg\n </strong>\n cm\n <sup>\n −3\n </sup>\n »\n <sup>\n </sup>\n ✔\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (c)\n </div><div class=\"card-body\">\n <p>\n «ascorbic acid» has multiple −OH/hydroxyl groups ✔\n </p>\n <p>\n can H-bond with water ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Do not accept OH−/hydroxide for M1\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (i)\n </div><div class=\"card-body\">\n <p>\n Δ % = «95.5 - 50.0/95.5 × 100»= 47.6 % ✔\n </p>\n <p>\n </p>\n <p>\n <em>\n Accept calculations using line equation\n </em>\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (ii)\n </div><div class=\"card-body\">\n <p>\n assumption: linear decrease ✔\n </p>\n <p>\n rate «mg 100 g\n <sup>\n −1\n </sup>\n day\n <sup>\n −1\n </sup>\n = 95.5 − 50.0 / 3 » = 15 «mg 100 g\n <sup>\n −1\n </sup>\n day\n <sup>\n −1\n </sup>\n » ✔\n </p>\n <p>\n «95.5 − 15 × 6 = 5.5 «mg 100 g\n <sup>\n −1\n </sup>\n day\n <sup>\n −1\n </sup>\n » ✔\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"inquiry",
|
||
"structure-2-models-of-bonding-and-structure",
|
||
"tools"
|
||
],
|
||
"subtopics": [
|
||
"inquiry-1-exploring-and-designing",
|
||
"inquiry-2-collecting-and-processing-data",
|
||
"structure-2-2-the-covalent-model",
|
||
"tool-1-experimental-techniques",
|
||
"tool-3-mathematics"
|
||
]
|
||
},
|
||
{
|
||
"question_id": "EXM.2.HL.TZ0.2",
|
||
"Question": "<div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (a)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Determine the ratio in which 0.1 mol dm\n <sup>\n –3\n </sup>\n NaH\n <sub>\n 2\n </sub>\n PO\n <sub>\n 4\n </sub>\n and 0.1 mol dm\n <sup>\n –3\n </sup>\n Na\n <sub>\n 2\n </sub>\n HPO\n <sub>\n 4\n </sub>\n should be mixed to obtain a buffer with pH= 7.8.\n </p>\n <p>\n p\n <em>\n K\n </em>\n <sub>\n a\n </sub>\n NaH\n <sub>\n 2\n </sub>\n PO\n <sub>\n 4\n </sub>\n = 7.20\n </p>\n <p>\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [3]\n </p>\n </div>\n</div>\n <div class=\"t_qn_question_content\">\n <div class=\"qn_code_number\">\n (b)\n </div>\n <div class=\"qc_body js-toggle-question\">\n <p>\n Suggest, giving your reasons, the effect of diluting the buffer 1/100 with water on its pH and reaction to the addition of acids or bases.\n </p>\n <p>\n </p>\n <p>\n change in pH:\n <br/>\n <br/>\n .............................................................................................................................................................\n </p>\n <p>\n .............................................................................................................................................................\n </p>\n <p>\n </p>\n <p>\n reaction to addition of bases/acids:\n </p>\n <p>\n .............................................................................................................................................................\n </p>\n <p>\n .............................................................................................................................................................\n </p>\n </div>\n <div class=\"qc_marks_available\">\n <p>\n [2]\n </p>\n </div>\n</div>\n",
|
||
"Markscheme": "<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n pH\n </mtext>\n <mo>\n =\n </mo>\n <mtext>\n p\n </mtext>\n <msub>\n <mi>\n K\n </mi>\n <mtext>\n a\n </mtext>\n </msub>\n <mo>\n +\n </mo>\n <mi>\n log\n </mi>\n <mfrac>\n <mfenced close=\"]\" open=\"[\">\n <msubsup>\n <mtext>\n HPO\n </mtext>\n <mn>\n 4\n </mn>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n -\n </mo>\n </mrow>\n </msubsup>\n </mfenced>\n <mfenced close=\"]\" open=\"[\">\n <mrow>\n <msub>\n <mtext>\n H\n </mtext>\n <mn>\n 2\n </mn>\n </msub>\n <msubsup>\n <mtext>\n PO\n </mtext>\n <mn>\n 4\n </mn>\n <mo>\n -\n </mo>\n </msubsup>\n </mrow>\n </mfenced>\n </mfrac>\n <mo>\n </mo>\n <mo>\n /\n </mo>\n <mo>\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 80\n </mn>\n <mo>\n =\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 20\n </mn>\n <mo>\n +\n </mo>\n <mi>\n log\n </mi>\n <mfrac>\n <mfenced close=\"]\" open=\"[\">\n <msubsup>\n <mtext>\n HPO\n </mtext>\n <mn>\n 4\n </mn>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n -\n </mo>\n </mrow>\n </msubsup>\n </mfenced>\n <mfenced close=\"]\" open=\"[\">\n <mrow>\n <msub>\n <mtext>\n H\n </mtext>\n <mn>\n 2\n </mn>\n </msub>\n <msubsup>\n <mtext>\n PO\n </mtext>\n <mn>\n 4\n </mn>\n <mo>\n -\n </mo>\n </msubsup>\n </mrow>\n </mfenced>\n </mfrac>\n </math>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n log\n </mi>\n <mfrac>\n <mfenced close=\"]\" open=\"[\">\n <msubsup>\n <mtext>\n HPO\n </mtext>\n <mn>\n 4\n </mn>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n -\n </mo>\n </mrow>\n </msubsup>\n </mfenced>\n <mfenced close=\"]\" open=\"[\">\n <mrow>\n <msub>\n <mtext>\n H\n </mtext>\n <mn>\n 2\n </mn>\n </msub>\n <msubsup>\n <mtext>\n PO\n </mtext>\n <mn>\n 4\n </mn>\n <mo>\n -\n </mo>\n </msubsup>\n </mrow>\n </mfenced>\n </mfrac>\n <mo>\n =\n </mo>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 80\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 20\n </mn>\n <mo>\n =\n </mo>\n </math>\n » 0.6 ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mfenced close=\"]\" open=\"[\">\n <msubsup>\n <mtext>\n HPO\n </mtext>\n <mn>\n 4\n </mn>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n -\n </mo>\n </mrow>\n </msubsup>\n </mfenced>\n <mfenced close=\"]\" open=\"[\">\n <mrow>\n <msub>\n <mtext>\n H\n </mtext>\n <mn>\n 2\n </mn>\n </msub>\n <msubsup>\n <mtext>\n PO\n </mtext>\n <mn>\n 4\n </mn>\n <mo>\n -\n </mo>\n </msubsup>\n </mrow>\n </mfenced>\n </mfrac>\n <mo>\n =\n </mo>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </msup>\n <mo>\n =\n </mo>\n </math>\n » 3.98 ✓\n </p>\n <p>\n Na\n <sub>\n 2\n </sub>\n PO\n <sub>\n 4\n </sub>\n to Na\n <sub>\n 2\n </sub>\n HPO\n <sub>\n 4\n </sub>\n = 3.98:1 ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (a)\n </div><div class=\"card-body\">\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mtext>\n pH\n </mtext>\n <mo>\n =\n </mo>\n <mtext>\n p\n </mtext>\n <msub>\n <mi>\n K\n </mi>\n <mtext>\n a\n </mtext>\n </msub>\n <mo>\n +\n </mo>\n <mi>\n log\n </mi>\n <mfrac>\n <mfenced close=\"]\" open=\"[\">\n <msubsup>\n <mtext>\n HPO\n </mtext>\n <mn>\n 4\n </mn>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n -\n </mo>\n </mrow>\n </msubsup>\n </mfenced>\n <mfenced close=\"]\" open=\"[\">\n <mrow>\n <msub>\n <mtext>\n H\n </mtext>\n <mn>\n 2\n </mn>\n </msub>\n <msubsup>\n <mtext>\n PO\n </mtext>\n <mn>\n 4\n </mn>\n <mo>\n -\n </mo>\n </msubsup>\n </mrow>\n </mfenced>\n </mfrac>\n <mo>\n </mo>\n <mo>\n /\n </mo>\n <mo>\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 80\n </mn>\n <mo>\n =\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 20\n </mn>\n <mo>\n +\n </mo>\n <mi>\n log\n </mi>\n <mfrac>\n <mfenced close=\"]\" open=\"[\">\n <msubsup>\n <mtext>\n HPO\n </mtext>\n <mn>\n 4\n </mn>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n -\n </mo>\n </mrow>\n </msubsup>\n </mfenced>\n <mfenced close=\"]\" open=\"[\">\n <mrow>\n <msub>\n <mtext>\n H\n </mtext>\n <mn>\n 2\n </mn>\n </msub>\n <msubsup>\n <mtext>\n PO\n </mtext>\n <mn>\n 4\n </mn>\n <mo>\n -\n </mo>\n </msubsup>\n </mrow>\n </mfenced>\n </mfrac>\n </math>\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mi>\n log\n </mi>\n <mfrac>\n <mfenced close=\"]\" open=\"[\">\n <msubsup>\n <mtext>\n HPO\n </mtext>\n <mn>\n 4\n </mn>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n -\n </mo>\n </mrow>\n </msubsup>\n </mfenced>\n <mfenced close=\"]\" open=\"[\">\n <mrow>\n <msub>\n <mtext>\n H\n </mtext>\n <mn>\n 2\n </mn>\n </msub>\n <msubsup>\n <mtext>\n PO\n </mtext>\n <mn>\n 4\n </mn>\n <mo>\n -\n </mo>\n </msubsup>\n </mrow>\n </mfenced>\n </mfrac>\n <mo>\n =\n </mo>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 80\n </mn>\n <mo>\n -\n </mo>\n <mn>\n 7\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 20\n </mn>\n <mo>\n =\n </mo>\n </math>\n » 0.6 ✓\n </p>\n <p>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mfrac>\n <mfenced close=\"]\" open=\"[\">\n <msubsup>\n <mtext>\n HPO\n </mtext>\n <mn>\n 4\n </mn>\n <mrow>\n <mn>\n 2\n </mn>\n <mo>\n -\n </mo>\n </mrow>\n </msubsup>\n </mfenced>\n <mfenced close=\"]\" open=\"[\">\n <mrow>\n <msub>\n <mtext>\n H\n </mtext>\n <mn>\n 2\n </mn>\n </msub>\n <msubsup>\n <mtext>\n PO\n </mtext>\n <mn>\n 4\n </mn>\n <mo>\n -\n </mo>\n </msubsup>\n </mrow>\n </mfenced>\n </mfrac>\n <mo>\n =\n </mo>\n </math>\n «\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <msup>\n <mn>\n 10\n </mn>\n <mrow>\n <mn>\n 0\n </mn>\n <mo>\n .\n </mo>\n <mn>\n 6\n </mn>\n </mrow>\n </msup>\n <mo>\n =\n </mo>\n </math>\n » 3.98 ✓\n </p>\n <p>\n Na\n <sub>\n 2\n </sub>\n PO\n <sub>\n 4\n </sub>\n to Na\n <sub>\n 2\n </sub>\n HPO\n <sub>\n 4\n </sub>\n = 3.98:1 ✓\n </p>\n</div>\n<br><div class=\"qn_code_number\">\n (b)\n </div><div class=\"card-body\">\n <p>\n <em>\n change in pH:\n </em>\n </p>\n <p>\n no «significant» effect as ratio of salt/acid are unchanged ✓\n </p>\n <p>\n </p>\n <p>\n <em>\n reaction to addition of bases/acids:\n </em>\n </p>\n <p>\n resistance to change/buffering capacity decreases ✓\n </p>\n</div>\n",
|
||
"Examiners report": "None",
|
||
"topics": [
|
||
"reactivity-3-what-are-the-mechanisms-of-chemical-change"
|
||
],
|
||
"subtopics": [
|
||
"reactivity-3-1-proton-transfer-reactions"
|
||
]
|
||
}
|
||
] |